DL151/D Rev. 4, Jan-2003

Rectifier Device Data

ON Semiconductor[®]

Rectifier Device Data

DL151/D Rev. 4, Jan-2003

© SCILLC, 2003 Previous Edition © 2000 "All Rights Reserved" This book presents technical data for ON Semiconductor's broad line of rectifiers. Complete specifications are provided in the form of data sheets and accompanying selection guides provide a quick comparison of characteristics to simplify the task of choosing the best device for a circuit.

The information in this book has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies.

POWERTAP, MEGAHERTZ, SCANSWITCH, SURMETIC and SWITCHMODE are trademarks of Semiconductor Components Industries, LLC (SCILLC).

Thermal Clad is a registered trademark of the Bergquist Company.

All brand names and product names appearing in this document are registered trademarks or trademarks of their respective holders.

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and erasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor

- P.O. Box 5163, Denver, Colorado 80217 USA
- Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

Page

Chapter 1 — Numeric Data Sheet Listing 4 Alphanumeric Listing of All Rectifier Devices
Chapter 2 — Product Selector Guide
Chapter 3 — Schottky Data Sheets
Chapter 4 — Ultrafast Data Sheets
Chapter 5 — Standard and Fast Recovery Data Sheets

Pa	age
Chapter 6 — AR598: Avalanche Capability of Todays Power Semiconductors	568
Chapter 7 — Surface Mount Information	576
Chapter 8 — TO-220 Leadform Information	582
Chapter 9 — Package Outline Dimensions	588
Chapter 10 — Cross Reference Guide	601
Chapter 11 — Alphanumeric Index	619

For tape and reel packaging options, please refer to ON Semiconductor document BRD8011/D.

CHAPTER 1 Numeric Data Sheet Listing

NUMERIC DATA SHEET LISTING

Device	Function	Page
1N4001	1.0 Amp, 50 Volt Axial Lead Standard Recovery Rectifier	
1N4002	1.0 Amp, 100 Volt Axial Lead Standard Recovery Rectifier	512
1N4003	1.0 Amp, 200 Volt Axial Lead Standard Recovery Rectifier	512
1N4004	1.0 Amp, 400 Volt Axial Lead Standard Recovery Rectifier	
1N4005	1.0 Amp, 600 Volt Axial Lead Standard Recovery Rectifier	512
1N4006	1.0 Amp, 800 Volt Axial Lead Standard Recovery Rectifier	512
1N4007	1.0 Amp, 1000 Volt Axial Lead Standard Recovery Rectifier	512
1N4933	1.0 Amp, 50 Volt Axial-Lead Fast-Recovery Rectifier	514
1N4934	1.0 Amp, 100 Volt Axial-Lead Fast-Recovery Rectifier	514
1N4935	1.0 Amp, 200 Volt Axial-Lead Fast-Recovery Rectifier	514
1N4936	1.0 Amp, 400 Volt Axial-Lead Fast-Recovery Rectifier	514
1N4937	1.0 Amp, 600 Volt Axial-Lead Fast-Recovery Rectifier	514
1N5400	3.0 Amp, 50 Volt Axial-Lead Standard Recovery Rectifier	516
1N5401	3.0 Amp, 100 Volt Axial-Lead Standard Recovery Rectifier	516
1N5402	3.0 Amp, 200 Volt Axial-Lead Standard Recovery Rectifier	516
1N5404	3.0 Amp, 400 Volt Axial-Lead Standard Recovery Rectifier	516
1N5406	3.0 Amp, 600 Volt Axial-Lead Standard Recovery Rectifier	516
1N5407	3.0 Amp, 800 Volt Axial-Lead Standard Recovery Rectifier	516
1N5408	3.0 Amp, 1000 Volt Axial-Lead Standard Recovery Rectifier	516
1N5817	1 Amp, 20 Volt Axial Lead Schottky Rectifier	
1N5818	1 Amp, 30 Volt Axial Lead Schottky Rectifier	203
1N5819	1 Amp, 40 Volt Axial Lead Schottky Rectifier	
1N5820	3 Amp, 20 Volt Axial Lead Schottky Rectifier	
1N5821	3 Amp, 30 Volt Axial Lead Schottky Rectifier	
1N5822	3 Amp, 40 Volt Axial Lead Schottky Rectifier	
MBR0520LT1	0.5 Amp, 20 Volt Surface Mount Schottky Power Rectifier	
MBR0520LT3	0.5 Amp, 20 Volt Surface Mount Schottky Power Rectifier	
MBR0530T1	0.5 Amp, 30 Volt Surface Mount Schottky Power Rectifier	
MBR0530T3	0.5 Amp, 30 Volt Surface Mount Schottky Power Rectifier	
MBR0540T1	0.5 Amp, 40 Volt Surface Mount Schottky Power Rectifier	
MBR0540T3	0.5 Amp, 40 Volt Surface Mount Schottky Power Rectifier	
MBR10100	10 Amp, 100 Volt SWITCHMODE Power Rectifier	
MBR1035	10 Amp, 35 Volt SWITCHMODE Power Rectifier	
MBR1045	10 Amp, 45 Volt SWITCHMODE Power Rectifier	
MBR1060	10 Amp, 60 Volt SWITCHMODE Power Rectifier	270
MBR1080	10 Amp, 80 Volt SWITCHMODE Power Rectifier	
MBR1090	10 Amp, 90 Volt SWITCHMODE Power Rectifier	
MBR1100	1 Amp, 100 Volt Axial Lead Rectifier	
MBR120ESFT1	1 Amp, 20 Volt Surface Mount Schottky Power Rectifier	
MBR120LSFT1	1 Amp, 20 Volt Surface Mount Schottky Power Rectifier	
MBR140SFT1	1 Amp, 40 Volt Surface Mount Schottky Power Rectifier	46
MBR150	1 Amp, 50 Volt Axial Lead Rectifier	209
MBR1535CT	15 Amp, 35 Volt SWITCHMODE Power Rectifier	

MBR1545CT 15 Amp, 45 Volt SWITCHMODE Power Rectifier	MBR160 1 MBR16100CT 1 MBR1635 1 MBR1645 1 MBR20100CT 2 MBR20200CT 2	1 Amp, 60 Volt Axial Lead Rectifier 16 Amp, 100 Volt SWITCHMODE Power Rectifier 16 Amp, 35 Volt SWITCHMODE Power Rectifier 16 Amp, 45 Volt SWITCHMODE Power Rectifier 20 Amp, 100 Volt SWITCHMODE Power Rectifier 20 Amp, 200 Volt SWITCHMODE Dual Schottky Power Rectifier 20 Amp, 30 Volt SWITCHMODE Dual Schottky Power Rectifier 20 Amp, 45 Volt SWITCHMODE Dual Schottky Power Rectifier	 209 238 273 273 250 253 241
MBR16100CT 16 Amp, 100 Volt SWITCHMODE Power Rectifier 238 MBR1635 16 Amp, 35 Volt SWITCHMODE Power Rectifier 273 MBR1045 16 Amp, 35 Volt SWITCHMODE Power Rectifier 273 MBR2000CT 20 Amp, 100 Volt SWITCHMODE Power Rectifier 250 MBR20300CTL 20 Amp, 200 Volt SWITCHMODE Dual Schottky Power Rectifier 241 MBR20300CTL 20 Amp, 30 Volt SWITCHMODE Dwar Rectifier 245 MBR2060CT 20 Amp, 60 Volt SWITCHMODE Power Rectifier 250 MBR2080CT 20 Amp, 60 Volt SWITCHMODE Power Rectifier 250 MBR2080CT 20 Amp, 90 Volt SWITCHMODE Power Rectifier 250 MBR205151 25 Amp, 15 Volt SWITCHMODE Power Rectifier 250 MBR23535CTL 25 Amp, 35 Volt SWITCHMODE Power Rectifier 256 MBR2344CP 30 Amp, 45 Volt SWITCHMODE Power Rectifier 250 MBR3045WT 30 Amp, 45 Volt SWITCHMODE Power Rectifier 250 MBR3060 3 Amp, 60 Volt Axial Lead Rectifier 216 MBR306 3 Amp, 40 Volt Axial Lead Rectifier 226 MBR306 3 Amp, 60 Volt Axial Lead Rectifier 226 M	MBR16100CT 1 MBR1635 1 MBR1645 1 MBR20100CT 2 MBR20200CT 2	16 Amp, 100 Volt SWITCHMODE Power Rectifier 16 Amp, 35 Volt SWITCHMODE Power Rectifier 16 Amp, 45 Volt SWITCHMODE Power Rectifier 20 Amp, 100 Volt SWITCHMODE Power Rectifier 20 Amp, 200 Volt SWITCHMODE Dual Schottky Power Rectifier 20 Amp, 30 Volt SWITCHMODE Dual Schottky Power Rectifier 20 Amp, 45 Volt SWITCHMODE Dual Schottky Power Rectifier	. 238 . 273 . 273 . 250 . 253 . 241
MBR1635 16 Amp, 35 Volt SWITCHMODE Power Rectifier 273 MBR1645 16 Amp, 45 Volt SWITCHMODE Power Rectifier 273 MBR20100CT 20 Amp, 100 Volt SWITCHMODE Dual Schottky Power Rectifier 253 MBR2030CTL 20 Amp, 30 Volt SWITCHMODE Dual Schottky Power Rectifier 241 MBR2060CT 20 Amp, 45 Volt SWITCHMODE Power Rectifier 245 MBR2060CT 20 Amp, 60 Volt SWITCHMODE Power Rectifier 250 MBR2080CT 20 Amp, 80 Volt SWITCHMODE Power Rectifier 250 MBR2080CT 20 Amp, 90 Volt SWITCHMODE Power Rectifier 250 MBR2515L 25 Amp, 15 Volt SWITCHMODE Power Rectifier 250 MBR2080CT 20 Amp, 40 Volt SWITCHMODE Power Rectifier 250 MBR2045PT 30 Amp, 45 Volt SWITCHMODE Power Rectifier 250 MBR3045PT 30 Amp, 45 Volt SWITCHMODE Power Rectifier 259 MBR3060 3 Amp, 60 Volt Axial Lead Rectifier 290 MBR3060 3 Amp, 40 Volt Axial Lead Rectifier 232 MBR306 3 Amp, 40 Volt Axial Lead Rectifier 229 MBR300 3 Amp, 40 Volt Axial Lead Rectifier 229 MBR	MBR1635 1 MBR1645 1 MBR20100CT 2 MBR20200CT 2	16 Amp, 35 Volt SWITCHMODE Power Rectifier 16 Amp, 45 Volt SWITCHMODE Power Rectifier 20 Amp, 100 Volt SWITCHMODE Power Rectifier 20 Amp, 200 Volt SWITCHMODE Dual Schottky Power Rectifier 20 Amp, 30 Volt SWITCHMODE Dual Schottky Power Rectifier 20 Amp, 45 Volt SWITCHMODE Dual Schottky Power Rectifier	. 273 . 273 . 250 . 253 . 241
MBR1635 16 Amp, 35 Volt SWITCHMODE Power Rectifier 273 MBR1645 16 Amp, 45 Volt SWITCHMODE Power Rectifier 273 MBR20100CT 20 Amp, 100 Volt SWITCHMODE Dual Schottky Power Rectifier 253 MBR2030CTL 20 Amp, 30 Volt SWITCHMODE Dual Schottky Power Rectifier 241 MBR2060CT 20 Amp, 45 Volt SWITCHMODE Power Rectifier 245 MBR2060CT 20 Amp, 60 Volt SWITCHMODE Power Rectifier 250 MBR2080CT 20 Amp, 80 Volt SWITCHMODE Power Rectifier 250 MBR2080CT 20 Amp, 90 Volt SWITCHMODE Power Rectifier 250 MBR2515L 25 Amp, 15 Volt SWITCHMODE Power Rectifier 250 MBR2080CT 20 Amp, 40 Volt SWITCHMODE Power Rectifier 250 MBR2045PT 30 Amp, 45 Volt SWITCHMODE Power Rectifier 250 MBR3045PT 30 Amp, 45 Volt SWITCHMODE Power Rectifier 259 MBR3060 3 Amp, 60 Volt Axial Lead Rectifier 290 MBR3060 3 Amp, 40 Volt Axial Lead Rectifier 232 MBR306 3 Amp, 40 Volt Axial Lead Rectifier 229 MBR300 3 Amp, 40 Volt Axial Lead Rectifier 229 MBR	MBR1635 1 MBR1645 1 MBR20100CT 2 MBR20200CT 2	16 Amp, 35 Volt SWITCHMODE Power Rectifier 16 Amp, 45 Volt SWITCHMODE Power Rectifier 20 Amp, 100 Volt SWITCHMODE Power Rectifier 20 Amp, 200 Volt SWITCHMODE Dual Schottky Power Rectifier 20 Amp, 30 Volt SWITCHMODE Dual Schottky Power Rectifier 20 Amp, 45 Volt SWITCHMODE Dual Schottky Power Rectifier	. 273 . 273 . 250 . 253 . 241
MBR20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier250MBR20300CT20 Amp, 200 Volt SWITCHMODE Dual Schottky Power Rectifier253MBR20300CT20 Amp, 30 Volt SWITCHMODE Dual Schottky Power Rectifier241MBR2045CT20 Amp, 45 Volt SWITCHMODE Power Rectifier245MBR20500CT20 Amp, 90 Volt SWITCHMODE Power Rectifier250MBR20800CT20 Amp, 90 Volt SWITCHMODE Power Rectifier250MBR2090CT20 Amp, 90 Volt SWITCHMODE Power Rectifier250MBR2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier256MBR2545CTP30 Amp, 45 Volt SWITCHMODE Power Rectifier256MBR3045PT30 Amp, 45 Volt SWITCHMODE Power Rectifier290MBR3045PT30 Amp, 45 Volt SWITCHMODE Power Rectifier290MBR30603 Amp, 60 Volt Axial Lead Rectifier216MBR31003 Amp, 60 Volt Axial Lead Rectifier226MBR3063 Amp, 60 Volt Axial Lead Rectifier226MBR3063 Amp, 60 Volt Axial Lead Rectifier229MBR3063 Amp, 60 Volt Axial Lead Rectifier229MBR4015DT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR4045PT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR4045DT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR4045DT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR	MBR20100CT 2 MBR20200CT 2	20 Amp, 100 Volt SWITCHMODE Power Rectifier 20 Amp, 200 Volt SWITCHMODE Dual Schottky Power Rectifier 20 Amp, 30 Volt SWITCHMODE Dual Schottky Power Rectifier 20 Amp, 45 Volt SWITCHMODE Power Rectifier	. 250 . 253 . 241
MBR20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier250MBR20300CT20 Amp, 200 Volt SWITCHMODE Dual Schottky Power Rectifier253MBR20300CT20 Amp, 30 Volt SWITCHMODE Dual Schottky Power Rectifier241MBR2045CT20 Amp, 45 Volt SWITCHMODE Power Rectifier245MBR20500CT20 Amp, 90 Volt SWITCHMODE Power Rectifier250MBR20800CT20 Amp, 90 Volt SWITCHMODE Power Rectifier250MBR2090CT20 Amp, 90 Volt SWITCHMODE Power Rectifier250MBR2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier256MBR2545CTP30 Amp, 45 Volt SWITCHMODE Power Rectifier256MBR3045PT30 Amp, 45 Volt SWITCHMODE Power Rectifier290MBR3045PT30 Amp, 45 Volt SWITCHMODE Power Rectifier290MBR30603 Amp, 60 Volt Axial Lead Rectifier216MBR31003 Amp, 60 Volt Axial Lead Rectifier226MBR3063 Amp, 60 Volt Axial Lead Rectifier226MBR3063 Amp, 60 Volt Axial Lead Rectifier229MBR3063 Amp, 60 Volt Axial Lead Rectifier229MBR4015DT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR4045PT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR4045DT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR4045DT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR	MBR20100CT 2 MBR20200CT 2	20 Amp, 100 Volt SWITCHMODE Power Rectifier 20 Amp, 200 Volt SWITCHMODE Dual Schottky Power Rectifier 20 Amp, 30 Volt SWITCHMODE Dual Schottky Power Rectifier 20 Amp, 45 Volt SWITCHMODE Power Rectifier	. 250 . 253 . 241
MBR20200CT 20 Amp, 200 Volt SWITCHMODE Dual Schottky Power Rectifier 253 MBR2030CTL 20 Amp, 30 Volt SWITCHMODE Dual Schottky Power Rectifier 241 MBR206CT 20 Amp, 45 Volt SWITCHMODE Dower Rectifier 245 MBR2060CT 20 Amp, 80 Volt SWITCHMODE Power Rectifier 250 MBR2080CT 20 Amp, 90 Volt SWITCHMODE Power Rectifier 250 MBR2515L 25 Amp, 15 Volt SWITCHMODE Power Rectifier 256 MBR2535CTL 25 Amp, 15 Volt SWITCHMODE Power Rectifier 256 MBR2545CTP 30 Amp, 45 Volt SWITCHMODE Power Rectifier 259 MBR3045PT 30 Amp, 45 Volt SWITCHMODE Power Rectifier 290 MBR3060 3 Amp, 60 Volt Axial Lead Rectifier 216 MBR300 3 Amp, 60 Volt Axial Lead Rectifier 229 MBR300 3 Amp, 50 Volt Axial Lead Rectifier 229 MBR300 3 Amp, 60 Volt Axial Lead Rectifier 229 MBR300 3 Amp, 50 Volt Axial Lead Rectifier 229 MBR4015LWT 40 Amp, 45 Volt SWITCHMODE Power Rectifier 230 MBR4045PT 40 Amp, 45 Volt SWITCHMODE Power Rectifier 230 MBR4045W	MBR20200CT 2	20 Amp, 200 Volt SWITCHMODE Dual Schottky Power Rectifier 20 Amp, 30 Volt SWITCHMODE Dual Schottky Power Rectifier 20 Amp, 45 Volt SWITCHMODE Power Rectifier	. 253 . 241
MBR2030CTL20 Amp, 30 Volt SWITCHMODE Dual Schottky Power Rectifier241MBR2045CT20 Amp, 60 Volt SWITCHMODE Power Rectifier245MBR2080CT20 Amp, 80 Volt SWITCHMODE Power Rectifier250MBR2080CT20 Amp, 90 Volt SWITCHMODE Power Rectifier250MBR2090CT20 Amp, 80 Volt SWITCHMODE Power Rectifier250MBR2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier256MBR2545CTP30 Amp, 45 Volt SWITCHMODE Power Rectifier256MBR3045PT30 Amp, 45 Volt SWITCHMODE Power Rectifier290MBR3045PT30 Amp, 45 Volt SWITCHMODE Power Rectifier291MBR30603 Amp, 60 Volt Axial Lead Rectifier216MBR3063 Amp, 60 Volt Axial Lead Rectifier216MBR3063 Amp, 60 Volt Axial Lead Rectifier226MBR3003 Amp, 60 Volt Axial Lead Rectifier229MBR3003 Amp, 60 Volt Axial Lead Rectifier229MBR3003 Amp, 60 Volt Axial Lead Rectifier229MBR3003 Amp, 60 Volt Axial Lead Rectifier293MBR4045PT40 Amp, 45 Volt SWITCHMODE Power Rectifier293MBR4045PT40 Amp, 45 Volt SWITCHMODE Power Rectifier294MBR3015LWT40 Amp, 45 Volt SWITCHMODE Power Rectifier262MBR4045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier262MBR4045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier262MBR4120LT31 Amp, 20 Volt SWITCHMODE Power Rectifier262MBR4120LT31 Amp, 20 Volt SWITCHMODE Power Rectifier80MBRA120LT3 <td></td> <td>20 Amp, 30 Volt SWITCHMODE Dual Schottky Power Rectifier 20 Amp, 45 Volt SWITCHMODE Power Rectifier</td> <td>. 241</td>		20 Amp, 30 Volt SWITCHMODE Dual Schottky Power Rectifier 20 Amp, 45 Volt SWITCHMODE Power Rectifier	. 241
MBR2045CT20 Amp, 45 Volt SWITCHMODE Power Rectifier245MBR2060CT20 Amp, 80 Volt SWITCHMODE Power Rectifier250MBR2090CT20 Amp, 90 Volt SWITCHMODE Power Rectifier250MBR2090CT20 Amp, 90 Volt SWITCHMODE Power Rectifier250MBR2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier250MBR2545CTP30 Amp, 45 Volt SWITCHMODE Power Rectifier256MBR2545CTP30 Amp, 45 Volt SWITCHMODE Power Rectifier259MBR3045PT30 Amp, 45 Volt SWITCHMODE Power Rectifier290MBR3045WT30 Amp, 45 Volt SWITCHMODE Power Rectifier290MBR3063 Amp, 60 Volt Axial Lead Rectifier216MBR31003 Amp, 40 Volt Axial Lead Rectifier226MBR303 Amp, 40 Volt Axial Lead Rectifier226MBR303 Amp, 50 Volt Axial Lead Rectifier229MBR303 Amp, 60 Volt Axial Lead Rectifier229MBR303 Amp, 60 Volt Axial Lead Rectifier229MBR4045PT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR4045PT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR6045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier262MBR6045WT60 Amp, 45 Volt SWITCHMODE Power Rectifier262MBR7357.5 Amp, 35 Volt SWITCHMODE Power Rectifier262MBRA120LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier86MBRA120LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier86MBRA140T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier86	MBR2030CTL 2	20 Amp, 45 Volt SWITCHMODE Power Rectifier	
MBR2060CT 20 Amp, 60 Volt SWITCHMODE Power Rectifier 250 MBR2080CT 20 Amp, 80 Volt SWITCHMODE Power Rectifier 250 MBR2090CT 20 Amp, 90 Volt SWITCHMODE Power Rectifier 250 MBR2515L 25 Amp, 15 Volt SWITCHMODE Power Rectifier 256 MBR2535CTL 25 Amp, 35 Volt SWITCHMODE Power Rectifier 256 MBR2545CTP 30 Amp, 45 Volt SWITCHMODE Power Rectifier 259 MBR3045PT 30 Amp, 45 Volt SWITCHMODE Power Rectifier 290 MBR3060 3 Amp, 60 Volt Axial Lead Rectifier 216 MBR3100 3 Amp, 60 Volt Axial Lead Rectifier 222 MBR350 3 Amp, 50 Volt Axial Lead Rectifier 229 MBR360 3 Amp, 60 Volt Axial Lead Rectifier 229 MBR360 3 Amp, 40 Volt Axial Lead Rectifier 229 MBR4015LWT 40 Amp, 15 Volt SWITCHMODE Power Rectifier 300 MBR4045PT 40 Amp, 45 Volt SWITCHMODE Power Rectifier 304 MBR4045WT 40 Amp, 45 Volt SWITCHMODE Power Rectifier 306 MBR4045WT 40 Amp, 45 Volt SWITCHMODE Power Rectifier 306 MBR4045WT 60 Amp, 45		•	. 24.)
MBR2080CT 20 Amp, 80 Volt SWITCHMODE Power Rectifier 250 MBR2090CT 20 Amp, 90 Volt SWITCHMODE Power Rectifier 250 MBR2515L 25 Amp, 15 Volt SWITCHMODE Power Rectifier 276 MBR254SCTP 30 Amp, 45 Volt SWITCHMODE Power Rectifier 259 MBR304SPT 30 Amp, 45 Volt SWITCHMODE Power Rectifier 290 MBR3060 3 Amp, 60 Volt Axial Lead Rectifier 291 MBR3060 3 Amp, 60 Volt Axial Lead Rectifier 212 MBR3100 3 Amp, 40 Volt Axial Lead Rectifier 222 MBR340 3 Amp, 40 Volt Axial Lead Rectifier 229 MBR360 3 Amp, 50 Volt Axial Lead Rectifier 229 MBR360 3 Amp, 50 Volt Axial Lead Rectifier 229 MBR360 3 Amp, 50 Volt Axial Lead Rectifier 229 MBR4015LWT 40 Amp, 15 Volt SWITCHMODE Power Rectifier 304 MBR4045PT 40 Amp, 45 Volt SWITCHMODE Power Rectifier 304 MBR6045WT 40 Amp, 45 Volt SWITCHMODE Power Rectifier 295 MBR6045WT 60 Amp, 45 Volt SWITCHMODE Power Rectifier 262 MBR735 7.5 Amp, 35 Volt SWITCHMODE Power			
MBR2090CT 20 Amp, 90 Volt SWITCHMODE Power Rectifier 250 MBR2515L 25 Amp, 15 Volt SWITCHMODE Power Rectifier 276 MBR2535CTL 25 Amp, 35 Volt SWITCHMODE Power Rectifier 256 MBR2545CTP 30 Amp, 45 Volt SWITCHMODE Power Rectifier 259 MBR3045PT 30 Amp, 45 Volt SWITCHMODE Power Rectifier 290 MBR3060 3 Amp, 60 Volt Axial Lead Rectifier 291 MBR3060 3 Amp, 60 Volt Axial Lead Rectifier 216 MBR3100 3 Amp, 100 Volt Axial Lead Rectifier 222 MBR360 3 Amp, 50 Volt Axial Lead Rectifier 229 MBR360 3 Amp, 50 Volt Axial Lead Rectifier 229 MBR360 3 Amp, 50 Volt Axial Lead Rectifier 229 MBR4015LWT 40 Amp, 15 Volt SWITCHMODE Schottky Power Rectifier 209 MBR4045PT 40 Amp, 45 Volt SWITCHMODE Power Rectifier 295 MBR6045WT 40 Amp, 45 Volt SWITCHMODE Power Rectifier 295 MBR6045WT 60 Amp, 45 Volt SWITCHMODE Power Rectifier 262 MBR735 7.5 Amp, 35 Volt SWITCHMODE Power Rectifier 262 MBRA120ET3 1 Amp, 20		20 Amp. 80 Volt SWITCHMODE Power Rectifier	
MBR2515L 25 Amp, 15 Volt SWITCHMODE Power Rectifier 276 MBR2535CTL 25 Amp, 35 Volt SWITCHMODE Power Rectifier 256 MBR2545CTP 30 Amp, 45 Volt SWITCHMODE Power Rectifier 290 MBR3045PT 30 Amp, 45 Volt SWITCHMODE Power Rectifier 297 MBR3060 3 Amp, 60 Volt Axial Lead Rectifier 216 MBR3060 3 Amp, 40 Volt Axial Lead Rectifier 216 MBR3060 3 Amp, 40 Volt Axial Lead Rectifier 222 MBR360 3 Amp, 50 Volt Axial Lead Rectifier 229 MBR360 3 Amp, 60 Volt Axial Lead Rectifier 229 MBR360 3 Amp, 60 Volt Axial Lead Rectifier 229 MBR4051LWT 40 Amp, 15 Volt SWITCHMODE Schottky Power Rectifier 300 MBR4045WT 40 Amp, 45 Volt SWITCHMODE Power Rectifier 293 MBR6045WT 60 Amp, 45 Volt SWITCHMODE Power Rectifier 306 MBR735 7.5 Amp, 35 Volt SWITCHMODE Power Rectifier 262 MBR745 7.5 Amp, 35 Volt SWITCHMODE Power Rectifier 306 MBR4045WT 60 Amp, 45 Volt SWITCHMODE Power Rectifier 262 MBR4120ET3 1 Amp, 20 Vol		-	
MBR2535CTL25 Amp, 35 Volt SWITCHMODE Power Rectifier256MBR2545CTP30 Amp, 45 Volt SWITCHMODE Power Rectifier259MBR304SPT30 Amp, 45 Volt SWITCHMODE Power Rectifier290MBR304SWT30 Amp, 45 Volt SWITCHMODE Power Rectifier291MBR30603 Amp, 60 Volt Axial Lead Rectifier216MBR30603 Amp, 100 Volt Axial Lead Rectifier232MBR3003 Amp, 50 Volt Axial Lead Rectifier226MBR3603 Amp, 50 Volt Axial Lead Rectifier229MBR3603 Amp, 50 Volt Axial Lead Rectifier229MBR3603 Amp, 60 Volt Axial Lead Rectifier229MBR4015LWT40 Amp, 15 Volt SWITCHMODE Schottky Power Rectifier300MBR4045PT40 Amp, 45 Volt SWITCHMODE Power Rectifier293MBR6045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR6045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier306MBR7357.5 Amp, 35 Volt SWITCHMODE Power Rectifier306MBR7457.5 Amp, 35 Volt SWITCHMODE Power Rectifier306MBR7357.5 Amp, 45 Volt SWITCHMODE Power Rectifier306MBR7357.5 Amp, 35 Volt SWITCHMODE Power Rectifier80MBRA120ET31 Amp, 20 Volt Surface Mount Schottky Power Rectifier80MBRA140T31 Amp, 30 Volt Surface Mount Schottky Power Rectifier88MBRA160T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier92MBR2010T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier92MBR210LT31 Amp, 40 Volt Surface Mount Schottky Power R		•	
MBR2545CTP30 Amp, 45 Volt SWITCHMODE Power Rectifier259MBR3045PT30 Amp, 45 Volt SWITCHMODE Power Rectifier290MBR30603 Amp, 60 Volt Axial Lead Rectifier291MBR30603 Amp, 100 Volt Axial Lead Rectifier216MBR31003 Amp, 40 Volt Axial Lead Rectifier226MBR3403 Amp, 50 Volt Axial Lead Rectifier229MBR3603 Amp, 60 Volt Axial Lead Rectifier229MBR3603 Amp, 60 Volt Axial Lead Rectifier229MBR3603 Amp, 50 Volt Axial Lead Rectifier229MBR4015LWT40 Amp, 15 Volt SWITCHMODE Schottky Power Rectifier300MBR4045PT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR6045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier305MBR6045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier306MBR7357.5 Amp, 35 Volt SWITCHMODE Power Rectifier306MBR7357.5 Amp, 45 Volt SWITCHMODE Power Rectifier262MBR7457.5 Amp, 45 Volt SWITCHMODE Power Rectifier262MBR4120LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier83MBRA130LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier89MBRA140T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier92MBR310CT32 Amp, 10 Volt Surface Mount Schottky Power Rectifier92MBR4140T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier98MBR4140T31 Amp, 45 Volt SWITCHMODE Power Rectifier92MBR410CT32 Amp, 10 Volt Surface Mount Schottky Power		•	
MBR3045PT30 Amp, 45 Volt SWITCHMODE Power Rectifier290MBR3045WT30 Amp, 45 Volt SWITCHMODE Power Rectifier297MBR30603 Amp, 60 Volt Axial Lead Rectifier216MBR31003 Amp, 100 Volt Axial Lead Rectifier232MBR3403 Amp, 40 Volt Axial Lead Rectifier226MBR3503 Amp, 50 Volt Axial Lead Rectifier229MBR4015LWT40 Volt Axial Lead Rectifier229MBR4015LWT40 Amp, 15 Volt SWITCHMODE Schottky Power Rectifier300MBR4045PT40 Amp, 45 Volt SWITCHMODE Schottky Power Rectifier304MBR6045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR6045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier306MBR6045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier306MBR7557.5 Amp, 35 Volt SWITCHMODE Power Rectifier306MBR7457.5 Amp, 35 Volt SWITCHMODE Power Rectifier262MBR4120ET31 Amp, 20 Volt SWITCHMODE Power Rectifier80MBRA130LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier83MBRA140T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier92MBRA160T31 Amp, 60 Volt Surface Mount Schottky Power Rectifier98MBR4160T31 Amp, 45 Volt SWITCHMODE Power Rectifier98MBRA160T31 Amp, 45 Volt SWITCHMODE Power Rectifier98MBR210LT32 Amp, 10 Volt Surface Mount Schottky Power Rectifier92MBR210LT32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBR81545CT15 Amp, 45 Volt SWI		-	
MBR3045WT30 Amp, 45 Volt SWITCHMODE Power Rectifier297MBR30603 Amp, 60 Volt Axial Lead Rectifier216MBR31003 Amp, 100 Volt Axial Lead Rectifier232MBR3403 Amp, 40 Volt Axial Lead Rectifier226MBR3503 Amp, 50 Volt Axial Lead Rectifier229MBR3603 Amp, 60 Volt Axial Lead Rectifier229MBR3603 Amp, 60 Volt Axial Lead Rectifier229MBR4015LWT40 Amp, 15 Volt SWITCHMODE Schottky Power Rectifier300MBR4045FT40 Amp, 45 Volt SWITCHMODE Power Rectifier293MBR4045FT60 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR6045FT60 Amp, 45 Volt SWITCHMODE Power Rectifier306MBR7357.5 Amp, 35 Volt SWITCHMODE Power Rectifier262MBR4120ET31 Amp, 20 Volt SWITCHMODE Power Rectifier262MBR4120ET31 Amp, 20 Volt SWITCHMODE Power Rectifier80MBRA120LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier83MBRA140T31 Amp, 20 Volt Surface Mount Schottky Power Rectifier86MBRA140T31 Amp, 00 Volt Surface Mount Schottky Power Rectifier92MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBR4210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBR81545CT15 Amp, 45 Volt SWITCHMODE Power Rectifier173MBR820100CT20		-	
MBR30603 Amp, 60 Volt Axial Lead Rectifier216MBR31003 Amp, 100 Volt Axial Lead Rectifier232MBR3403 Amp, 40 Volt Axial Lead Rectifier232MBR3503 Amp, 50 Volt Axial Lead Rectifier226MBR3603 Amp, 60 Volt Axial Lead Rectifier229MBR4015LWT40 Amp, 15 Volt SWITCHMODE Schottky Power Rectifier300MBR4045PT40 Amp, 15 Volt SWITCHMODE Power Rectifier304MBR4045WT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR6045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier306MBR6045WT60 Amp, 45 Volt SWITCHMODE Power Rectifier306MBR7357.5 Amp, 35 Volt SWITCHMODE Power Rectifier306MBR7457.5 Amp, 35 Volt SWITCHMODE Power Rectifier262MBR4120ET31 Amp, 20 Volt Surface Mount Schottky Power Rectifier80MBRA130LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier83MBRA140T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier92MBR210ET31 Amp, 60 Volt Surface Mount Schottky Power Rectifier98MBR210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBR210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBR210ET32 Amp, 10 Volt SWITCHMODE Power Rectifier102MBR210ET32 Amp, 10 Volt SWITCHMODE Power Rectifier173MBR210ET32 Amp, 10 Volt SWITCHMODE Power Rectifier174MBR210ET310 Amp, 45 Volt SWITCHMODE Power Rectifier173MBR210LT32 Amp, 10 Volt		•	
MBR31003 Amp, 100 Volt Axial Lead Rectifier232MBR3403 Amp, 40 Volt Axial Lead Rectifier226MBR3503 Amp, 50 Volt Axial Lead Rectifier229MBR3603 Amp, 60 Volt Axial Lead Rectifier229MBR4015LWT40 Amp, 15 Volt SWITCHMODE Schottky Power Rectifier300MBR4045PT40 Amp, 45 Volt SWITCHMODE Power Rectifier293MBR4045WT40 Amp, 45 Volt SWITCHMODE Power Rectifier293MBR4045WT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR6045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier306MBR7357.5 Amp, 35 Volt SWITCHMODE Power Rectifier206MBR7457.5 Amp, 35 Volt SWITCHMODE Power Rectifier262MBR7457.5 Amp, 35 Volt SWITCHMODE Power Rectifier262MBR4120ET31 Amp, 20 Volt Surface Mount Schottky Power Rectifier80MBRA130LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier86MBRA160T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier92MBR210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBR210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBR210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBR164510 Amp, 45 Volt SWITCHMODE Power Rectifier173MBR210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier174MBR210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier176MBR545CT10 Amp, 45 Volt SWITCHMODE Power Rectifier177MB		•	
MBR3403 Amp, 40 Volt Axial Lead Rectifier226MBR3503 Amp, 50 Volt Axial Lead Rectifier229MBR3603 Amp, 60 Volt Axial Lead Rectifier229MBR4015LWT40 Amp, 15 Volt SWITCHMODE Schottky Power Rectifier300MBR4045PT40 Amp, 45 Volt SWITCHMODE Power Rectifier293MBR4045WT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR6045WT60 Amp, 45 Volt SWITCHMODE Power Rectifier306MBR7357.5 Amp, 35 Volt SWITCHMODE Power Rectifier306MBR7457.5 Amp, 35 Volt SWITCHMODE Power Rectifier262MBR4120ET31 Amp, 20 Volt SWITCHMODE Power Rectifier262MBR4120ET31 Amp, 20 Volt Surface Mount Schottky Power Rectifier80MBRA130LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier83MBR4160T31 Amp, 30 Volt Surface Mount Schottky Power Rectifier98MBR210LT32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBR4210LT32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBR4210LT32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBR210LT32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBR81545CT15 Amp, 45 Volt SWITCHMODE Power Rectifier173MBR82010CT20 Amp, 100 Volt SWITCHMODE Power Rectifier173MBR82010CT20 Amp, 100 Volt SWITCHMODE Power Rectifier174MBR82010CT20 Amp, 100 Volt SWITCHMODE Power Rectifier175MBR82010CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175 <td></td> <td>-</td> <td></td>		-	
MBR3503 Amp, 50 Volt Axial Lead Rectifier229MBR3603 Amp, 60 Volt Axial Lead Rectifier229MBR4015LWT40 Amp, 15 Volt SWITCHMODE Schottky Power Rectifier300MBR4045PT40 Amp, 45 Volt SWITCHMODE Power Rectifier293MBR4045WT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR6045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR6045WT60 Amp, 45 Volt SWITCHMODE Power Rectifier295MBR6045WT60 Amp, 45 Volt SWITCHMODE Power Rectifier306MBR7357.5 Amp, 35 Volt SWITCHMODE Power Rectifier262MBR7457.5 Amp, 45 Volt SWITCHMODE Power Rectifier262MBR120ET31 Amp, 20 Volt Surface Mount Schottky Power Rectifier80MBRA120LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier83MBRA130LT31 Amp, 30 Volt Surface Mount Schottky Power Rectifier89MBRA160T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier92MBR210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBR210LT32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBR104510 Amp, 45 Volt SWITCHMODE Power Rectifier102MBR81545CT15 Amp, 45 Volt SWITCHMODE Power Rectifier173MBR2010CT20 Amp, 100 Volt SWITCHMODE Power Rectifier173MBR2010CT20 Amp, 100 Volt SWITCHMODE Power Rectifier177MBR82010CT20 Amp, 200 Volt SWITCHMODE Power Rectifier175MBR2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175 <t< td=""><td></td><td>•</td><td></td></t<>		•	
MBR3603 Amp, 60 Volt Axial Lead Rectifier229MBR4015LWT40 Amp, 15 Volt SWITCHMODE Schottky Power Rectifier300MBR4045PT40 Amp, 45 Volt SWITCHMODE Power Rectifier293MBR4045WT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR6045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier295MBR6045WT60 Amp, 45 Volt SWITCHMODE Power Rectifier306MBR7357.5 Amp, 35 Volt SWITCHMODE Power Rectifier262MBR7457.5 Amp, 45 Volt SWITCHMODE Power Rectifier262MBRA120ET31 Amp, 20 Volt Surface Mount Schottky Power Rectifier80MBRA120LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier83MBRA130LT31 Amp, 40 Volt Surface Mount Schottky Power Rectifier89MBRA160T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier92MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBR4210T32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBR104510 Amp, 45 Volt SWITCHMODE Power Rectifier170MBR1545CT15 Amp, 45 Volt SWITCHMODE Power Rectifier173MBR20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier177MBR20200CT20 Amp, 200 Volt SWITCHMODE Power Rectifier179MBR2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBR2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier175MBR2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier175		•	
MBR4015LWT40 Amp, 15 Volt SWITCHMODE Schottky Power Rectifier300MBR4045PT40 Amp, 45 Volt SWITCHMODE Power Rectifier293MBR4045WT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR6045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier295MBR6045WT60 Amp, 45 Volt SWITCHMODE Power Rectifier205MBR6045WT60 Amp, 45 Volt SWITCHMODE Power Rectifier262MBR7357.5 Amp, 35 Volt SWITCHMODE Power Rectifier262MBR4120ET31 Amp, 20 Volt Surface Mount Schottky Power Rectifier80MBRA120LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier83MBRA130LT31 Amp, 30 Volt Surface Mount Schottky Power Rectifier86MBRA140T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier92MBRA160T31 Amp, 60 Volt Surface Mount Schottky Power Rectifier98MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBR104510 Amp, 45 Volt SWITCHMODE Power Rectifier170MBRB1545CT15 Amp, 45 Volt SWITCHMODE Power Rectifier173MBR20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier173MBR20200CT20 Amp, 100 Volt SWITCHMODE Power Rectifier179MBR2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBR2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier175MBR2515L25 Amp, 16 Volt SWITCHMODE Power Rectifier175			
MBR4045PT40 Amp, 45 Volt SWITCHMODE Power Rectifier293MBR4045WT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR6045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier295MBR6045WT60 Amp, 45 Volt SWITCHMODE Power Rectifier206MBR7357.5 Amp, 35 Volt SWITCHMODE Power Rectifier262MBR4120ET31 Amp, 20 Volt Surface Mount Schottky Power Rectifier262MBRA120ET31 Amp, 20 Volt Surface Mount Schottky Power Rectifier80MBRA120LT31 Amp, 30 Volt Surface Mount Schottky Power Rectifier83MBRA130LT31 Amp, 30 Volt Surface Mount Schottky Power Rectifier89MBRA160T31 Amp, 60 Volt Surface Mount Schottky Power Rectifier92MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBRA210LT32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBRB104510 Amp, 45 Volt SWITCHMODE Power Rectifier170MBRB1545CT15 Amp, 45 Volt SWITCHMODE Power Rectifier173MBR20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier173MBR20200CT20 Amp, 200 Volt SWITCHMODE Power Rectifier179MBR2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBR2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier175MBR2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier175			
MBR4045WT40 Amp, 45 Volt SWITCHMODE Power Rectifier304MBR6045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier295MBR6045WT60 Amp, 45 Volt SWITCHMODE Power Rectifier306MBR7357.5 Amp, 35 Volt SWITCHMODE Power Rectifier262MBR7457.5 Amp, 45 Volt SWITCHMODE Power Rectifier262MBRA120ET31 Amp, 20 Volt Surface Mount Schottky Power Rectifier80MBRA120LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier83MBRA130LT31 Amp, 30 Volt Surface Mount Schottky Power Rectifier86MBRA140T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier89MBRA160T31 Amp, 60 Volt Surface Mount Schottky Power Rectifier92MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBRA210LT31 Amp, 45 Volt SWITCHMODE Power Rectifier102MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBRB104510 Amp, 45 Volt SWITCHMODE Power Rectifier173MBRB104510 Amp, 45 Volt SWITCHMODE Power Rectifier173MBR20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier177MBRB20200CT20 Amp, 00 Volt SWITCHMODE Power Rectifier179MBR2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBR2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier175MBR2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier175		•	
MBR6045PT60 Amp, 45 Volt SWITCHMODE Power Rectifier295MBR6045WT60 Amp, 45 Volt SWITCHMODE Power Rectifier306MBR7357.5 Amp, 35 Volt SWITCHMODE Power Rectifier262MBR7457.5 Amp, 45 Volt SWITCHMODE Power Rectifier262MBRA120ET31 Amp, 20 Volt Surface Mount Schottky Power Rectifier80MBRA120LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier83MBRA130LT31 Amp, 30 Volt Surface Mount Schottky Power Rectifier86MBRA140T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier99MBRA160T31 Amp, 60 Volt Surface Mount Schottky Power Rectifier92MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBRB104510 Amp, 45 Volt SWITCHMODE Power Rectifier170MBRB1545CT15 Amp, 45 Volt SWITCHMODE Power Rectifier173MBR20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier177MBR20200CT20 Amp, 200 Volt SWITCHMODE Power Rectifier179MBR2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier175MBR2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier175			
MBR6045WT60 Amp, 45 Volt SWITCHMODE Power Rectifier306MBR7357.5 Amp, 35 Volt SWITCHMODE Power Rectifier262MBR7457.5 Amp, 45 Volt SWITCHMODE Power Rectifier262MBRA120ET31 Amp, 20 Volt Surface Mount Schottky Power Rectifier80MBRA120LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier83MBRA130LT31 Amp, 30 Volt Surface Mount Schottky Power Rectifier86MBRA140T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier89MBRA160T31 Amp, 60 Volt Surface Mount Schottky Power Rectifier92MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBRB104510 Amp, 45 Volt SWITCHMODE Power Rectifier173MBRB10452 Amp, 10 Volt Surface Mount Schottky Power Rectifier173MBRB20100CT20 Amp, 45 Volt SWITCHMODE Power Rectifier173MBRB20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier179MBRB2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier OR'ing Function Diode182		•	
MBR7357.5 Amp, 35 Volt SWITCHMODE Power Rectifier262MBR7457.5 Amp, 45 Volt SWITCHMODE Power Rectifier262MBRA120ET31 Amp, 20 Volt Surface Mount Schottky Power Rectifier80MBRA120LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier83MBRA130LT31 Amp, 30 Volt Surface Mount Schottky Power Rectifier86MBRA140T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier89MBRA160T31 Amp, 60 Volt Surface Mount Schottky Power Rectifier92MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBRB104510 Amp, 45 Volt SWITCHMODE Power Rectifier173MBRB20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier177MBRB20200CT20 Amp, 200 Volt SWITCHMODE Power Rectifier179MBRB2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier178		•	
MBR7457.5 Amp, 45 Volt SWITCHMODE Power Rectifier262MBRA120ET31 Amp, 20 Volt Surface Mount Schottky Power Rectifier80MBRA120LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier83MBRA130LT31 Amp, 30 Volt Surface Mount Schottky Power Rectifier86MBRA140T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier89MBRA160T31 Amp, 60 Volt Surface Mount Schottky Power Rectifier92MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBRB104510 Amp, 45 Volt SWITCHMODE Power Rectifier170MBRB1545CT15 Amp, 45 Volt SWITCHMODE Power Rectifier173MBRB20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier179MBRB2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier175MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier175		-	
MBRA120ET31 Amp, 20 Volt Surface Mount Schottky Power Rectifier80MBRA120LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier83MBRA130LT31 Amp, 30 Volt Surface Mount Schottky Power Rectifier86MBRA140T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier89MBRA160T31 Amp, 60 Volt Surface Mount Schottky Power Rectifier92MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBRA210LT32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBRB104510 Amp, 45 Volt SWITCHMODE Power Rectifier173MBRB20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier177MBRB20200CT20 Amp, 200 Volt SWITCHMODE Power Rectifier179MBRB2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier178		-	
MBRA120LT31 Amp, 20 Volt Surface Mount Schottky Power Rectifier83MBRA130LT31 Amp, 30 Volt Surface Mount Schottky Power Rectifier86MBRA140T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier89MBRA160T31 Amp, 60 Volt Surface Mount Schottky Power Rectifier92MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBRA210LT32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBRB104510 Amp, 45 Volt SWITCHMODE Power Rectifier170MBRB20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier177MBRB20200CT20 Amp, 200 Volt SWITCHMODE Power Rectifier179MBRB2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier OR'ing Function Diode182		-	
MBRA130LT31 Amp, 30 Volt Surface Mount Schottky Power Rectifier86MBRA140T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier89MBRA160T31 Amp, 60 Volt Surface Mount Schottky Power Rectifier92MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBRA210LT32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBRB104510 Amp, 45 Volt SWITCHMODE Power Rectifier170MBRB1545CT15 Amp, 45 Volt SWITCHMODE Power Rectifier173MBRB20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier177MBRB20200CT20 Amp, 200 Volt SWITCHMODE Power Rectifier179MBRB2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier175			
MBRA140T31 Amp, 40 Volt Surface Mount Schottky Power Rectifier89MBRA160T31 Amp, 60 Volt Surface Mount Schottky Power Rectifier92MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBRA210LT32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBRB104510 Amp, 45 Volt SWITCHMODE Power Rectifier170MBRB1545CT15 Amp, 45 Volt SWITCHMODE Power Rectifier173MBRB20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier177MBRB20200CT20 Amp, 200 Volt SWITCHMODE Power Rectifier179MBRB2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier OR'ing Function Diode182			
MBRA160T31 Amp, 60 Volt Surface Mount Schottky Power Rectifier92MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBRA210LT32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBRB104510 Amp, 45 Volt SWITCHMODE Power Rectifier170MBRB1545CT15 Amp, 45 Volt SWITCHMODE Power Rectifier173MBRB20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier177MBRB20200CT20 Amp, 200 Volt SWITCHMODE Power Rectifier179MBRB2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier OR'ing Function Diode182		· ·	
MBRA210ET32 Amp, 10 Volt Surface Mount Schottky Power Rectifier98MBRA210LT32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBRB104510 Amp, 45 Volt SWITCHMODE Power Rectifier170MBRB1545CT15 Amp, 45 Volt SWITCHMODE Power Rectifier173MBRB20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier177MBRB20200CT20 Amp, 200 Volt SWITCHMODE Power Rectifier179MBRB2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier OR'ing Function Diode182		-	
MBRA210LT32 Amp, 10 Volt Surface Mount Schottky Power Rectifier102MBRB104510 Amp, 45 Volt SWITCHMODE Power Rectifier170MBRB1545CT15 Amp, 45 Volt SWITCHMODE Power Rectifier173MBRB20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier177MBRB20200CT20 Amp, 200 Volt SWITCHMODE Power Rectifier179MBRB2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier OR'ing Function Diode182		-	
MBRB104510 Amp, 45 Volt SWITCHMODE Power Rectifier170MBRB1545CT15 Amp, 45 Volt SWITCHMODE Power Rectifier173MBRB20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier177MBRB20200CT20 Amp, 200 Volt SWITCHMODE Power Rectifier179MBRB2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier OR'ing Function Diode182			
MBRB1545CT15 Amp, 45 Volt SWITCHMODE Power Rectifier173MBRB20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier177MBRB20200CT20 Amp, 200 Volt SWITCHMODE Power Rectifier179MBRB2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier OR'ing Function Diode182			
MBRB20100CT20 Amp, 100 Volt SWITCHMODE Power Rectifier177MBRB20200CT20 Amp, 200 Volt SWITCHMODE Power Rectifier179MBRB2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier OR'ing Function Diode182		•	
MBRB20200CT20 Amp, 200 Volt SWITCHMODE Power Rectifier179MBRB2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier OR'ing Function Diode182			
MBRB2060CT20 Amp, 60 Volt SWITCHMODE Power Rectifier175MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier OR'ing Function Diode182			
MBRB2515L25 Amp, 15 Volt SWITCHMODE Power Rectifier OR'ing Function Diode182		-	
		-	
$MDDD2525CTI \qquad 25 Math SWITCHMODE Description Description 104$			
		25 Amp, 35 Volt SWITCHMODE Power Rectifier	
MBRB2545CT30 Amp, 45 Volt SWITCHMODE Power Rectifier187		•	
MBRB3030CT30 Amp, 30 Volt SWITCHMODE Power Rectifier189			
	MBRB3030CTL 3	30 Amp, 30 Volt SWITCHMODE Power Rectifier	. 193

Device	Function	Page
MBRB4030	40 Amp, 30 Volt SWITCHMODE Power Rectifier	
MBRD1035CTL	10 Amp, 35 Volt SWITCHMODE Schottky Power Rectifier	
MBRD320	3 Amp, 20 Volt SWITCHMODE Power Rectifier	
MBRD330	3 Amp, 30 Volt SWITCHMODE Power Rectifier	
MBRD340	3 Amp, 40 Volt SWITCHMODE Power Rectifier	
MBRD350	3 Amp, 50 Volt SWITCHMODE Power Rectifier	
MBRD360	3 Amp, 60 Volt SWITCHMODE Power Rectifier	
MBRD620CT	6 Amp, 20 Volt SWITCHMODE Power Rectifier	
MBRD630CT	6 Amp, 30 Volt SWITCHMODE Power Rectifier	
MBRD640CT	6 Amp, 40 Volt SWITCHMODE Power Rectifier	
MBRD650CT	6 Amp, 50 Volt SWITCHMODE Power Rectifier	
MBRD660CT	6 Amp, 60 Volt SWITCHMODE Power Rectifier	
MBRD835L MBRF20100CT	8 Amp, 35 Volt SWITCHMODE Power Rectifier	
	20 Amp, 100 Volt SWITCHMODE Schottky Power Rectifier	
MBRF20200CT MBRF2060CT	20 Amp, 200 Volt SWITCHMODE Schottky Power Rectifier	
MBRF2545CT	20 Amp, 60 Volt SWITCHMODE Schottky Power Rectifier25 Amp, 45 Volt SWITCHMODE Schottky Power Rectifier	
MBRF2345C1 MBRM110ET1	1 Amp, 10 Volt Surface Mount Schottky Power Rectifier	
MBRM110ET1 MBRM110ET3	1 Amp, 10 Volt Surface Mount Schottky Power Rectifier	
MBRM110LT1	1 Amp, 10 Volt Surface Mount Schottky Power Rectifier	
MBRM110LT3	1 Amp, 10 Volt Surface Mount Schottky Power Rectifier	
MBRM120ET1	1 Amp, 20 Volt Surface Mount Schottky Power Rectifier	
MBRM120ET3	1 Amp, 20 Volt Surface Mount Schottky Power Rectifier	
MBRM120LT1	1 Amp, 20 Volt Surface Mount Schottky Power Rectifier	
MBRM120LT3	1 Amp, 20 Volt Surface Mount Schottky Power Rectifier	
MBRM130LT1	1 Amp, 30 Volt Surface Mount Schottky Power Rectifier	
MBRM130LT3	1 Amp, 30 Volt Surface Mount Schottky Power Rectifier	
MBRM140T1	1 Amp, 40 Volt Surface Mount Schottky Power Rectifier	
MBRM140T3	1 Amp, 40 Volt Surface Mount Schottky Power Rectifier	
MBRP20030CTL	200 Amp, 30 Volt POWERTAP II SWITCHMODE Power Rectifier	
MBRP20045CT	200 Amp, 45 Volt POWERTAP II SWITCHMODE Power Rectifier	
MBRP20060CT	200 Amp, 60 Volt POWERTAP II SWITCHMODE Power Rectifier	326
MBRP30045CT	300 Amp, 45 Volt POWERTAP II SWITCHMODE Power Rectifier	
MBRP30060CT	300 Amp, 60 Volt POWERTAP II SWITCHMODE Power Rectifier	
MBRP400100CTL	400 Amp, 100 Volt POWERTAP II SWITCHMODE Power Rectifier	
MBRP40030CTL	400 Amp, 30 Volt POWERTAP II SWITCHMODE Power Rectifier	
MBRP40045CTL	400 Amp, 45 Volt POWERTAP II SWITCHMODE Power Rectifier	
MBRP60035CTL	600 Amp, 35 Volt POWERTAP II SWITCHMODE Power Rectifier	
MBRS1100T3	1 Amp, 100 Volt Schottky Power Rectifier	
MBRS120T3	1 Amp, 20 Volt Surface Mount Schottky Power Rectifier	
MBRS130LT3	1 Amp, 30 Volt Schottky Power Rectifier	
MBRS130T3	1 Amp, 30 Volt Surface Mount Schottky Power Rectifier	
MBRS140LT3	1 Amp, 40 Volt Surface Mount Schottky Power Rectifier	
MBRS140T3	1 Amp, 40 Volt Surface Mount Schottky Power Rectifier	
MBRS1540T3	1.5 Amp, 40 Volt Surface Mount Schottky Power Rectifier	
MBRS190T3	1 Amp, 90 Volt Schottky Power Rectifier	122

Device	Function	Page
MBRS2040LT3	2 Amp, 40 Volt Surface Mount Schottky Power Rectifier	
MBRS240LT3	2 Amp, 40 Volt Surface Mount Schottky Power Rectifier	129
MBRS260T3	2 Amp, 60 Volt Surface Mount Schottky Power Rectifier	136
MBRS3100T3	3 Amp, 100 Volt Surface Mount Schottky Power Rectifier	145
MBRS320T3	3 Amp, 20 Volt Surface Mount Schottky Power Rectifier	
MBRS330T3	3 Amp, 30 Volt Surface Mount Schottky Power Rectifier	
MBRS340T3	3 Amp, 40 Volt Surface Mount Schottky Power Rectifier	
MBRS360T3	3 Amp, 60 Volt Surface Mount Schottky Power Rectifier	
MBRS410ET3	4 Amp, 10 Volt Surface Mount Schottky Power Rectifier	
MBRS410LT3	4 Amp, 10 Volt Surface Mount Schottky Power Rectifier	
MR2502	25 Amp, 200 Volt Medium-Current Silicon Rectifier	
MR2504	25 Amp, 400 Volt Medium-Current Silicon Rectifier	
MR2510	25 Amp, 1000 Volt Medium-Current Silicon Rectifier	
MR2520L	Overvoltage Transient Suppressor	
MR2535L	Medium Current Overvoltage Transient Suppressor	
MR2835S	Overvoltage Transient Suppressor	
MR2835SK	Overvoltage Transient Suppressor	
MR3025 MR750	25 Amp, 250 Volt Medium-Current Silicon Rectifier 50 Volt High Current Lead Mounted Rectifier	
MR751	100 Volt High Current Lead Mounted Rectifier	
MR752	200 Volt High Current Lead Mounted Rectifier	
MR754	400 Volt High Current Lead Mounted Rectifier	
MR756	600 Volt High Current Lead Mounted Rectifier	
MR760	1000 Volt High Current Lead Mounted Rectifier	
MR850	3.0 Amp, 50 Volt Axial Lead Fast Recovery Rectifier	
MR851	3.0 Amp, 100 Volt Axial Lead Fast Recovery Rectifier	
MR852	3.0 Amp, 200 Volt Axial Lead Fast Recovery Rectifier	
MR854	3.0 Amp, 400 Volt Axial Lead Fast Recovery Rectifier	
MR856	3.0 Amp, 600 Volt Axial Lead Fast Recovery Rectifier	
MRA4003T3	1 Amp, 300 Volt Surface Mount Standard Recovery Power Rectifier	509
MRA4004T3	1 Amp, 400 Volt Surface Mount Standard Recovery Power Rectifier	509
MRA4005T3	1 Amp, 600 Volt Surface Mount Standard Recovery Power Rectifier	509
MRA4006T3	1 Amp, 800 Volt Surface Mount Standard Recovery Power Rectifier	509
MRA4007T3	1 Amp, 1000 Volt Surface Mount Standard Recovery Power Rectifier	509
MRS1504T3	1.5 Amp, 400 Volt Surface Mount Standard Recovery Power Rectifier	505
MSR1560	15 Amp, 600 Volt SWITCHMODE Soft Recovery Power Rectifier	
MSR860	8 Amp, 600 Volt SWITCHMODE Soft Recovery Power Rectifier	
MSRD620CT	6 Amp, 200 Volt SWITCHMODE Soft Ultrafast Recovery Power Rectifie	
MUR105	1 Amp, 50 Volt SWITCHMODE Power Rectifier	
MUR110	1 Amp, 100 Volt SWITCHMODE Power Rectifier	
MUR1100E	1 Amp, 1000 Volt Ultrafast "E" Series SWITCHMODE Power Rectifier .	
MUR115	1 Amp, 150 Volt SWITCHMODE Power Rectifier	
MUR120	1 Amp, 200 Volt SWITCHMODE Power Rectifier	
MUR130	1 Amp, 300 Volt SWITCHMODE Power Rectifier	
MUR140	1 Amp, 400 Volt SWITCHMODE Power Rectifier	
MUR1510	15 Amp, 100 Volt Ultrafast SWITCHMODE Power Rectifier	468

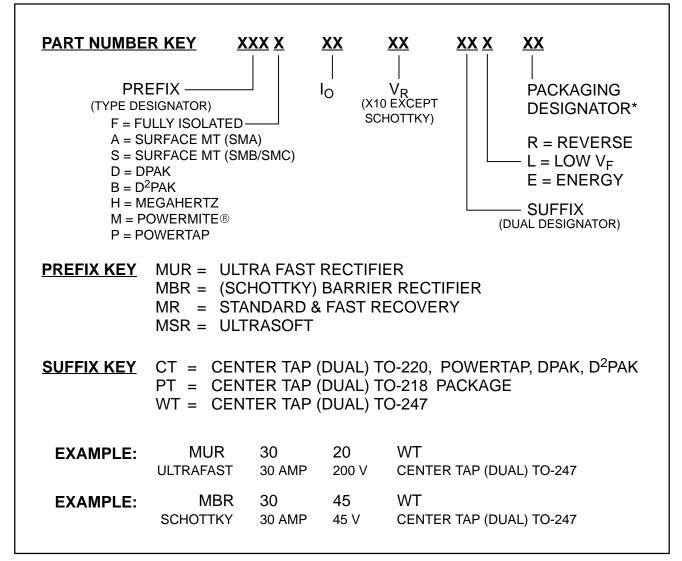
Device	Function	Page
MUR1515	15 Amp, 150 Volt Ultrafast SWITCHMODE Power Rectifier	468
MUR1520	15 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier	468
MUR1540	15 Amp, 400 Volt Ultrafast SWITCHMODE Power Rectifier	468
MUR1560	15 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier	468
MUR160	1 Amp, 500 Volt SWITCHMODE Power Rectifier	408
MUR1610CT	8 Amp, 100 Volt Ultrafast SWITCHMODE Power Rectifier	453
MUR1615CT	8 Amp, 150 Volt Ultrafast SWITCHMODE Power Rectifier	453
MUR1620CT	8 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier	453
MUR1620CTR	16 Amp, 200 Volt SWITCHMODE Dual Ultrafast Power Rectifier	459
MUR1640CT	8 Amp, 400 Volt Ultrafast SWITCHMODE Power Rectifier	453
MUR1660CT	8 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier	453
MUR180E	1 Amp, 800 Volt Ultrafast "E" Series SWITCHMODE Power Rectifier	413
MUR2020R	20 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier	474
MUR2100E	2 Amp, 1000 Volt Ultrafast "E" Series SWITCHMODE Power Rectifier	430
MUR220	2 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier	418
MUR240	2 Amp, 400 Volt Ultrafast SWITCHMODE Power Rectifier	422
MUR260	2 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier	426
MUR3020PT	30 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier	495
MUR3020WT	30 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier	490
MUR3040PT	30 Amp, 400 Volt Ultrafast SWITCHMODE Power Rectifier	495
MUR3060PT	30 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier	495
MUR3060WT	30 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier	490
MUR405	4 Amp, 50 Volt Ultrafast SWITCHMODE Power Rectifier	434
MUR410	4 Amp, 100 Volt Ultrafast SWITCHMODE Power Rectifier	
MUR4100E	4 Amp, 1000 Volt Ultrafast "E" Series SWITCHMODE Power Rectifier	
MUR415	4 Amp, 150 Volt Ultrafast SWITCHMODE Power Rectifier	
MUR420	4 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier	
MUR440	4 Amp, 400 Volt Ultrafast SWITCHMODE Power Rectifier	
MUR460	4 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier	
MUR480E	4 Amp, 800 Volt Ultrafast "E" Series SWITCHMODE Power Rectifier	
MUR620CT	6 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier	
MUR805	8 Amp, 50 Volt Ultrafast SWITCHMODE Power Rectifier	
MUR810	8 Amp, 100 Volt Ultrafast SWITCHMODE Power Rectifier	
MUR8100E	8 Amp, 1000 Volt Ultrafast "E" Series SWITCHMODE Power Rectifier	
MUR815	8 Amp, 150 Volt Ultrafast SWITCHMODE Power Rectifier	
MUR820	8 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier	
MUR840	8 Amp, 400 Volt Ultrafast SWITCHMODE Power Rectifier	
MUR860	8 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier	
MUR880E	8 Amp, 800 Volt Ultrafast "E" Series SWITCHMODE Power Rectifier	
MURA105T3	1 Amp, 50-100 Volt Surface Mount Ultrafast Power Rectifier	
MURA110T3	1 Amp, 50-100 Volt Surface Mount Ultrafast Power Rectifier	
MURA115T3	1 Amp, 100-200 Volt Surface Mount Ultrafast Power Rectifier	
MURA120T3	1 Amp, 100-200 Volt Surface Mount Ultrafast Power Rectifier	
MURA130T3	1 Amp, 300-400 Volt Surface Mount Ultrafast Power Rectifier	
MURA140T3	1 Amp, 300-400 Volt Surface Mount Ultrafast Power Rectifier	
MURA160T3	1 Amp, 600 Volt Surface Mount Ultrafast Power Rectifier	359

MURA205T3 2 Amp, 50-100 Volt Surface Mount Ultrafast Power Rectifier	
MURA210T3 2 Amp, 50-100 Volt Surface Mount Ultrafast Power Rectifier	362
MURA215T3 2 Amp, 100-200 Volt Surface Mount Ultrafast Power Rectifier	365
MURA220T3 2 Amp, 100-200 Volt Surface Mount Ultrafast Power Rectifier	365
MURA230T3 2 Amp, 300-400 Volt Surface Mount Ultrafast Power Rectifier	368
MURA240T3 2 Amp, 300-400 Volt Surface Mount Ultrafast Power Rectifier	368
MURA260T3 2 Amp, 600 Volt Surface Mount Ultrafast Power Rectifier	371
MURB1620CT 16 Amp, 200 Volt Ultrafast SWITCHMODE D ² PAK Power Rectifier	402
MURB1660CT 16 Amp, 600 Volt Ultrafast SWITCHMODE D ² PAK Power Rectifier	405
MURD320 3 Amp, 200 Volt Ultrafast SWITCHMODE DPAK Power Rectifier	394
MURD620CT 6 Amp, 200 Volt Ultrafast SWITCHMODE DPAK Power Rectifier	391
MURF1620CT 16 Amp, 200 Volt Ultrafast SWITCHMODE Power Rectifier	482
MURF1660CT 16 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier	485
MURH840CT 8 Amp, 400 Volt Ultrafast MEGAHERTZ Power Rectifier	447
MURH860CT 8 Amp, 600 Volt Ultrafast MEGAHERTZ Power Rectifier	450
MURHB840CT 8 Amp, 400 Volt Ultrafast MEGAHERTZ D ² PAK Power Rectifier	397
MURHB860CT 8 Amp, 600 Volt Ultrafast MEGAHERTZ D ² PAK Power Rectifier	400
MURHF860CT 8 Amp, 600 Volt Ultrafast SWITCHMODE Power Rectifier	488
MURP20020CT 200 Amp, 200 Volt POWERTAP II Ultrafast SWITCHMODE Power Rectifier	501
MURP20040CT 200 Amp, 400 Volt POWERTAP II Ultrafast SWITCHMODE Power Rectifier	501
MURS105T3 1 Amp, 50 Volt Surface Mount Ultrafast Power Rectifier	374
MURS110T3 1 Amp, 100 Volt Surface Mount Ultrafast Power Rectifier	374
MURS115T3 1 Amp, 150 Volt Surface Mount Ultrafast Power Rectifier	374
MURS120T3 1 Amp, 200 Volt Surface Mount Ultrafast Power Rectifier	374
MURS140T3 1 Amp, 400 Volt Surface Mount Ultrafast Power Rectifier	374
MURS160T3 1 Amp, 600 Volt Surface Mount Ultrafast Power Rectifier	374
MURS220T3 2 Amp, 200 Volt Surface Mount Ultrafast Power Rectifier	378
MURS230T3 2 Amp, 300 Volt Surface Mount Ultrafast Power Rectifier	381
MURS240T3 2 Amp, 400 Volt Surface Mount Ultrafast Power Rectifier	381
MURS260T3 2 Amp, 600 Volt Surface Mount Ultrafast Power Rectifier	384
MURS320T3 3 Amp, 200 Volt Surface Mount Ultrafast Power Rectifier	387
MURS340T3 3 Amp, 400 Volt Surface Mount Ultrafast Power Rectifier	387
MURS360T3 3 Amp, 600 Volt Surface Mount Ultrafast Power Rectifier	387
SS16 1 Amp, 60 Volt Surface Mount Schottky Power Rectifier	95
SS26 2 Amp, 60 Volt Surface Mount Schottky Power Rectifier	139
TRA252525 Amp, 250 Volt Medium-Current Silicon Rectifier	540
TRA2532Overvoltage Transient Suppressor (24-32 V)	557
TRA322532 Amp, 250 Volt Medium-Current Silicon Rectifier	533

CHAPTER 2 Selector Guide

Continuing investment in research and development for discrete products has created a rectifier manufacturing facility that matches the precision and versatility of the most advanced integrated circuits. As a result, ON Semiconductor's silicon rectifiers span all high tech applications with quality levels capable of passing the most stringent environmental tests . . . including those for automotive under-hood applications.

Product Highlights:


- Surface Mount Devices A major thrust has been the development and introduction of a broad range of power rectifiers, Schottky and Ultrafast, 1/2 amp to 25 amp, 15 to 600 volts.
- Application Specific Rectifiers -
 - Schottky rectifiers having lower forward voltage drop (0.3 to 0.6 volts) for use in low voltage SMPS outputs and as "OR"ing diodes.
 - MEGAHERTZ[™] series for high frequency power supplies and power factor correction.
 - Ultrasoft rectifiers for high speed rectification.
 - Energy rated rectifiers with guaranteed energy handling capability.
 - Automotive transient suppressors.
- Ultrafast rectifiers having reverse recovery times as low as 25 ns to complement the Schottky devices for higher voltage requirements in high frequency applications.
- A wide variety of package options to match virtually any potential requirement.

The rectifier selector section that follows has generally been arranged by package and technology. The individual tables have been sorted by voltage and current with the package types for the devices listed shown above each table. The Application Specific Rectifiers are also included in their respective tables.

Page

-	
Rectifier Numbering System 1	4
Application Specific Rectifiers 1	5
Low V _F Schottky 1	5
MEGAHERTZ 1	5
NEW UltraSoft Rectifiers 1	5
Energy Rated Rectifiers 1	5
Automotive Transient Suppressors	
SCHOTTKY Rectifiers 1	6
Surface Mount Schottky 1	6
Axial Lead Schottky	8
TO-220 Type Schottky 1	
TO-218 Types and TO-247 Schottky 1	9
POWERTAP II Schottky 2	
NEW UltraSoft Rectifiers 2	
Ultrafast Rectifiers 2	21
Surface Mount Ultrafast 2	21
Axial Lead Ultrafast 2	22
TO-220 Type Ultrafast 2	23
TO-218 Types and TO-247 Ultrafast 2	
POWERTAP II Ultrafast 2	
Fast Recovery Rectifiers/General	
Purpose Rectifiers	25
•	

RECTIFIER NUMBERING SYSTEM

*For available packaging options consult Sales Office or see Data Sheet.

Application Specific Rectifiers

Table 1. Low V_F Schottky Rectifiers

Device	l _O (Amps)	V _{RRM} (Volts)	V _F @ Rated I _O and T _C = 25°C Volts (Max)	I _R @ Rated V _{RRM} mAmps (Max)	Package
MBR0520LT1, T3	0.5	20	0.33	0.25	SOD-123
MBR120LSFT1, T3	1	20	0.45	0.4	SOD-123 Flat Lead
MBRM110LT1, T3	1	10	0.365	0.5	PowerMite [®]
MBRA210LT3	2	10	0.35	0.7	SMA
MBRS130LT3	1	30	0.395	1	SMB
MBRS410LT3	4	10	0.33	5.0	SMC
MBRD835L	8	35	0.41	1.4	DPAK
MBRD1035CTL	10	35	0.41	6	DPAK
MBR2030CTL	20	30	0.48	5	TO-220
MBRB2535CTL	25	35	0.41	10	D ² PAK
MBR2535CTL	25	35	0.41	5	TO-220
MBRB2515L	25	15	0.42	15	D ² PAK
MBR2515L	25	15	0.42	15	TO-220
MBRB3030CTL	30	30	0.51	5	D ² PAK
MBR4015LWT	40	15	0.42	5	TO-247
MBRP20030CTL	200	30	0.52	5	POWERTAP II
MBRP40045CTL	400	45	0.57	10	POWERTAP II
MBRP400100CTL	400	100	0.83	6	POWERTAP II
MBRP60035CTL	600	35	0.57	10	POWERTAP II

Table 2. MEGAHERTZ[™] Rectifiers

			Maxim		
Device	l _O (Amps)	V _{RRM} (Volts)	$V_F @ I_F = 4.0 A and T_C = 25^{\circ}C$ (Volts)	I _R @ Rated V _{RRM} (mAmps)	t _{rr} (Nanosecond)
MURH840CT/MURHB840CT	8	400	2.2	0.01	28
MURH860CT	8	600	2.8	0.01	35
MURHB860CT	8	600	2.8	0.01	35
MURHF860CT	8	600	2.8	0.01	35

Table 3. UltraSoft Rectifiers (For High Speed Rectification)

Device	I _O (Amps)	V _{RRM} (Volts)	Max V _F @ I _F (Volts)	Max t _{rr} (ղSec)	T _J Max (°C)
MSRD620CT	6	200	1.35 @ 6.0 A	55	175
MSR860	8	600	1.7 @ 8.0 A	120	150
MSR1560	15	600	1.8 @ 15 A	45	150

Table 4. Energy Rated Rectifiers

Device	l _O (Amps)	V _{RRM} (Volts)	Max V _F @ Rated unless Noted (Volts)	I _R @ V _{RRM} (μAmps)	Waval (M _J)
MUR180E	1.0	800	1.75	10	10
MUR1100E	1.0	1000	1.75	10	10
MUR480E	4.0	800	1.75 @ 3.0 A	25	20
MUR4100E	4.0	1000	1.75 @ 3.0 A	25	20
MUR880E	8.0	800	1.8	25	20
MUR8100E	8.0	1000	1.8	25	20

Table 5. Automotive Transient Suppressors

Device	I _O (Amps) V _{RRM} (Volts) Max V _F @ I _F (Volts)		Max V _F @ I _F (Volts)	I _{RSM (} Amps)	T _J Max (°C)
MR2535L	6.0	20	1.1 @ 100 A	62 @ 10 mS	175
MR2835SK	32	23	1.1 @ 100 A	62 @ 10 mS	175
MR2520L	6.0	23	1.25 @ 100 A	58 @ 10 mS	175
TRA2532	32	23	1.18 @ 100 A	80 @ 10 mS	175

SCHOTTKY Rectifiers

Table 6. Surface Mount Schottky Rectifiers

V _{RRM} (Volts)	I _O ⁽¹⁾ (Amperes)	I _O Rating Condition	Device	Max V _F @ i _F T _C = 25°C (Volts)	I _{FSM} (Amperes)	T _J Max (°C)	Max I _R ⁽²⁾ T _J = 25°C (mA)	Max I _R ⁽³⁾ (mA)	Package
20	0.5	T _L = 90°C	MBR0520LT1 MBR0520LT3	0.310 @ 0.1 A 0.385 @ 0.5 A	5	125	.075 @ 10 V .250 @ 20 V	5 @ 10 V 8 @ 20 V	
30	0.5	T _L = 100°C	MBR0530T1 MBR0530T3	0.375 @ 0.1 A 0.430 @ 0.5 A	5	125	.020 @ 15 V .130 @ 30 V	-	CASE 425-04 (SOD-123) Cathode = Band
40	0.5	T _L = 110°C	MBR0540T1 MBR0540T3	0.53 @ 0.5 A	5	150	.010 @ 20 V .020 @ 40 V	-	
20	1	T _L = 140°C	MBR120ESFT1 ★ MBR120ESFT3 ★	0.53 @ 1.0 A	40	150	.010	1.6 @ 100°C	
20	1	T _L = 115°C	MBR120LSFT1 ★ MBR120LSFT3 ★	0.45 @ 1.0 A	50	125	0.4	25 @ 85°C	CASE 498-01 (SOD-123FL)
40	1	T _L = 112°C	MBR140SFT1 ★ MBR140SFT3 ★	0.55 @ 1.0 A	30	125	0.5	25 @ 85°C	
10	1	T _C = 100°C	MBRM110ET1 ★ MBRM110ET3 ★	0.53 @ 1.0 A	50	150	0.001	0.5 @ 100°C	
10	1	T _C = 115°C	MBRM110LT1 ★ MBRM110LT3 ★	0.365 @ 1.0 A	50	125	0.5	60 @ 100°C	
20	1	T _C = 130°C	MBRM120ET3	0.455 @ 0.1 A 0.530 @ 1.0 A	50	150	0.010 @ 20 V	1.6 @ 20 V	CASE 457-04 (POWERMITE®)
20	1	$T_{tab} \leq 100^\circ C$	MBRM120LT3	0.36 @ 0.1 A 0.45 @ 1.0 A	50	125	0.4 @ 20 V	N/A	
30	1	T _C = 135°C	MBRM130LT3*	0.45 @ 1.0 A	50	125	1	N/A	
40	1	$T_{tab} \leq 100^\circ C$	MBRM140T3	0.39 @ 0.1 A 0.55 @ 1.0 A	50	125	0.5 @ 40 V	N/A	
20	1	T _L = 125°C	MBRA120ET3	0.530 @ 1.0 A	40	150	0.010	1.6 @ 100°C	
20	1	T _L = 110°C	MBRA120LT3	0.395 @ 1.0 A	40	125	0.200	6.0 @ 100°C	
30	1	$T_C \le 105^{\circ}C$	MBRA130LT3	0.41 @ 1.0 A 0.47 @ 2.0 A	25	125	1.0 @ 30 V 0.4 @ 15 V	25 @ 30 V	CASE 403D-02
40	1	$T_C \le 100^{\circ}C$	MBRA140T3	0.60 @ 1.0 A 0.73 @ 2.0 A	25	125	0.5 @ 40 V 0.1 @ 20 V	10 @ 40 V	(SMA) Cathode = Notch
60	1	T _L = 105°C	MBRA160T3 ★	0.51 @ 1.0 A	30	125	0.2	10 @ 125°C	or Polarity Band
60	1	T _L = 105°C	SS16*	0.51 @ 1.0 A	30	125	0.2	10 @ 125°C	
10	2	$T_L = 125^{\circ}C$	MBRA210ET3 *	0.50 @ 2.0 A	150	150	0.050	0.5 @ 100°C	
10	2	T _L = 110°C	MBRA210LT3 ★	0.35 @ 2.0 A	230	125	0.70	60 @ 100°C	
20	1	T _L = 115°C	MBRS120T3	0.55 @ 1.0 A	40	125	1	10	
30	1	$T_L = 120^{\circ}C$	MBRS130LT3	0.395 @ 1.0 A	40	125	1	10	_
30	1	T _L = 115°C	MBRS130T3	0.55 @ 1.0 A	40	125	1	10	
40	1	T _L = 115°C	MBRS140T3	0.6 @ 1.0 A	40	125	1	10	
40	1	T _C = 110°C	MBRS140LT3	0.5 @ 1.0 A	40	125	0.4	10	
90	1	T _L = 120°C	MBRS190T3	0.75 @ 1.0 A	50	125	0.5	5	CASE 403A-03
100	1	T _L = 120°C	MBRS1100T3	0.75 @ 1.0 A	40	150	0.5	5	(SMB) Cathode = Notch
40	1.5	T _C = 100°C	MBRS1540T3	0.46 @ 1.5 A	40	125	0.8	5.7	or Polarity Band
40	2	T _C ≤ 95°C	MBRS240LT3	0.43 @ 2.0 A 0.53 @ 4.0 A	25	125	2.0 @ 40 V 0.5 @ 20 V	60 @ 40 V 40 @ 20 V	
40	2	T _C = 103°C	MBRS2040LT3	0.43 @ 2.0 A 0.50 @ 4.0 A	70	125	0.80 @ 40 V 0.10 @ 20 V	20 @ 40 V 6.0 @ 20 V	-
60	2	T _L = 95°C	MBRS260T3 ×	0.63 @ 2.0 A	40	125	0.2	10 @ 125°C	
60	2	T _L = 95°C	SS26 *	0.63 @ 2.0 A	40	125	0.2	10 @ 125°C	

All devices listed are ON Semiconductor preferred devices

SCHOTTKY Rectifiers

Table 6. Surface Mount Schottky Rectifiers (continued)

V _{RRM} (Volts)	I _O ⁽¹⁾ (Amperes)	I _O Rating Condition	Device	Max V _F @ i _F T _C = 25°C (Volts)	I _{FSM} (Amperes)	T _J Max (°C)	Max I _R ⁽²⁾ T _J = 25°C (mA)	Max I _R ⁽³⁾ (mA)	Packag	je
20	3	T _L = 100°C	MBRS320T3	0.50 @ 3.0 A	80	125	2	20		
30	3	T _L = 100°C	MBRS330T3	0.50 @ 3.0 A	80	125	2	20		
40	3	T _L = 100°C	MBRS340T3	0.525 @ 3.0 A	80	125	2	20	CASE 403-03	•
60	3	T _L = 100°C	MBRS360T3	0.74 @ 3.0 A	80	125	0.5	20	(SMC)	
100	3	$T_L = 100^{\circ}C$	MBRS3100T3 *	0.79 @ 3.0 A	130	150	0.05	5.0 @ 125°C	Cathode = Notch	h US
10	4	T _L = 130°C	MBRS410ET3 *	0.50 @ 4.0 A	250	150	0.15	4.0 @ 100°C		
10	4	T _L = 110°C	MBRS410LT3 *	0.33 @ 4.0 A	150	125	5.0	200 @ 100°C	-	
20	3	T _C = 125°C	MBRD320T4	0.60 @ 3.0 A	75	150	0.2	20 @ 125°C		
30	3	T _C = 125°C	MBRD330T4	0.60 @ 3.0 A	75	150	0.2	20 @ 125°C		
40	3	T _C = 125°C	MBRD340T4	0.60 @ 3.0 A	75	150	0.2	20 @ 125°C		
50	3	T _C = 125°C	MBRD350T4	0.60 @ 3.0 A	75	150	0.2	20 @ 125°C		¹⁰₱ๅ–₀
60	3	T _C = 125°C	MBRD360T4	0.60 @ 3.0 A	75	150	0.2	20 @ 125°C	CASE 369A-13	3 0 🛃 -
20	6	T _C = 130°C	MBRD620CTT4	0.70 @ 3.0 A	75	150	0.1	15 @ 125°C	(DPAK)	"CT" Suffix
30	6	T _C = 130°C	MBRD630CTT4	0.70 @ 3.0 A	75	150	0.1	15 @ 125°C	4	
40	6	T _C = 130°C	MBRD640CTT4	0.70 @ 3.0 A	75	150	0.1	15 @ 125°C	169	¦ _} ≁∘
50	6	$T_C = 130^{\circ}C$	MBRD650CTT4	0.70 @ 3.0 A	75	150	0.1	15 @ 125°C	3	Non-"CT
60	6	T _C = 130°C	MBRD660CTT4	0.70 @ 3.0 A	75	150	0.1	15 @ 125°C		Suffix
35	8	T _C = 100°C	MBRD835L	0.40 @ 3.0 A 0.51 @ 8.0 A	100	125	1.4	35		
35	10	T _C = 90°C	MBRD1035CTL	0.49 @ 10 A	100	125	2	130 @ 125°C		
10	45	T _C = 135°C	MBRB1045*	0.84 @ 20 A	150	150	0.1	15 @ 125°C		
45	15	T _C = 105°C	MBRB1545CT	0.84 @ 15 A	150	150	0.1	15 @ 125°C		
60	20	T _C = 110°C	MBRB2060CT	0.95 @ 20 A	150	150	0.15	150 @ 125°C		
100	20	T _C = 110°C	MBRB20100CT	0.85 @ 10 A 0.95 @ 20 A	150	150	0.1	6 @ 125°C		
200	20	T _C = 125°C	MBRB20200CT	1.0 @ 20 A	150	150	1	50 @ 125°C	CASE 418B-04	
15	25	$T_C = 90^{\circ}C$	MBRB2515L	0.45 @ 25 A	150	100	15	200 @ 70°C	(D ² PAK)	3 0-₽⊢ "CT" Suff
35	25	T _C = 110°C	MBRB2535CTL	0.47 @ 12.5 A 0.55 @ 25 A	150	125	10	500 @ 125°C	4	UT SUT
45	25	T _C = 130°C	MBRB2545CT	0.82 @ 30 A	150	150	0.2	40 @ 125°C		¹ ° →
30	30	T _C = 115°C	MBRB3030CT	0.54 @ 15 A 0.67 @ 30 A	300	150	1.2	145 @ 150°C 46 @ 10 V, 150°C	1 3	30-J Non-"C Suffix
30	30	T _C = 95°C	MBRB3030CTL	0.45 @ 15 A 0.51 @ 30 A	150	125	2	195 @ 125°C 75 @ 10 V, 125°C		
30	40	T _C = 110°C	MBRB4030	0.46 @ 20 A 0.55 @ 40 A	300	150	1	150 @ 125°C		

All devices listed are ON Semiconductor preferred devices

Table 7. Axial Lead Schottky Rectifiers

V _{RRM} (Volts)	l _O (Amperes)	I _O Rating Condition	Device	Max V _F @ i _F T _C = 25°C (Volts)	I _{FSM} (Amperes)	T _J Max (°C)	Max I _R ⁽²⁾ T _L = 25°C (mA)	Max I _R ⁽³⁾ T _L (mA)	Package
20	1	T _A = 55°C R _{θJA} = 80°C/W	1N5817	0.45 @ 1.0 A	25	125	1	10	CASE 59-10
30	1	$T_A = 55^{\circ}C$ $R_{\Theta JA} = 80^{\circ}C/W$	1N5818	0.55 @ 1.0 A	25	125	1	10	(DO-41) Plastic
40	1	T _A = 55°C R _{θJA} = 80°C/W	1N5819	0.60 @ 1.0 A	25	125	1	10	/
50	1	T _A = 55°C	MBR150	0.75 @ 1.0 A	25	150	0.5	5	j
60	1	T _A = 55°C R _{θJA} = 80°C/W	MBR160	0.75 @ 1.0 A	25	150	0.5	5	
100	1	T _A = 120°C R _{θJA} = 50°C/W	MBR1100	0.79 @ 1.0 A	50	150	0.5	5	Cathode = Polarity Band
60	3	T∟ = 125°C	MBR3060 *	0.62 @ 3.0 A	125	150	0.15	10 @ 100°C	CASE 59-09 (DO-15) Plastic Cathode = Polarity Band
20	3	T _A = 76°C R _{θJA} = 28°C/W	1N5820	0.457 @ 3.0 A	80	125	2	20	
30	3	$T_A = 71^{\circ}C$ $R_{\theta JA} = 28^{\circ}C/W$	1N5821	0.500 @ 3.0 A	80	125	2	20	CASE 267-05 (DO-201AD)
40	3	$T_A = 61^{\circ}C$ $R_{\Theta JA} = 28^{\circ}C/W$	1N5822	0.525 @ 3.0 A	80	125	2	20	Plastic
40	3	T _A = 65°C R _{θJA} = 28°C/W	MBR340	0.600 @ 3.0 A	80	150	0.6	20	
50	3	T _A = 65°C	MBR350RL	0.600 @ 3.0 A	80	150	0.6	20	
60	3	T _A = 65°C R _{θJA} = 28°C/W	MBR360RL	0.740 @ 3.0 A	80	150	0.6	20	Cathode = Polarity Band
100	3	T _A = 100°C R _{θJA} = 28°C/W	MBR3100	0.79 @ 3.0 A	150	150	0.6	20	

All devices listed are ON Semiconductor preferred devices

Table 8. TO-220 Thru-Hole Schottky Rectifiers

V _{RRM} (Volts)	l _O (Amperes)	I _O Rating Condition	Device	Max V _F @ i _F T _C = 25°C (Volts)	I _{FSM} (Amperes)	T _J Max (°C)	Max I _R ⁽²⁾ T _C = 25°C (mA)	Max I _R ⁽³⁾ (mA)	Package
35	15	T _C = 105°C	MBR1535CT	0.84 @ 15 A	150	150	0.1	15 @ 125°C	
45	15	T _C = 105°C	MBR1545CT	0.84 @ 15 A	150	150	0.1	15 @ 125°C	
100	16	T _C = 133°C	MBR16100CT	0.84 @ 16 A	150	175	0.1	5 @ 125°C]
30	20	T _C = 137°C	MBR2030CTL	0.52 @ 10 A 0.58 @ 20 A	150	150	5	40	CASE 221A-09
45	20	T _C = 135°C	MBR2045CT	0.84 @ 20 A	150	150	0.1	15 @ 125°C	(TO-220AB)
60	20	T _C = 133°C	MBR2060CT	0.85 @ 10 A 0.95 @ 20 A	150	150	0.1	6 @ 125°C	
80	20	T _C = 133°C	MBR2080CT	0.95 @ 20 A	150	150	0.1	6 @ 125°C	30
90	20	T _C = 133°C	MBR2090CT	0.95 @ 20 A	150	150	0.1	6 @ 125°C	1.2
100	20	T _C = 133°C	MBR20100CT	0.85 @ 10 A 0.95 @ 20 A	150	150	0.1	6 @ 125°C	3
200	20	T _C = 125°C	MBR20200CT	1.0 @ 20 A	150	150	1	50 @ 125°C	
35	25	T _C = 95°C	MBR2535CTL	0.55 @ 25 A	150	125	5	500 @ 125°C	
45	25	T _C = 130°C	MBR2545CT	0.82 @ 30 A	150	150	0.2	40 @ 125°C	
35	7.5	T _C = 105°C	MBR735	0.84 @ 15 A	150	150	0.1	15 @ 125°C	
45	7.5	T _C = 105°C	MBR745	0.84 @ 15 A	150	150	0.1	15 @ 125°C	
35	10	T _C = 135°C	MBR1035	0.84 @ 20 A	150	150	0.1	15 @ 125°C	
45	10	T _C = 135°C	MBR1045	0.84 @ 20 A	150	150	0.1	15 @ 125°C	CASE 221B-04 (TO-220AC)
60	10	T _C = 133°C	MBR1060	0.80 @ 10 A	150	150	0.1	6 @ 125°C	
90	10	T _C = 133°C	MBR1090	0.70 @ 10 A	150	150	0.1	6 @ 125°C	
100	10	T _C = 133°C	MBR10100	0.80 @ 10 A	150	150	0.1	6 @ 125°C	30- P
35	16	T _C = 125°C	MBR1635	0.63 @ 16 A	150	150	0.2	40 @ 125°C	3
45	16	T _C = 125°C	MBR1645	0.63 @ 16 A	150	150	0.2	40 @ 125°C	1
15	25	T _C = 90°C	MBR2515L	0.45 @ 25 A	150	100	15	200 @ 70°C	
60	20	T _C = 133°C	NBRF2060CT	0.95 @ 20 A	150	150	0.15	15 @ 125°C	
100	20	T _C = 133°C	% MBRF20100CT	0.95 @ 20 A	150	150	0.15	15 @ 125°C	221D-03 FULL PAK
200	20	T _C = 125°C	%) MBRF20200CT	1.0 @ 20 A	150	150	1	50 @ 125°C	
45	25	T _C = 125°C	SU MBRF2545CT	0.82 @ 25 A	150	150	0.2	40 @ 125°C	3

 $^{(2)}V_{RRM}$ unless noted $^{(3)}V_{RRM},\,T_J$ = 100°C unless noted $\radsim M$ Indicates UL Recognized - File #E69369

Table 9. TO-218 and TO-247 Schottky Rectifiers

V _{RRM} (Volts)	l _O (Amperes)	I _O Rating Condition	Device	Max V _F @ i _F T _C = 25°C (Volts)	I _{FSM} (Amperes)	T _J Max (°C)	Max I _R ⁽²⁾ T _C = 25°C (mA)	Max I _R ⁽³⁾ (mA)	Package
45	30	T _C = 105°C	MBR3045PT	0.76 @ 30 A	200	150	1	100 @ 125°C	
45	40	T _C = 125°C	MBR4045PT	0.70 @ 20 A 0.80 @ 40 A	400	150	1	50	340D-02 (TO-218AC)
45	60	T _C = 125°C	MBR6045PT	0.62 @ 30 A 0.75 @ 60 A	500	150	1	50	
45	30	T _C = 105°C	MBR3045WT	0.76 @ 30 A	200	150	1	100 @ 125°C	
15	40	T _C = 125°C	MBR4015LWT	0.42 @ 20 A 0.50 @ 40 A	400	100	5	150 @ 75°C	CASE 340L-02 (TO-247)
45	40	T _C = 125°C	MBR4045WT	0.70 @ 20 A 0.80 @ 40 A	400	150	1	50	
45	60	T _C = 125°C	MBR6045WT	0.62 @ 30 A 0.75 @ 60 A	500	150	1	50	3 0-⊅ -]

 $^{(2)}V_{RRM}$ unless noted $^{(3)}V_{RRM}$, T_J = 100°C unless noted

Table 10. POWERTAP II Schottky Rectifiers

			-						
V _{RRM} (Volts)	I _O ⁽¹⁾ (Amperes)	I _O Rating Condition	Device	Max V _F @ i _F T _C = 25°C (Volts)	I _{FSM} (Amperes)	T _J Max (°C)	Max I _R (2) T _C = 25°C (mA)	Max I _R ⁽³⁾ (mA)	Package
30	200	T _C = 125°C	MBRP20030CTL	0.52 @ 100 A 0.60 @ 200 A	1500	150	5	-	
30	400	T _C = 100°C	MBRP40030CTL*	0.50 @ 200 A	1500	150	20	1000 @ 100°C	CASE 357C-03 POWERTAP™
35	600	T _C = 100°C	MBRP60035CTL	0.57 @ 300 A	4000	150	10	250	FOWLKIAF
45	200	T _C = 125°C	MBRP20045CT	0.78 @ 100 A	1500	150	0.5	50 @ 125°C	
45	300	T _C = 120°C	MBRP30045CT	0.70 @ 150 A 0.82 @ 300 A	2500	150	0.8	75 @ 125°C	
45	400	T _C = 100°C	MBRP40045CTL	0.57 @ 200 A	2500	150	10	-	
60	200	T _C = 125°C	MBRP20060CT	0.800 @ 100 A	1500	150	0.5	50 @ 125°C	20₩ 3
60	300	T _C = 120°C	MBRP30060CT	0.79 @ 150 A 0.89 @ 300 A	2500	150	0.8	75 @ 125°C	Cathode = Mounting Plate Anode = Terminal
100	400	T _C = 100°C	MBRP400100CTL	0.83 @ 200 A	2500	150	6	-	

★ New Product

NEW UltraSoft Rectifiers

Table 11. UltraSoft Rectifiers (For High Speed Rectification)

V _{RRM} (Volts)	I _O ⁽¹⁾ (Amperes)	I _O Rating Condition	Device	Max V _F @ i _F T _C = 29°C (Volts)	t _{rr} (ηSec)	T _J Max (°C)	Max I _R (2) T _C = 25°C (μΑ)	Max I _R ⁽³⁾ (μΑ) T _J = 150°C	Package
200	6	T _C = 145°C	MSRD620CT ★	1.2 @ 6.0 A	55	150	5	200	CASE 369A-13 (DPAK) 30 - 0 4 104 30 - 104 30 30 - 104 30 30 - 104 30 30 30 30 - 104 30 30 30 30 30 30
600	8	T _C = 125°C	MSR860	1.7 @ 8.0 A	120	150	10 µA	1000	CASE 221B-04 Style 1
600	15	T _C = 125°C	MSR1560	1.8 @ 15 A	45	150	15	5000	

★ New Product

Ultrafast Rectifiers

Table 12. Surface Mount Ultrafast Rectifiers

V _{RRM} (Volts)	I _O ⁽¹⁾ (Amperes)	I _O Rating Condition	Device	Max t _{rr} (ns)	Max V _F @ i _F T _C = 25°C (Volts)	I _{FSM} (Amperes)	T _J Max (°C)	Max I _R ⁽²⁾ T _J = 25°C (μΑ)	Max I _R ⁽⁴⁾ (µA) Package	Packa	ge
50	1	T _L = 155°C	MURA105T3	30	0.875 @ 1.0 A	50	175	2	50		
100	1	T _L = 155°C	MURA110T3	30	0.875 @ 1.0 A	50	175	2	50		
150	1	T _L = 155°C	MURA115T3	35	0.875 @ 1.0 A	40	175	2	50		
200	1	T _L = 155°C	MURA120T3	35	0.875 @ 1.0 A	40	175	2	50		
300	1	T _L = 150°C	MURA130T3	35	1.1 @ 1.0 A	35	175	5	150		
400	1	T _L = 150°C	MURA140T3	35	1.1 @ 1.0 A	35	175	5	150	CASE 40	
600	1	T _L = 145°C	MURA160T3	75	1.25 @ 1.0 A	30	175	5	150	5101	A
50	2	T _L = 135°C	MURA205T3	30	0.94 @ 2.0 A	50	175	2	50		
100	2	T _L = 135°C	MURA210T3	30	0.94 @ 2.0 A	50	175	2	50		
150	2	T _L = 135°C	MURA215T3	35	0.95 @ 2.0 A	40	175	2	50	Cathode = Po	larity Band
200	2	T _L = 135°C	MURA220T3	35	0.95 @ 2.0 A	40	175	2	50		
300	2	T _L = 125°C	MURA230T3	65	1.3 @ 2.0 A	35	175	5	150		
400	2	T _L = 125°C	MURA240T3	65	1.3 @ 2.0 A	35	175	5	150		
600	2	T _L = 110°C	MURA260T3	75	1.45 @ 2.0 A	30	175	5	150		
50	1	T _L = 155°C	MURS105T3	35	0.875 @ 1.0 A	40	175	2	50		
100	1	T _L = 155°C	MURS110T3	35	0.875 @ 1.0 A	40	175	2	50		
150	1	T _L = 155°C	MURS115T3	35	0.875 @ 1.0 A	40	175	2	50	CASE 40	34-03
200	1	T _L = 155°C	MURS120T3	35	0.875 @ 1.0 A	40	175	2	50	SM	
400	1	T _L = 150°C	MURS140T3	75	1.25 @ 1.0 A	35	175	5	150		
600	1	T _L = 150°C	MURS160T3	75	1.25 @ 1.0 A	35	175	5	150		
200	2	T _L = 145°C	MURS220T3	35	0.95 @ 2.0 A	40	175	2	50	~	*
300	2	T _L = 125°C	MURS230T3	65	1.3 @ 2.0 A	35	175	5	150	Cathode = P	olarity Band
400	2	T _L = 125°C	MURS240T3	65	1.3 @ 2.0 A	35	175	5	150		
600	2	T _L = 125°C	MURS260T3	75	1.45 @ 2.0 A	35	175	5	150		
200	3	$T_L = 140^{\circ}C$	MURS320T3	35	0.875 @ 3.0 A	75	175	5	150	CASE 403-0	3
400	3	T _L = 130°C	MURS340T3	75	1.25 @ 3.0 A	75	175	10	250	SMC	b _
600	3	T _L = 130°C	MURS360T3	75	1.25 @ 3.0 A	75	175	10	250	Cathode = Not	ich 🔍
200	6	T _C = 140°C	MURD620CT	35	1.0 @ 3.0 A	50	175	5	250 @ 125°C		1 0-▶
200	3	T _C = 158°C	MURD320	35	.95 @ 3.0 A	75	175	5	500 @ 125°C		30-₽ ^C "CT" Suffi
400	8	T _C = 120°C	MURHB840CT	28	2.2 @ 4.0 A	100	175	10	500	D ² PAK CASE	
600	8	T _C = 120°C	MURHB860CT	35	2.8 @ 4.0 A	100	175	10	500	418B-04	¹ 0 30 ► 0
200	16	T _C = 150°C	MURB1620CT	35	0.975 @ 8.0 A	100	175	5	250		Non-"CT" Suffix
600	16	T _C = 150°C	MURB1660CT	60	1.5 @ 8.0 A	100	175	10	500	1 3	

Table 13. Axial Lead Ultrafast Rectifiers

V _{RRM} (Volts)	l _O (Amperes)	I _O Rating Condition	Device	Max t _{rr} (ns)	Max V _F @ i _F T _C = 25°C (Volts)	I _{FSM} (Amperes)	T _J Max (°C)	Max I _R ⁽²⁾ T _J = 25°C (μΑ)	Max I _R ⁽⁴⁾ (μΑ)	Package
50	1	T _A = 130°C	MUR105	35	0.875 @ 1.0 A	35	175	2	50	
100	1	T _A = 130°C	MUR110	35	0.875 @ 1.0 A	35	175	2	50	
150	1	T _A = 130°C	MUR115	35	0.875 @ 1.0 A	35	175	2	50	
200	1	T _A = 130°C R _{θJA} = 50°C/W	MUR120	25	0.875 @ 1.0 A	35	175	2	50	
300	1	T _A = 120°C	MUR130	75	1.25 @ 1.0 A	35	175	5	150	
400	1	T _A = 120°C	MUR140	75	1.25 @ 1.0 A	35	175	5	150	CASE 59-10
600	1	T _A = 120°C R _{θJA} = 50°C/W	MUR160	50	1.25 @ 1.0 A	35	175	5	150	(DO-41) Plastic
800	1	$T_A = 95^{\circ}C$	MUR180E	75	1.75 @ 1.0 A	35	175	10	600 @ 100°C	Cathode = Polarity Band
1000	1	$T_A = 95^{\circ}C$ $R_{\Theta JA} = 50^{\circ}C/W$	MUR1100E	75	1.75 @ 1.0 A	35	175	10	600 @ 100°C	
200	2	$T_A = 90^{\circ}C$	MUR220	35	0.95 @ 2.0 A	35	175	2	50	
400	2	$T_A = 85^{\circ}C$	MUR240	65	1.15 @ 2.0 A	35	175	5	150	
600	2	$T_A=60^{\circ}C$	MUR260	75	1.35 @ 2.0 A	35	175	5	150	
1000	2	$T_A = 35^{\circ}C$	MUR2100E	100	2.2 @ 2.0 A	35	175	10	600	
50	4	$T_A=80^\circ C$	MUR405	35	0.89 @ 2.0 A	125	175	5	150	
100	4	$T_A = 80^{\circ}C$	MUR410	35	0.89 @ 2.0 A	125	175	5	150	
150	4	$T_A = 80^{\circ}C$	MUR415	35	0.89 @ 2.0 A	125	175	5	150	_
200	4	T _A = 80°C R _{θJA} = 28°C/W	MUR420	25	0.875 @ 3.0 A	125	175	5	150	CASE 267-05
400	4	T _A = 40°C	MUR440	75		75	175	10	250	(DO-201AD)
600	4	T _A = 40°C R _{θJA} = 28°C/W	MUR460	50	1.25 @ 3.0 A	70	175	10	250	Plastic Cathode = Polarity Band
800	4	$T_A = 35^{\circ}C$	MUR480E	75	1.75 @ 3.0 A	70	175	25	900	
1000	4	$T_A = 35^{\circ}C$ $R_{\theta JA} = 28^{\circ}C/W$	MUR4100E	75	1.75 @ 3.0 A	70	175	25	900	

 $^{(2)}V_{RRM}$ unless noted (4) V_{RRM} , T_J = 150°C unless noted

Table 14. TO-220 Ultrafast and MEGAHERTZ[™] Rectifiers

V _{RRM} (Volts)	I _O ⁽¹⁾ (Amperes)	I _O Rating Condition	Device	Max t _{rr} (ns)	Max V _F @ i _F T _C = 25°C (Volts)	I _{FSM} (Amperes)	T _J Max (°C)	Max I _R ⁽²⁾ T _C = 25°C (μΑ)	Max I _R ⁽⁴⁾ (μΑ)	Package
200	6	$T_C = 130^{\circ}C$	MUR620CT	35	0.975 @ 3.0 A	75	175	5	250	CASE 221A-09
400	8	T _C = 120°C	MURH840CT	28	2.2 @ 4.0 A	100	175	10	500	(TO-220AB)
600	8	$T_C = 120^{\circ}C$	MURH860CT	35	2.8 @ 4.0 A	100	175	10	500	10-▶
100	16	T _C = 150°C	MUR1610CT	35	0.975 @ 8.0 A	100	175	5	250	30→
150	16	$T_C = 150^{\circ}C$	MUR1615CT	35	0.975 @ 8.0 A	100	175	5	250	1
200	16	T _C = 150°C	MUR1620CT	35	0.975 @ 8.0 A	100	175	5	250	
200	16	$T_C = 160^{\circ}C$	MUR1620CTR	85	1.2 @ 8.0 A	100	175	5	500	
400	16	T _C = 150°C	MUR1640CT	60	1.30 @ 8.0 A	100	175	10	250	MUR1620CTR Only
600	16	T _C = 150°C	MUR1660CT	60	1.5 @ 8.0 A	100	175	10	500	only
50	8	T _C = 150°C	MUR805	35	0.975 @ 8.0 A	100	175	5	250	
100	8	T _C = 150°C	MUR810	35	0.975 @ 8.0 A	100	175	5	250	
150	8	$T_C = 150^{\circ}C$	MUR815	35	0.975 @ 8.0 A	100	175	5	250	
200	8	$T_C = 150^{\circ}C$	MUR820	35	0.975 @ 8.0 A	100	175	5	250	
400	8	T _C = 150°C	MUR840	50	1.30 @ 8.0 A	100	175	10	500	CASE 221B-04
600	8	T _C = 150°C	MUR860	50	1.50 @ 8.0 A	100	175	10	500	(TO-220AC)
800	8	T _C = 150°C	MUR880E	75	1.80 @ 8.0 A	100	175	25	500 @ 100°C	
100	15	$T_C = 150^{\circ}C$	MUR1510	35	1.05 @ 15 A	200	175	10	500	3 0-₩ ¹
150	15	T _C = 150°C	MUR1515	35	1.05 @ 15 A	200	175	10	500	
200	15	T _C = 150°C	MUR1520	35	1.05 @ 15 A	200	175	10	500	3
400	15	T _C = 150°C	MUR1540	60	1.25 @ 15 A	150	175	10	500	
600	15	T _C = 145°C	MUR1560	60	1.50 @ 15 A	150	175	10	1000	
200	20	T _C = 125°C	MUR2020R	95	1.10 @ 20 A	250	175	50	1000	
1000	8	$T_C = 150^{\circ}C$	MUR8100E	75	1.80 @ 8.0 A	100	175	25	500 @ 100°C	
200	16	T _C = 150°C	NURF1620CT	35	0.975 @ 8.0 A	100	150	5	250	CASE 221D-03
600	16	T _C = 150°C	MURF1660CT	60	1.5 @ 8.0 A	100	175	10	500	0[9]
600	8	$T_C \le 120^{\circ}C$	MURHF860CT ★	35	2.8 @ 4.0 A	100	150	10	500	olo

N Indicates UL Recognized - File #E69369 * New Product

Table 15. TO-218 and TO-247 Ultrafast Rectifiers

V _{RRM} (Volts)	l _O (Amperes)	I _O Rating Condition	Device	Max t _{rr} (ns)	Max V _F @ i _F T _C = 25°C (Volts)	I _{FSM} (Amperes)	T _J Max (°C)	Max I _R ⁽²⁾ T _J = 25°C (μΑ)	Max I _R ⁽⁴⁾ (mA)	Package
200	30	T _C = 145°C	MUR3020WT	35	1.05 @ 15 A	200	175	10	0.5	CASE 340L-02 (TO-247)
600	30	T _C = 145°C	MUR3060WT	60	1.70 @ 15 A	150	175	10	1	
200	30	$T_C = 150^{\circ}C$	MUR3020PT	35	1.05 @ 15 A	200	175	10	0.5	CASE 340D-02 (TO-218AC)
400	30	$T_{C} = 150^{\circ}C$	MUR3040PT	60	1.25 @ 15 A	150	175	10	0.5	
600	30	$T_C = 145^{\circ}C$	MUR3060PT	60	1.50 @ 15 A	150	175	10	1	

 $^{(2)}V_{RRM}$ unless noted (4) $V_{RRM},\,T_{J}$ = 150°C unless noted

Table 16. POWERTAP II Ultrafast Rectifiers

V _{RRM} (Volts)	l _O ⁽¹⁾ (Amperes)	I _O Rating Condition	Device	Max t _{rr} (ns)	Max V _F @ i _F T _C = 25°C (Volts)	I _{FSM} (Amperes)	T _J Max (°C)	Max I _R ⁽²⁾ T _J = 25°C (μΑ)	Max I _R ⁽⁴⁾ (mA)	Package
200	200	T _C = 130°C	MURP20020CT	50	1.00 @ 100 A	800	175	150	1 @ 125°C	CASE 357C-03 POWERTAP™
400	200	T _C = 100°C	MURP20040CT	50	1.30 @ 100 A	800	175	50	0.5 @ 125°C	3 Cathode = Mounting Plate Anode = Terminal

 $^{(1)}$ is total device current capability. $^{(2)}$ V_{RRM} unless noted $^{(4)}$ V_{RRM}, T_J = 150°C unless noted

V _{RRM} (Volts)	l _O (Amperes)	I _O Rating Condition	Device	Max V _F @ i _F T _J = 25°C (Volts)	Max t _{rr} (ns)	I _{FSM} (Amperes)	T _J Max (°C)	Max I _R ⁽²⁾ T _J = 25°C (μΑ)	Max I _R ⁽³⁾ (µA)	Package
400	1.5	T _L = 118°C	MRS1504T3	1.04 @ 1.5 A	-	50	150	1	340	CASE 403A-03 SMB
300	1	T _L = 150°C	MRA4003T3 *	1.1 @ 1.0 A	-	30	175	10	50	CASE 403B-02
400	1	T _L = 150°C	MRA4004T3 *	1.1 @ 1.0 A	-	30	175	10	50	SMA
600	1	T _L = 150°C	MRA4005T3 *	1.1 @ 1.0 A	-	30	175	10	50	
800	1	T _L = 150°C	MRA4006T3 *	1.1 @ 1.0 A	-	30	175	10	50	Cathode = Notch
1000	1	T _L = 150°C	MRA4007T3 *	1.1 @ 1.0 A	-	30	175	10	50	
50	1	T _A = 75°C	1N4001RL	1.1 @ 1.0 A	-	30	150	10	50	
100	1	T _A = 75°C	1N4002RL	1.1 @ 1.0 A	-	30	150	10	50	
200	1	T _A = 75°C	1N4003RL	1.1 @ 1.0 A	-	30	150	10	50	
400	1	T _A = 75°C	1N4004RL	1.1 @ 1.0 A	-	30	150	10	50	
600	1	T _A = 75°C	1N4005RL	1.1 @ 1.0 A	-	30	150	10	50	CASE 59-10 ⁽⁷⁾ (DO-41)
800	1	T _A = 75°C	1N4006RL	1.1 @ 1.0 A	-	30	150	10	50	Plastic
1000	1	T _A = 75°C	1N4007RL	1.1 @ 1.0 A	-	30	150	10	50	(a)
50	1	T _A = 75°C	1N4933RL	1.2 @ 1.0 A	200	30	150	5	100	Cathode = Polarity Band
100	1	T _A = 75°C	1N4934RL	1.2 @ 1.0 A	200	30	150	5	100	
200	1	T _A = 75°C	1N4935RL	1.2 @ 1.0 A	200	30	150	5	100	
400	1	T _A = 75°C	1N4936RL	1.2 @ 1.0 A	200	30	150	5	100	
600	1	$T_A = 75^{\circ}C$	1N4937RL	1.2 @ 1.0 A	200	30	150	5	100	
50	3	$T_L = 105^{\circ}C$	1N5400RL	1.2 @ 9.4 A	-	200	150	10	500 @ 150°C	
100	3	T _L = 105°C	1N5401RL	1.2 @ 9.4 A	-	200	150	10	500 @ 150°C	
200	3	$T_L = 105^{\circ}C$	1N5402RL	1.2 @ 9.4 A	-	200	150	10	500 @ 150°C	
400	3	T _L = 105°C	1N5404RL	1.2 @ 9.4 A	-	200	150	10	500 @ 150°C	CASE 267-05 (DO-201AD)
600	3	$T_L = 105^{\circ}C$	1N5406RL	1.2 @ 9.4 A	-	200	150	10	500 @ 150°C	Plastic
800	3	$T_L = 105^{\circ}C$	1N5407RL	1.2 @ 9.4 A	-	200	150	10	500 @ 150°C	
1000	3	T _L = 105°C	1N5408RL	1.2 @ 9.4 A	-	200	150	10	500 @ 150°C	Cathodo Dalarity Dana
200	3	$T_A = 80^{\circ}C^{(8)}$	MR852RL	1.25 @ 3.0 A	200	100	150	10	150	Cathode = Polarity Band
400	3	$T_{A} = 80^{\circ}C^{(8)}$	MR854RL	1.25 @ 3.0 A	200	100	150	10	150	
600	3	$T_{A} = 80^{\circ}C^{(8)}$	MR856RL	1.25 @ 3.0 A	200	100	150	10	150	
50	6	T _A = 60°C R _{θJA} = 25°C/W	MR750RL	1.25 @ 100 A	-	400	175	25	1000	
100	6	T _A = 60°C R _{θJA} = 25°C/W	MR751RL	1.25 @ 100 A	-	400	175	25	1000	CASE 194-04
200	6	T _A = 60°C R _{θJA} = 25°C/W	MR752RL	1.25 @ 100 A	-	400	175	25	1000	Plastic
400	6	T _A = 60°C R _{θJA} = 25°C/W	MR754RL	1.25 @ 100 A	-	400	175	25	1000	Cathode indicated by diode symbol
600	6	$T_A = 60^{\circ}C$ $R_{\Theta JA} = 25^{\circ}C/W$	MR756RL	1.25 @ 100 A	-	400	175	25	1000	
1000	6	$T_A = 60^{\circ}C$ $R_{\Theta JA} = 25^{\circ}C/W$	MR760RL	1.25 @ 100 A	-	400	175	25	1000	
200	25	T _C = 150°C	MR2502	1.18 @ 78.5 A	-	400	175	100	500	CASE 193-04
400	25	T _C = 150°C	MR2504	1.18 @ 78.5 A	-	400	175	100	500	Plastic
1000	25	T _C = 150°C	MR2510	1.18 @ 78.5 A	-	400	175	100	500	Ø
250	32	T _C = 150°C	TRA3225	1.15 @ 100 A	-	500	175	10	250	Cathode = Polarity Band
250	25	T _C = 150°C	TRA2525	1.18 @ 100 A	-	400	175	10	250	

Fast Recovery Rectifiers/General-Purpose Rectifiers Table 17. Fast Recovery Rectifiers/General Purpose Rectifiers

 $^{(2)}V_{RRM}$ unless noted $^{(3)}V_{RRM},\,T_J$ = 100°C unless noted $^{(7)}Package$ Size: 0.120" max diameter by 0.260" length.

⁽⁸⁾Must be derated for reverse power dissipation. See data sheet. ⁽⁹⁾Overvoltage Transient Suppressor: 24-32 volts avalanche voltage.

* New Product

Table 18. Overvoltage Transient Suppressors

V _{RRM} (Volts)	V _{BR} ⁽¹⁾ (Volts)	V _{BR} (Volts)	l _O (Amperes)	Device	Max V _F T _J = 25°C (Volts)	I _{FSM} (Amperes)	T _J Max (°C)	I _{RSM} (Amperes)	Max I _R ⁽⁶⁾ (μΑ)	Package
23	24-32	40(4)	6 T _L = 125°C	MR2520L	1.25 I _F = 100A	400	175	58(5)	10	CASE 194-04 Plastic
20	24-32	40 ⁽²⁾	6 T _C = 125°C	MR2535L	1.1 I _F = 100A	400	175	62 ⁽⁵⁾	0.2	Cathode = Diode Symbol
20	24-32	40 ⁽³⁾	32 T _C = 150°C	TRA2532	1.18 I _F = 100A	500	175	80 ⁽⁵⁾	10	CASE 193-04 Plastic Solution Cathode = Polarity Band
23	24-32	40 ⁽³⁾	32 T _C = 150°C	MR2835SK	1.1 I _F = 100A	400	175	62 ⁽⁵⁾	5 @ 20 V	CASE 460-02 Top Can Cathode = Terminal

 $^{(5)} Time \ Constant$ = 10 mS, 25°C $^{(6)} At \ V_{RRM}, \ T_j$ = 25°C unless noted

CHAPTER 3 Schottky Data Sheets

MBR0520LT1, MBR0520LT3

Preferred Devices

Surface Mount Schottky Power Rectifier

Plastic SOD-123 Package

The Schottky Power Rectifier employs the Schottky Barrier principle with a barrier metal that produces optimal forward voltage drop-reverse current tradeoff. Ideally suited for low voltage, high frequency rectification, or as free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system. This package provides an alternative to the leadless 34 MELF style package. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Very Low Forward Voltage (0.38 V Max @ 0.5 A, 25°C)
- 125°C Operating Junction Temperature
- Epoxy Meets UL94, VO at 1/8"
- Package Designed for Optimal Automated Board Assembly

Mechanical Characteristics

- Reel Options: MBR0520LT1 = 3,000 per 7" reel/8 mm tape. MBR0520LT3 = 10,000 per 13" reel/8 mm tape.
- Device Marking: B2
- Polarity Designator: Cathode Band
- Weight: 11.7 mg (approximately)
- Case: Epoxy, Molded
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	V
Average Rectified Forward Current (Rated V_R , T_L = 90°C)	I _{F(AV)}	0.5	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	5.5	A
Storage Temperature Range	T _{stg}	-65 to +125	°C
Operating Junction Temperature	TJ	-65 to +125	°C
Voltage Rate of Change (Rated V_R)	dv/dt	1000	V/μs

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 0.5 AMPERES 20 VOLTS

SOD-123 CASE 425 STYLE 1

MARKING DIAGRAM

B2 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBR0520LT1	SOD-123	3000/Tape & Reel
MBR0520LT3	SOD-123	10,000/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

Semiconductor Components Industries, LLC, 2000 October, 2000 - Rev. 3

MBR0520LT1, MBR0520LT3

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance — Junction to Ambient (Note 1.)	R_{\thetaJA}	206	°C/W
Thermal Resistance — Junction to Lead	$R_{ extsf{ heta}JL}$	150	°C/W

ELECTRICAL CHARACTERISTICS

		-		
Maximum Instantaneous Forward Voltage (Note 2.)	٧ _F	$T_J = 25^{\circ}C$	$T_J = 100^{\circ}C$	Volts
(i _F = 0.1 Amps) (i _F = 0.5 Amps)		0.300 0.385	0.220 0.330	
Maximum Instantaneous Reverse Current (Note 2.)	I _R	$T_J = 25^{\circ}C$	$T_J = 100^{\circ}C$	mA
(V _R = 10 V) (Rated dc Voltage = 20 V)		75 μΑ 250 μΑ	5 mA 8 mA	

1. 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2%.

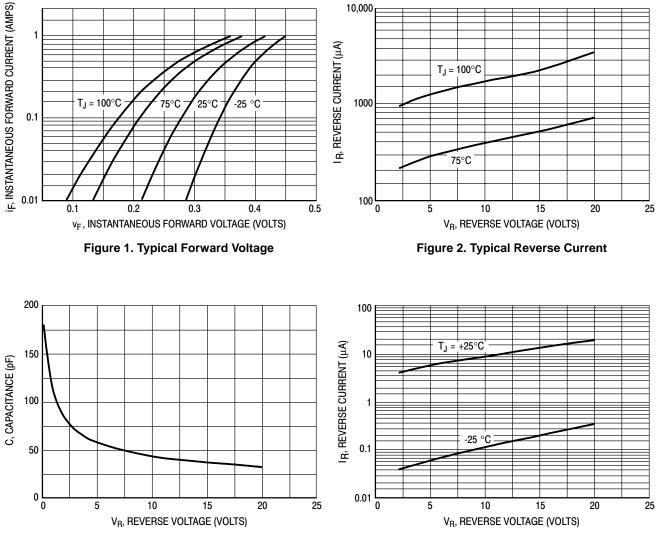


Figure 3. Typical Capacitance

Figure 4. Typical Reverse Current

MBR0520LT1, MBR0520LT3

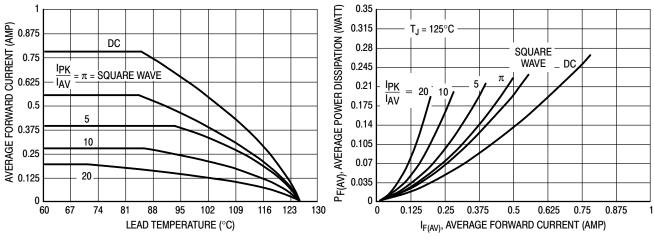


Figure 5. Current Derating (Lead)

Figure 6. Power Dissipation

MBR0530T1, MBR0530T3

Preferred Devices

Surface Mount Schottky Power Rectifier

Plastic SOD-123 Package

... using the Schottky Barrier principle with a large area metal-to-silicon power diode. Ideally suited for low voltage, high frequency rectification or as free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system. This package also provides an easy to work with alternative to leadless 34 package style. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Low Forward Voltage
- 125°C Operating Junction Temperature
- Epoxy Meets UL94, VO at 1/8"
- Package Designed for Optimal Automated Board Assembly

Mechanical Characteristics

- Reel Options: MBR0530T1 = 3,000 per 7" reel/8 mm tape MBR0530T3 = 10,000 per 13" reel/8 mm tape
- Device Marking: B3
- Polarity Designator: Cathode Band
- Weight: 11.7 mg (approximately)
- Case: Epoxy, Molded
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	V
Average Rectified Forward Current (Rated V _R , T _L = 100°C)	I _{F(AV)}	0.5	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	5.5	A
Storage Temperature Range	T _{stg}	-65 to +125	°C
Operating Junction Temperature	TJ	-65 to +125	°C
Voltage Rate of Change (Rated V_R)	dv/dt	1000	V/μs

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 0.5 AMPERES 30 VOLTS

SOD-123 CASE 425 STYLE 1

MARKING DIAGRAM

B3 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBR0530T1	SOD-123	3000/Tape & Reel
MBR0530T3	SOD-123	10,000/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

Semiconductor Components Industries, LLC, 2000 October, 2000 - Rev. 2

MBR0530T1, MBR0530T3

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance — Junction to Ambient (Note 1.)	R_{\thetaJA}	206	°C/W
Thermal Resistance — Junction to Lead	$R_{ extsf{ heta}JL}$	150	°C/W

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 2.) ($i_F = 0.1 \text{ Amps}, T_J = 25^{\circ}\text{C}$) ($i_F = 0.5 \text{ Amps}, T_J = 25^{\circ}\text{C}$)	۷F	0.375 0.43	Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, $T_C = 25^{\circ}C$) ($V_R = 15 V, T_C = 25^{\circ}C$)	I _R	130 20	μΑ

1. 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle $\leq 2\%$.

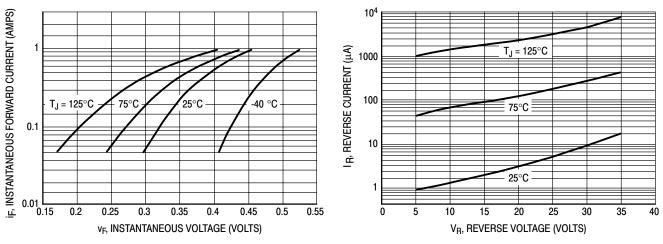


Figure 1. Typical Forward Voltage

Figure 2. Typical Reverse Current

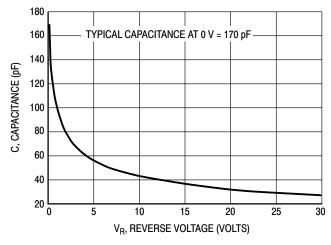


Figure 3. Typical Capacitance

MBR0530T1, MBR0530T3

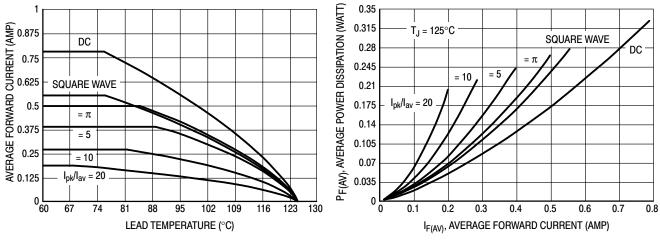


Figure 4. Current Derating (Lead)

Figure 5. Power Dissipation

MBR0540T1, MBR0540T3

Surface Mount Schottky Power Rectifier

SOD-123 Power Surface Mount Package

The Schottky Power Rectifier employs the Schottky Barrier principle with a barrier metal that produces optimal forward voltage drop-reverse current tradeoff. Ideally suited for low voltage, high frequency rectification, or as a free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system. This package provides an alternative to the leadless 34 MELF style package. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Very Low Forward Voltage
- Epoxy Meets UL94, VO at 1/8"
- Package Designed for Optimal Automated Board Assembly

Mechanical Characteristics:

- Reel Options: 3,000 per 7 inch reel/8 mm tape
- Reel Options: 10,000 per 13 inch reel/8 mm tape
- Device Marking: B4
- Polarity Designator: Cathode Band
- Weight: 11.7 mg (approximately)
- Case: Epoxy Molded
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C max. for 10 Seconds

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	40	V
Average Rectified Forward Current (At Rated V _R , T _C = 115°C)	Ι _Ο	0.5	A
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz, T _C = 115°C)	I _{FRM}	1.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	5.5	A
Storage/Operating Case Temperature Range	T _{stg} , T _C	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +150	°C
Voltage Rate of Change (Rated V_R , T_J = 25°C)	dv/dt	1000	V/µs

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 0.5 AMPERES 40 VOLTS

SOD-123 CASE 425 STYLE 1

MARKING DIAGRAM

B4 = Device Code

ORDERING INFORMATION

Device	Package	Shipping	
MBR0540T1	SOD-123	3000/Tape & Reel	
MBR0540T3	SOD-123	10,000/Tape & Reel	

MBR0540T1, MBR0540T3

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance - Junction-to-Lead (Note 1.)	R _{tjl}	118	°C/W
Thermal Resistance - Junction-to-Ambient (Note 2.)	R _{tja}	206	

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 3.)	VF	T _J = 25°C	$T_J = 100^{\circ}C$	V
(i _F = 0.5 A) (i _F = 1 A)		0.51 0.62	0.46 0.61	
Maximum Instantaneous Reverse Current (Note 3.)	I _R	T _J = 25°C	T _J = 100°C	μΑ
(V _R = 40 V) (V _R = 20 V)		20 10	13,000 5,000	

1. Mounted with minimum recommended pad size, PC Board FR4.

2. 1 inch square pad size (1 X 0.5 inch for each lead) on FR4 board.

3. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2.0%.

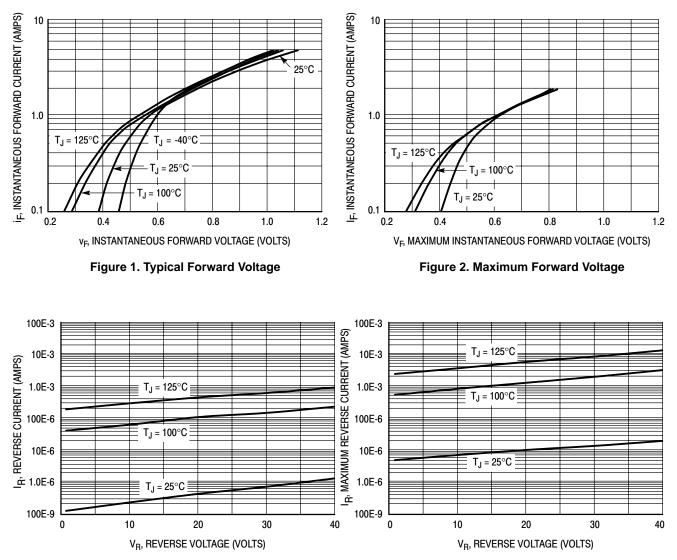
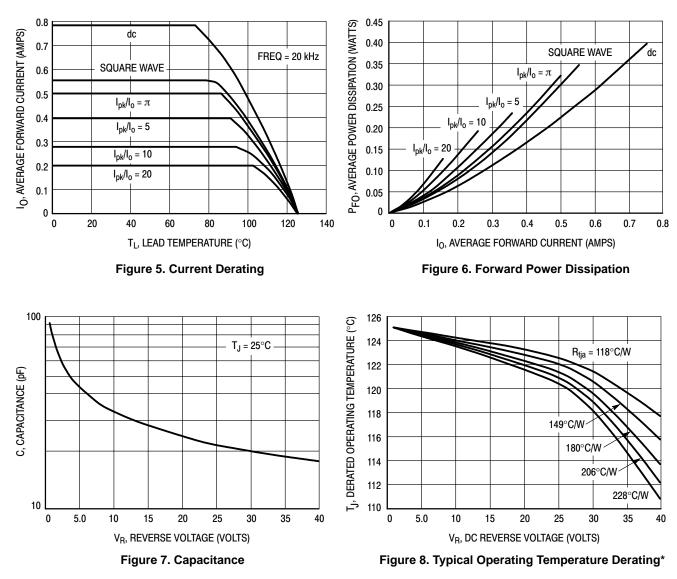
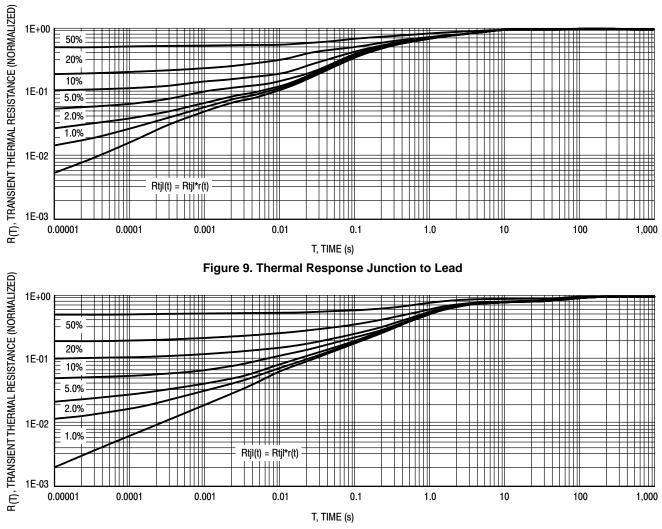



Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

MBR0540T1, MBR0540T3



* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where

- r(t) = thermal impedance under given conditions,
- Pf = forward power dissipation, and
- Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

MBR0540T1, MBR0540T3

Surface Mount Schottky Power Rectifier

Plastic SOD-123 Package

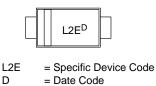
... using the Schottky Barrier principle with a large area metal-to-silicon power diode. Ideally suited for low voltage, high frequency rectification or as free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system. This package also provides an easy to work with alternative to leadless 34 package style. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are ac/dc and dc-dc converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Low Leakage
- 150°C Operating Junction Temperature
- Epoxy Meets UL94, V0 at 1/8"
- Package Designed for Optimal Automated Board Assembly
- ESD Ratings: Machine Model, C
 - Human Body Model, 3B

Mechanical Characteristics

- Reel Options: MBR120ESFT1 = 3,000 per 7" reel/8 mm tape MBR120ESFT3 = 10,000 per 13" reel/8 mm tape
- Device Marking: L2E
- Polarity Designator: Cathode Band
- Weight: 11.7 mg (approximately)
- Case: Epoxy, Molded
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds

ON Semiconductor®


http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 20 VOLTS

SOD-123FL CASE 498 PLASTIC

DEVICE MARKING

ORDERING INFORMATION

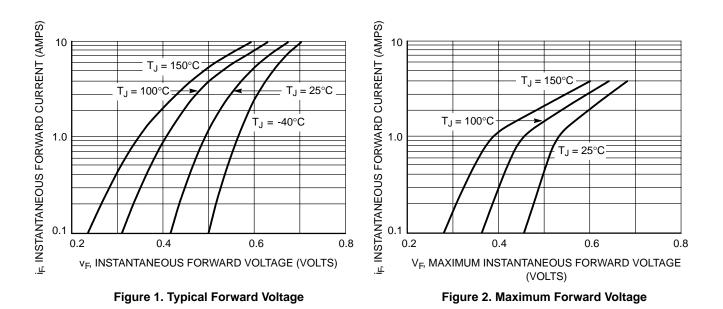
Device	Package	Shipping
MBR120ESFT1	SOD-123FL	3000/Tape & Reel
MBR120ESFT3	SOD-123FL	10,000/Tape & Reel

MAXIMUM RATINGS

Symbol	Value	Unit
V _{RRM} V _{RWM} V _R	20	V
IO	1.0	А
I _{FRM}	2.0	A
I _{FSM}	40	A
T _{stg}	-65 to 150	°C
TJ	-65 to 150	°C
dv/dt	10,000	V/μs
	VRRM VRWM VR IO IFRM IFSM Tstg TJ	$\begin{array}{c c} V_{RRM} & 20 \\ V_{RWM} & V_{R} \\ \hline I_{O} & 1.0 \\ I_{FRM} & 2.0 \\ \hline I_{FRM} & 2.0 \\ \hline I_{FSM} & 40 \\ \hline T_{stg} & -65 \text{ to } 150 \\ \hline T_{J} & -65 \text{ to } 150 \\ \hline \end{array}$

THERMAL CHARACTERISTICS

Thermal Resistance - Junction-to-Lead (Note 1)	R _{til}	26	°C/W
Thermal Resistance - Junction-to-Lead (Note 2)	R _{til}	21	
Thermal Resistance - Junction-to-Ambient (Note 1)	R _{tia}	325	
Thermal Resistance - Junction-to-Ambient (Note 2)	R _{tja}	82	


1. Mounted with minimum recommended pad size, PC Board FR4.

2. Mounted with 1 in. copper pad (Cu area 700 mm²).

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 3), See Figure 2	V _F	$T_J = 25^{\circ}C$	$T_J = 100^{\circ}C$	V
$(I_F = 0.1 \text{ A})$ $(I_F = 1.0 \text{ A})$ $(I_F = 2.0 \text{ A})$		0.455 0.530 0.595	0.360 0.455 0.540	
Maximum Instantaneous Reverse Current (Note 3), See Figure 4	I _R	T _J = 25°C	T _J = 100°C	μΑ
$(V_R = 20 V)$ $(V_R = 10 V)$ $(V_R = 5.0 V)$		10 1.0 0.5	1600 500 300	

3. Pulse Test: Pulse Width $\leq 250~\mu s,$ Duty Cycle $\leq 2\%.$

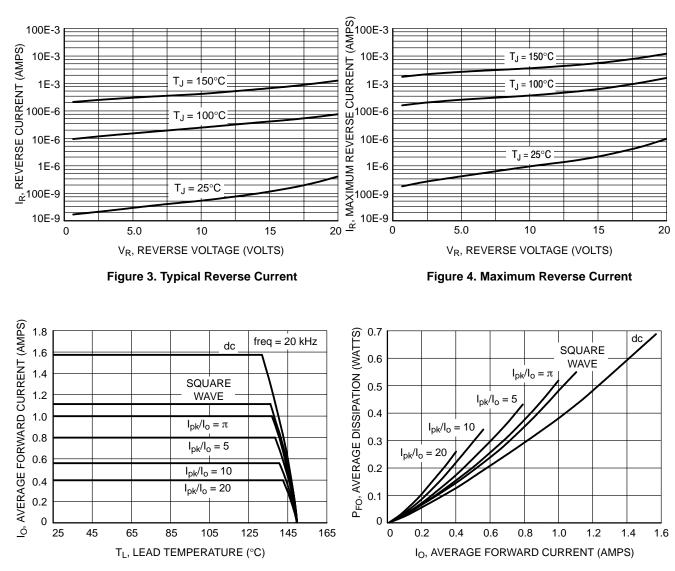
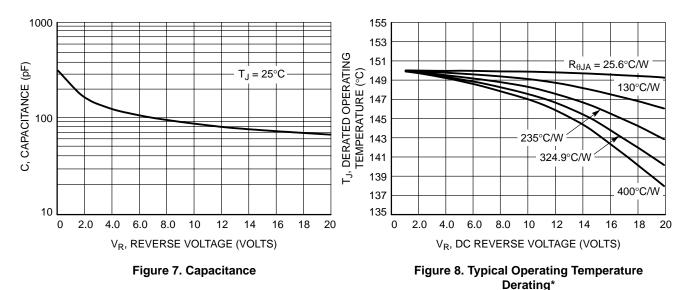



Figure 5. Current Derating

Figure 6. Forward Power Dissipation

* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where

r(t) = thermal impedance under given conditions,

Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

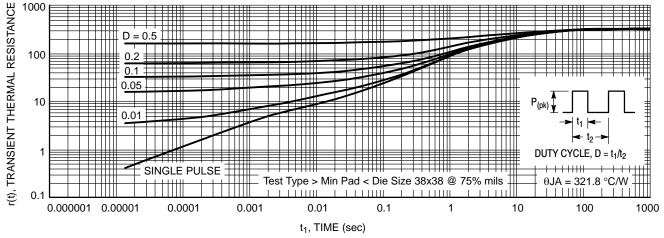


Figure 9. Thermal Response

Surface Mount Schottky Power Rectifier

Plastic SOD-123 Package

... using the Schottky Barrier principle with a large area metal-to-silicon power diode. Ideally suited for low voltage, high frequency rectification or as free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system. This package also provides an easy to work with alternative to leadless 34 package style. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are ac/dc and dc-dc converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Low Forward Voltage
- 125°C Operating Junction Temperature
- Epoxy Meets UL94, V0 at 1/8"
- Package Designed for Optimal Automated Board Assembly
- ESD Ratings: Machine Model, C

Human Body Model, 3B

Mechanical Characteristics

- Reel Options: MBR120LSFT1 = 3,000 per 7" reel/8 mm tape MBR120LSFT3 = 10,000 per 13" reel/8 mm tape
- Device Marking: L2L
- Polarity Designator: Cathode Band
- Weight: 11.7 mg (approximately)
- Case: Epoxy, Molded
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 20 VOLTS

SOD-123FL CASE 498 PLASTIC

DEVICE MARKING

= Date Code

ORDERING INFORMATION

D

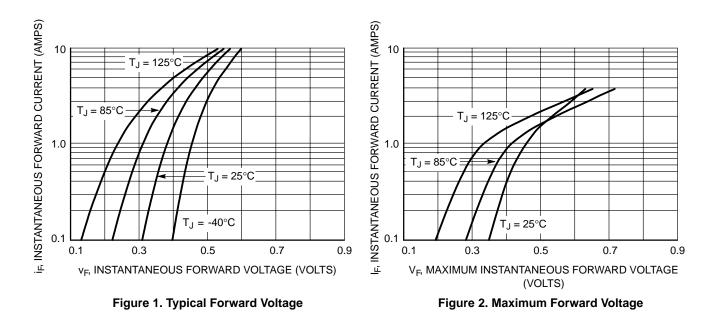
Device	Package	Shipping
MBR120LSFT1	SOD-123FL	3000/Tape & Reel
MBR120LSFT3	SOD-123FL	10,000/Tape & Reel

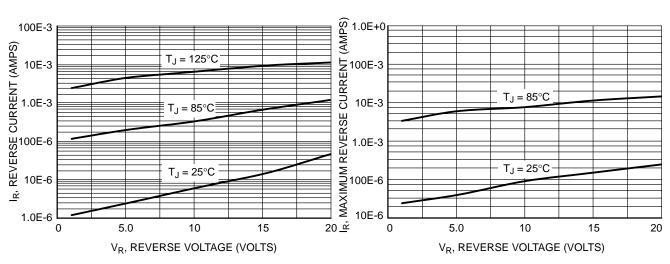
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	V
Average Rectified Forward Current (At Rated V_R , $T_L = 115^{\circ}C$)	IO	1.0	А
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 100 kHz, T _L = 110°C)	I _{FRM}	2.0	A
Non-Repetitive Peak Surge Current (Non-Repetitive peak surge current, halfwave, single phase, 60 Hz)	I _{FSM}	50	A
Storage Temperature	T _{stg}	-55 to 150	°C
Operating Junction Temperature	TJ	-55 to 125	°C
Voltage Rate of Change (Rated V_R , $T_J = 25^{\circ}C$)	dv/dt	10,000	V/μs

THERMAL CHARACTERISTICS

Thermal Resistance - Junction-to-Lead (Note 1)	R _{til}	26	°C/W
Thermal Resistance - Junction-to-Lead (Note 2)	R _{til}	21	
Thermal Resistance - Junction-to-Ambient (Note 1)	R _{tja}	325	
Thermal Resistance - Junction-to-Ambient (Note 2)	R _{tja}	82	


1. Mounted with minimum recommended pad size, PC Board FR4.


2. Mounted with 1 in. copper pad (Cu area 700 mm²).

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 3), See Figure 2	V _F	T _J = 25°C	T _J = 85°C	V
$(I_F = 0.1 \text{ A})$ $(I_F = 1.0 \text{ A})$ $(I_F = 3.0 \text{ A})$		0.34 0.45 0.65	0.26 0.415 0.67	
Maximum Instantaneous Reverse Current (Note 3), See Figure 4	I _R	T _J = 25°C	T _J = 85°C	mA
(V _R = 20 V) (V _R = 10 V)		0.40 0.10	25 18	

3. Pulse Test: Pulse Width \leq 250 $\mu s,$ Duty Cycle \leq 2%.

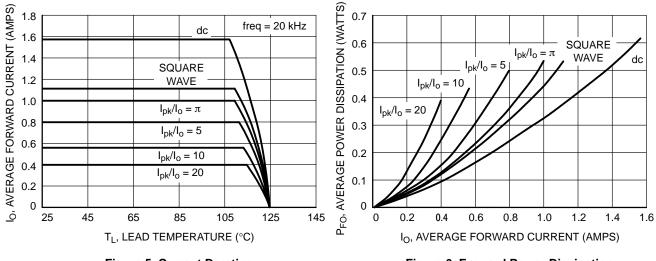
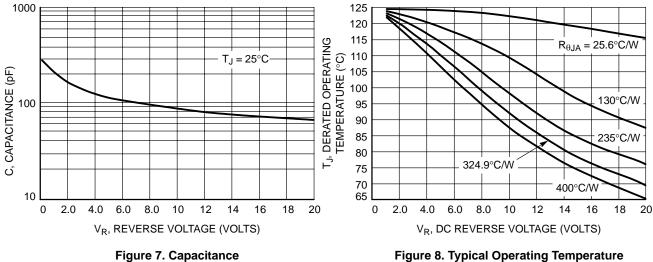



Figure 5. Current Derating

Figure 6. Forward Power Dissipation

. Derating*

* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where

r(t) = thermal impedance under given conditions,

Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

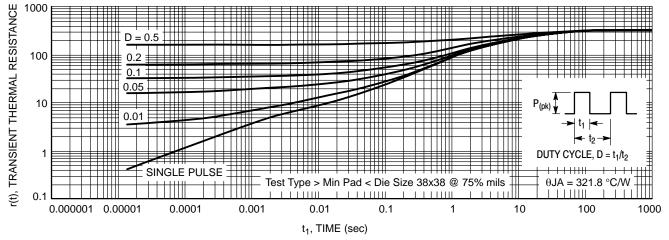


Figure 9. Thermal Response

Surface Mount Schottky Power Rectifier

Plastic SOD-123 Package

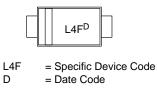
... using the Schottky Barrier principle with a large area metal-to-silicon power diode. Ideally suited for low voltage, high frequency rectification or as free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system. This package also provides an easy to work with alternative to leadless 34 package style. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are ac/dc and dc-dc converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Low Forward Voltage
- 125°C Operating Junction Temperature
- Epoxy Meets UL94, V0 at 1/8"
- Package Designed for Optimal Automated Board Assembly
- ESD Ratings: Machine Model, C
 - Human Body Model, 3B

Mechanical Characteristics

- Reel Options: MBR140SFT1 = 3,000 per 7" reel/8 mm tape MBR140SFT3 = 10,000 per 13" reel/8 mm tape
- Device Marking: L4F
- Polarity Designator: Cathode Band
- Weight: 11.7 mg (approximately)
- Case: Epoxy, Molded
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds

ON Semiconductor®


http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 40 VOLTS

SOD-123FL CASE 498 PLASTIC

DEVICE MARKING

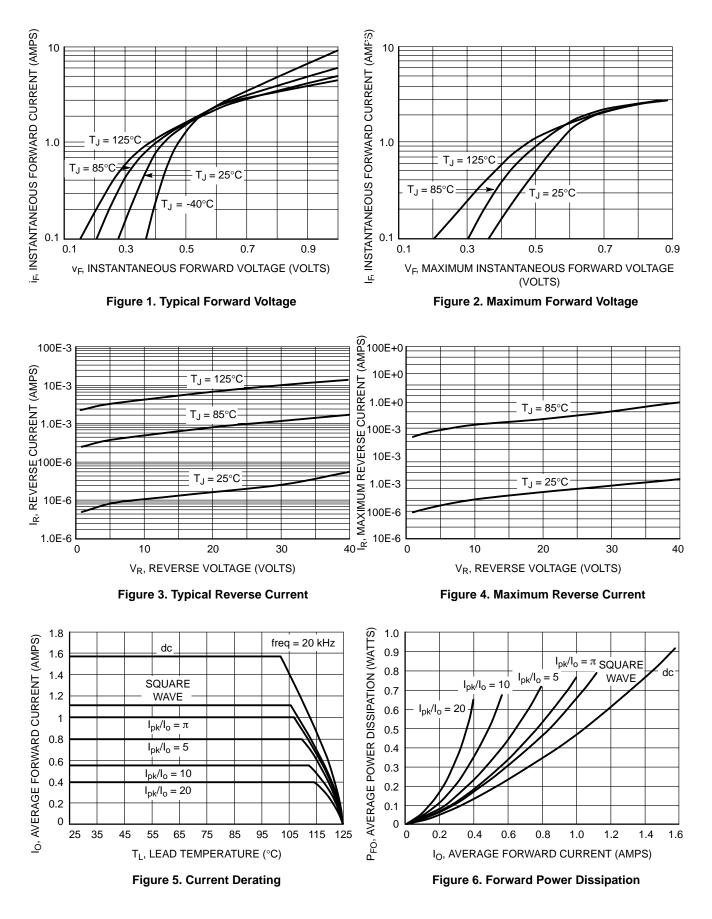
ORDERING INFORMATION

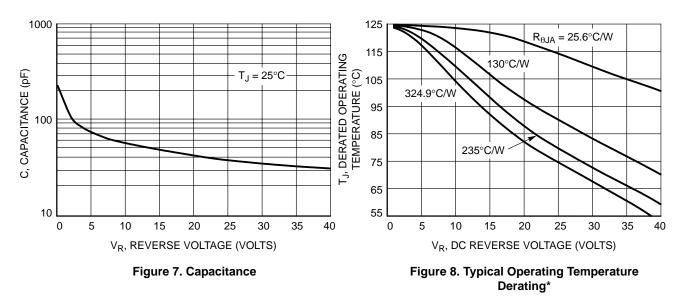
Device	Package	Shipping
MBR140SFT1	SOD-123FL	3000/Tape & Reel
MBR140SFT3	SOD-123FL	10,000/Tape & Reel

MAXIMUM RATINGS

Symbol	Value	Unit
V _{RRM} V _{RWM} V _R	40	V
Io	1.0	А
I _{FRM}	2.0	A
I _{FSM}	30	A
T _{stg}	-55 to 150	°C
TJ	-55 to 125	°C
dv/dt	10,000	V/µs
	V _{RRM} V _{RWM} V _R I _O IFRM IFSM T _{stg} T _J	$ \begin{array}{c c} V_{RRM} & 40 \\ V_{RWM} & 40 \\ V_{RWM} & V_{R} & 40 \\ \hline I_{O} & 1.0 \\ I_{FRM} & 2.0 \\ \hline I_{FSM} & 30 \\ \hline T_{stg} & -55 \text{ to } 150 \\ \hline T_{J} & -55 \text{ to } 125 \\ \hline \end{array} $

THERMAL CHARACTERISTICS


Thermal Resistance - Junction-to-Lead (Note 1)	R _{til}	26	°C/W
Thermal Resistance - Junction-to-Lead (Note 2)	, R _{til}	21	
Thermal Resistance - Junction-to-Ambient (Note 1)	R _{tia}	325	
Thermal Resistance - Junction-to-Ambient (Note 2)	R _{tja}	82	


Mounted with minimum recommended pad size, PC Board FR4.
 Mounted with 1 in. copper pad (Cu area 700 mm²).

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 3), See Figure 2	V _F	T _J = 25°C	T _J = 85°C	V
$(I_F = 0.1 \text{ A})$ $(I_F = 1.0 \text{ A})$ $(I_F = 3.0 \text{ A})$		0.36 0.55 0.85	0.30 0.515 0.88	
Maximum Instantaneous Reverse Current (Note 3), See Figure 4	Ι _R	T _J = 25°C	T _J = 85°C	mA
(V _R = 40 V) (V _R = 20 V)		0.5 0.15	25 18	

3. Pulse Test: Pulse Width \leq 250 $\mu s,$ Duty Cycle \leq 2%.

* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where T_J may be calculated from the equation:

r(t) = thermal impedance under given conditions, Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as T_J = T_{Jmax} - r(t)Pr, where r(t) = Rthia. For other power applications further calculations must be performed.

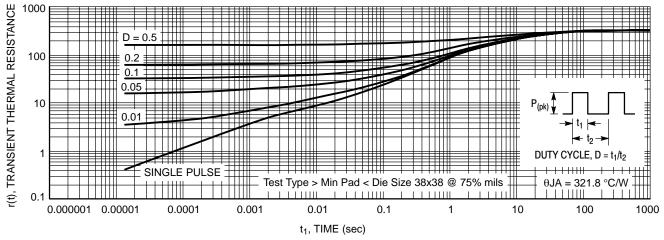


Figure 9. Thermal Response

Surface Mount Schottky Power Rectifier

POWERMITE[®] Power Surface Mount Package

The Schottky Powermite employs the Schottky Barrier principle with a barrier metal and epitaxial construction that produces optimal forward voltage drop-reverse current tradeoff. The advanced packaging techniques provide for a highly efficient micro miniature, space saving surface mount Rectifier. With its unique heatsink design, the Powermite has the same thermal performance as the SMA while being 50% smaller in footprint area, and delivering one of the lowest height profiles, < 1.1 mm in the industry. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are ac/dc and dc-dc converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical.

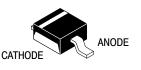
Features:

- Low I_R Extends Battery Life
- Low Profile Maximum Height of 1.1 mm
- Small Footprint Footprint Area of 8.45 mm2
- 150°C Operating Junction Temperature
- Low Thermal Resistance with Direct Thermal Path of Die on Exposed Cathode Heat Sink

Mechanical Characteristics:

- Powermite is JEDEC Registered as D0-216AA
- Case: Molded Epoxy
- Epoxy Meets UL 94V-O at 1/8"
- Weight: 62 mg (approximately)
- Lead and Mounting Surface Temperature for Soldering Purposes. 260°C Maximum for 10 Seconds

MAXIMUM RATINGS


Please See the Table on the Following Page

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 10 VOLTS

POWERMITE CASE 457 PLASTIC

MARKING DIAGRAM

1E1 = Device Code M = Date Code

ORDERING INFORMATION

Device	Package	Shipping
MBRM110ET1	POWERMITE	3,000/Tape & Reel
MBRM110ET3	POWERMITE	12,000/Tape & Reel

MAXIMUM RATINGS

Rating	Symbol	Va	Value		
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	1	V		
Average Rectified Forward Current ($T_L = 100^{\circ}C$)	Ι _Ο	1	.0	А	
Non-Repetitive Peak Surge Current (Non-Repetitive peak surge current, halfwave, single phase, 60 Hz)	IFSM	5	50		
Storage Temperature	T _{stg}	-55 to	o +150	°C	
Operating Junction Temperature	TJ	-55 to	°C		
Voltage Rate of Change (Rated V_R , $T_J = 25^{\circ}C$)	dv/dt	10,000		V/μs	
HERMAL CHARACTERISTICS		•			
Thermal Resistance - Junction-to-Lead (Anode) (Note 1) Thermal Resistance - Junction-to-Tab (Cathode) (Note 1) Thermal Resistance - Junction-to-Ambient (Note 1)	R _{tjl} R _{tjtab} R _{tja}	35 23 277		°C/W	
ELECTRICAL CHARACTERISTICS					
Maximum Instantaneous Forward Voltage (Note 2)	VF	T _J = 25°C	T _J = 100°C	V	
$(I_{F} = 0.1 \text{ A})$ $(I_{F} = 1.0 \text{ A})$ $(I_{F} = 2.0 \text{ A})$		0.455 0.530 0.595	0.360 0.455 0.540		
Maximum Instantaneous Reverse Current (Note 2)	Ι _R	T _J = 25°C	T _J = 100°C	μΑ	

300

500

0.5

1.0

(V_R = 5.0 V)

(V_R = 10 V)

1. Mounted with minimum recommended pad size, PC Board FR4, See Figures 8 and 9. 2. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2%.

MBRM110E

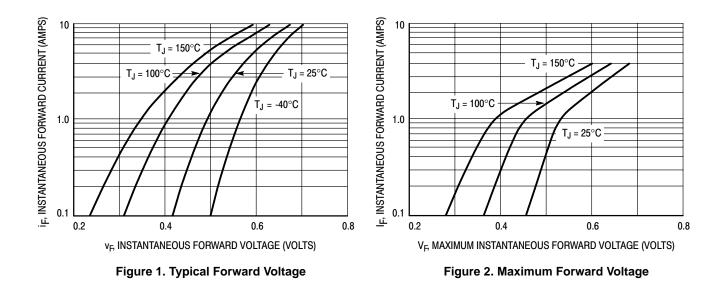
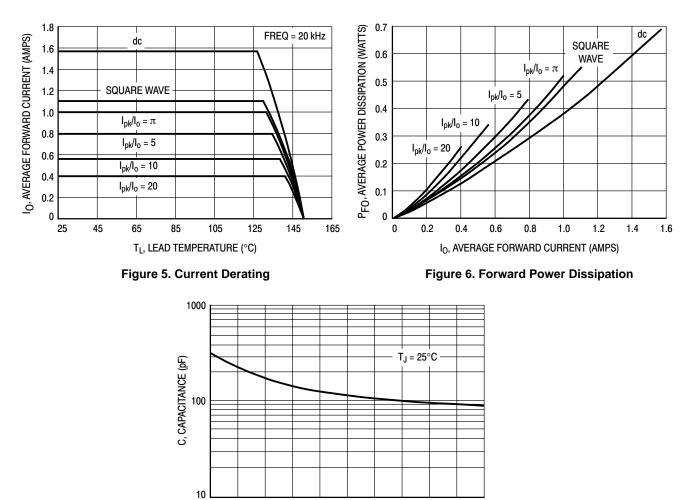
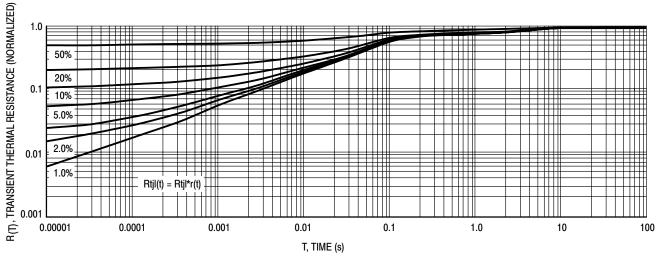



Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current


MBRM110E

V_R, REVERSE VOLTAGE (VOLTS)

Figure 7. Capacitance

MBRM110E

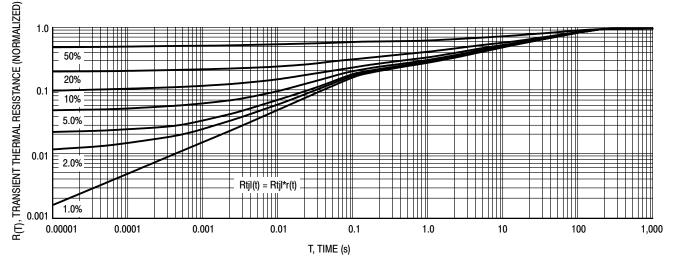


Figure 9. Thermal Response Junction to Ambient

Surface Mount Schottky Power Rectifier

POWERMITE[®] Power Surface Mount Package

The Schottky Powermite employs the Schottky Barrier principle with a barrier metal and epitaxial construction that produces optimal forward voltage drop-reverse current tradeoff. The advanced packaging techniques provide for a highly efficient micro miniature, space saving surface mount Rectifier. With its unique heatsink design, the Powermite has the same thermal performance as the SMA while being 50% smaller in footprint area, and delivering one of the lowest height profiles, < 1.1 mm in the industry. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are ac/dc and dc-dc converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical.

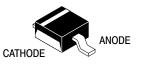
Features:

- Ultra Low V_F
- 1st in Marketplace with a 10 V_R Schottky Rectifier
- Low Profile Maximum Height of 1.1 mm
- Small Footprint Footprint Area of 8.45 mm2
- Low Thermal Resistance with Direct Thermal Path of Die on Exposed Cathode Heat Sink
- ESD Protection: Human Body Model >4000 V (Class 3) Machine Model >400 V (Class C)

Mechanical Characteristics:

- Powermite is JEDEC Registered as D0-216AA
- Case: Molded Epoxy
- Epoxy Meets UL 94V-O at 1/8"
- Weight: 62 mg (approximately)
- Lead and Mounting Surface Temperature for Soldering Purposes. 260°C Maximum for 10 Seconds

MAXIMUM RATINGS


Please See the Table on the Following Page

ON Semiconductor[™]

http://onsemi.com

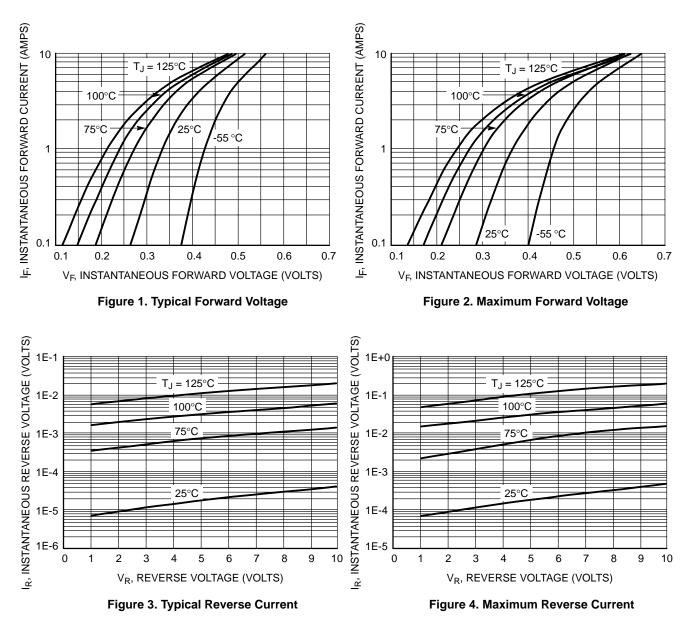
SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 10 VOLTS

POWERMITE CASE 457 PLASTIC

MARKING DIAGRAM

1L1 = Device Code M = Date Code

ORDERING INFORMATION


Device	Package	Shipping
MBRM110LT1	POWERMITE	3,000/Tape & Reel
MBRM110LT3	POWERMITE	12,000/Tape & Reel

MAXIMUM RATINGS

Rating	Symbol	Va	lue	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	1	0	V
Average Rectified Forward Current (T _L = 115°C, $R_{\theta JL}$ = 35°C/W)	Ι _Ο	1	.0	А
Non-Repetitive Peak Surge Current (Non-Repetitive peak surge current, halfwave, single phase, 60 Hz)	I _{FSM}	5	50	
Storage Temperature	T _{stg}	-55 to 125		°C
Operating Junction Temperature	TJ	-55 to 125		°C
Voltage Rate of Change (Rated V_R , $T_J = 25^{\circ}C$)	dv/dt	10,000		V/µs
THERMAL CHARACTERISTICS		·		
Thermal Resistance - Junction-to-Lead (Anode) (Note 1) Thermal Resistance - Junction-to-Tab (Cathode) (Note 1) Thermal Resistance - Junction-to-Ambient (Note 1)	R _{tjl} R _{tjtab} R _{tja}	2	85 23 77	°C/W
ELECTRICAL CHARACTERISTICS				
Maximum Instantaneous Forward Voltage (Note 2)	V _F	T _J = 25°C	$T_J = 100^{\circ}C$	V
$(I_F = 0.1 \text{ A})$ $(I_F = 1.0 \text{ A})$		0.280 0.365	0.175 0.275	

$(I_F = 1.0 \text{ A})$ $(I_F = 2.0 \text{ A})$		0.365 0.415	0.275 0.325	
Maximum Instantaneous Reverse Current (Note 2)	I _R	T _J = 25°C	T _J = 100°C	mA
(V _R = 5.0 V) (V _R = 10 V)		0.2 0.5	30 60	

1. Mounted with minimum recommended pad size, PC Board FR4, See Figures 8 and 9.2. Pulse Test: Pulse Width $\leq 250 \ \mu$ s, Duty Cycle $\leq 2\%$.

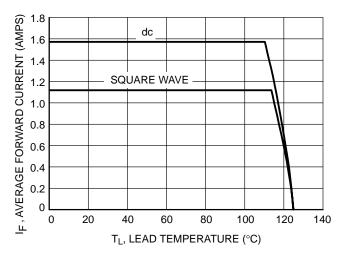
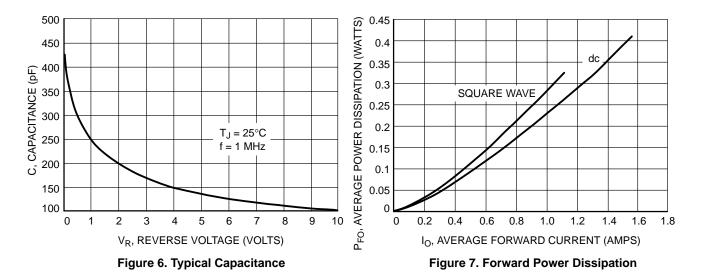
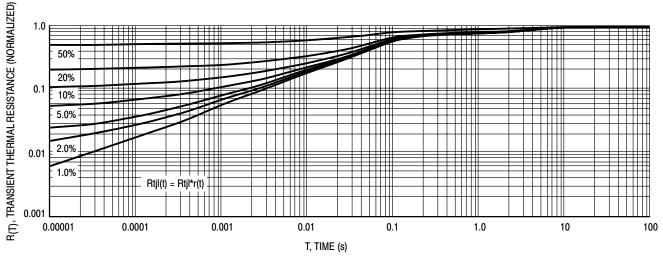




Figure 5. Current Derating - Junction to Lead

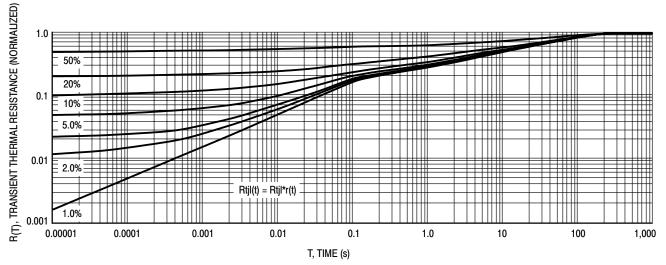


Figure 9. Thermal Response Junction to Ambient

Surface Mount Schottky Power Rectifier

POWERMITE[®] Power Surface Mount Package

The Schottky Powermite employs the Schottky Barrier principle with a barrier metal and epitaxial construction that produces optimal forward voltage drop-reverse current tradeoff. The advanced packaging techniques provide for a highly efficient micro miniature, space saving surface mount Rectifier. With its unique heatsink design, the Powermite has the same thermal performance as the SMA while being 50% smaller in footprint area, and delivering one of the lowest height profiles, < 1.1 mm in the industry. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are ac/dc and dc-dc converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical.

Features:

- Low Profile Maximum Height of 1.1 mm
- Small Footprint Footprint Area of 8.45 mm2
- Low V_F Provides Higher Efficiency and Extends Battery Life
- Supplied in 12 mm Tape and Reel
- Low Thermal Resistance with Direct Thermal Path of Die on Exposed Cathode Heat Sink

Mechanical Characteristics:

- Powermite is JEDEC Registered as DO-216AA
- Case: Molded Epoxy
- Epoxy Meets UL94V-0 at 1/8"
- Weight: 62 mg (approximately)
- Device Marking: BCV
- Lead and Mounting Surface Temperature for Soldering Purposes. 260°C Maximum for 10 Seconds

MAXIMUM RATINGS

Please See the Table on the Following Page

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 20 VOLTS

POWERMITE CASE 457 PLASTIC

MARKING DIAGRAM

BCV = Device Code M = Date Code

ORDERING INFORMATION

Device	Package	Shipping
MBRM120ET1	POWERMITE	3000/Tape & Reel
MBRM120ET3	POWERMITE	12,000/Tape & Reel

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	V
Average Rectified Forward Current (At Rated V_R , T_C = 130°C)	IO	1.0	А
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz, $T_C = 135^{\circ}C$)	I _{FRM}	2.0	A
Non-Repetitive Peak Surge Current (Non-Repetitive peak surge current, halfwave, single phase, 60 Hz)	I _{FSM}	50	A
Storage Temperature	T _{stg}	-65 to 150	°C
Operating Junction Temperature	TJ	-65 to 150	°C
Voltage Rate of Change (Rated V _R , T _J = 25°C)	dv/dt	10,000	V/μs

THERMAL CHARACTERISTICS

Thermal Resistance - Junction-to-Lead (Anode) (Note 1)	R _{til}	35	°C/W
Thermal Resistance - Junction-to-Tab (Cathode) (Note 1)	R _{titab}	23	
Thermal Resistance - Junction-to-Ambient (Note 1)	Ŕ _{tja}	277	

1. Mounted with minimum recommended pad size, PC Board FR4, See Figures 9 and 10.

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 2), See Figure 2	V _F	T _J = 25°C	$T_J = 100^{\circ}C$	V
$(I_F = 0.1 \text{ A})$ $(I_F = 1.0 \text{ A})$ $(I_F = 2.0 \text{ A})$		0.455 0.530 0.595	0.360 0.455 0.540	
Maximum Instantaneous Reverse Current (Note 2), See Figure 4	I _R	T _J = 25°C	T _J = 100°C	μΑ
$(V_R = 20 V)$ $(V_R = 10 V)$ $(V_R = 5.0 V)$		10 1.0 0.5	1600 500 300	

2. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2%.

MBRM120E

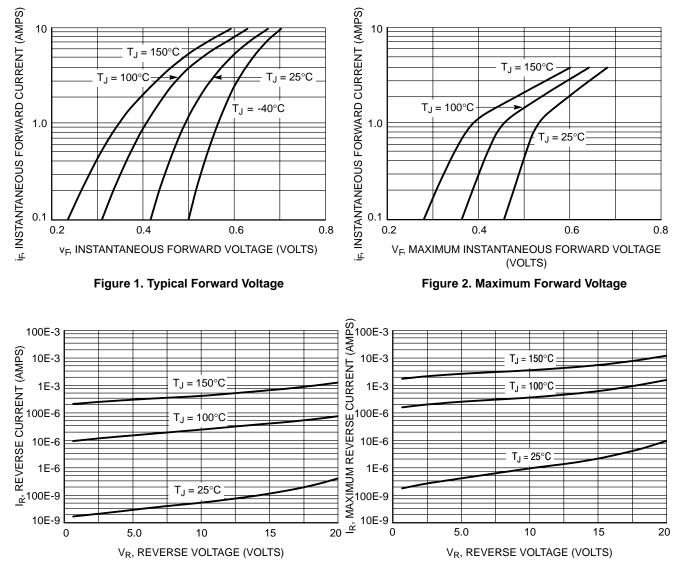
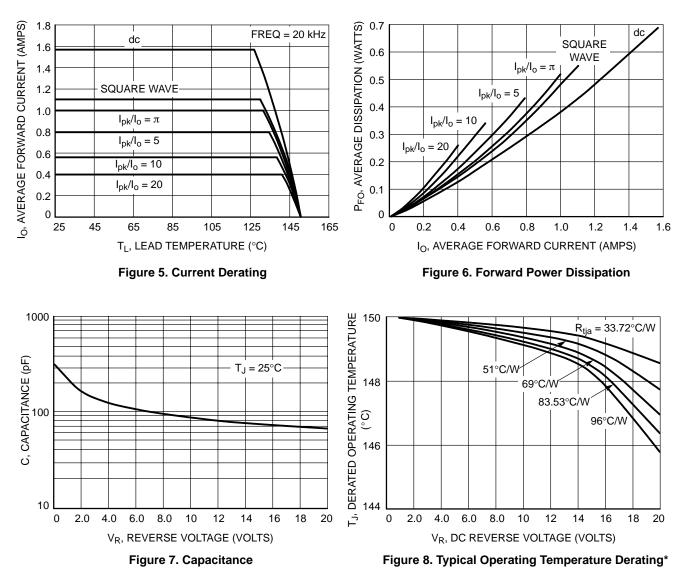
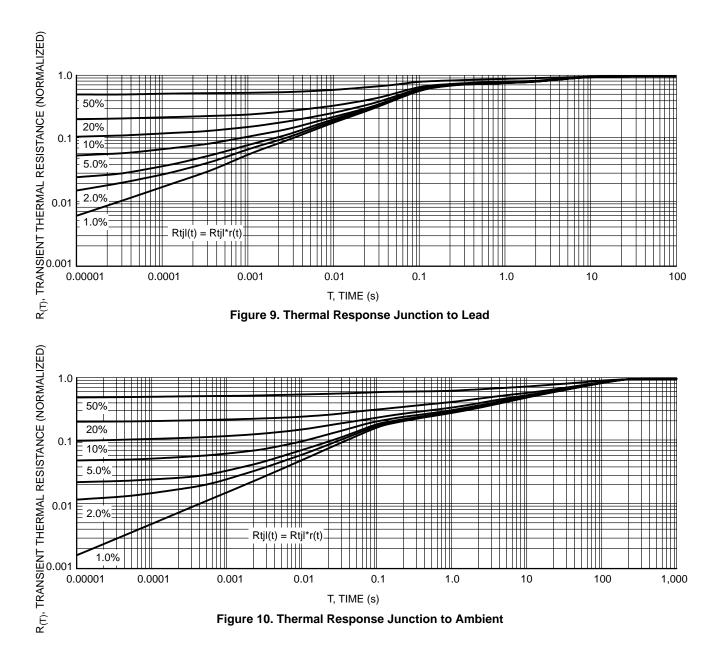



Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

MBRM120E

* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where


r(t) = thermal impedance under given conditions,

Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

MBRM120E

Surface Mount Schottky Power Rectifier

POWERMITE[®] Power Surface Mount Package

The Schottky Powermite employs the Schottky Barrier principle with a barrier metal and epitaxial construction that produces optimal forward voltage drop-reverse current tradeoff. The advanced packaging techniques provide for a highly efficient micro miniature, space saving surface mount Rectifier. With its unique heatsink design, the Powermite has the same thermal performance as the SMA while being 50% smaller in footprint area, and delivering one of the lowest height profiles, < 1.1 mm in the industry. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are ac/dc and dc-dc converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical.

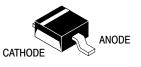
Features:

- Low Profile Maximum Height of 1.1 mm
- Small Footprint Footprint Area of 8.45 mm2
- Low V_F Provides Higher Efficiency and Extends Battery Life
- Supplied in 12 mm Tape and Reel
- Low Thermal Resistance with Direct Thermal Path of Die on Exposed Cathode Heat Sink

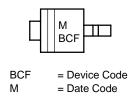
Mechanical Characteristics:

- Powermite is JEDEC Registered as DO-216AA
- Case: Molded Epoxy
- Epoxy Meets UL94V-0 at 1/8"
- Weight: 62 mg (approximately)
- Device Marking: BCF
- Lead and Mounting Surface Temperature for Soldering Purposes. 260°C Maximum for 10 Seconds

MAXIMUM RATINGS


Please See the Table on the Following Page

ON Semiconductor®


http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 20 VOLTS

POWERMITE CASE 457 PLASTIC

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
MBRM120LT1	POWERMITE	3000/Tape & Reel
MBRM120LT3	POWERMITE	12,000/Tape & Reel

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	V
Average Rectified Forward Current (At Rated V_R , T_C = 135°C)	IO	1.0	А
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 100 kHz, $T_C = 135^{\circ}C$)	I _{FRM}	2.0	A
Non-Repetitive Peak Surge Current (Non-Repetitive peak surge current, halfwave, single phase, 60 Hz)	I _{FSM}	50	A
Storage Temperature	T _{stg}	-55 to 150	°C
Operating Junction Temperature	TJ	-55 to 125	°C
Voltage Rate of Change (Rated V_R , $T_J = 25^{\circ}C$)	dv/dt	10,000	V/μs

THERMAL CHARACTERISTICS

Thermal Resistance - Junction-to-Lead (Anode) (Note 1)	R _{til}	35	°C/W
Thermal Resistance - Junction-to-Tab (Cathode) (Note 1)	R _{titab}	23	
Thermal Resistance - Junction-to-Ambient (Note 1)	R _{tja}	277	

1. Mounted with minimum recommended pad size, PC Board FR4, See Figures 9 & 10.

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 2), See Figure 2	V _F	T _J = 25°C	T _J = 85°C	V
$(I_F = 0.1 \text{ A})$ $(I_F = 1.0 \text{ A})$ $(I_F = 3.0 \text{ A})$		0.34 0.45 0.65	0.26 0.415 0.67	
Maximum Instantaneous Reverse Current (Note 2), See Figure 4	I _R	T _J = 25°C	T _J = 85°C	mA
(V _R = 20 V) (V _R = 10 V)		0.40 0.10	25 18	

2. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2%.

MBRM120L

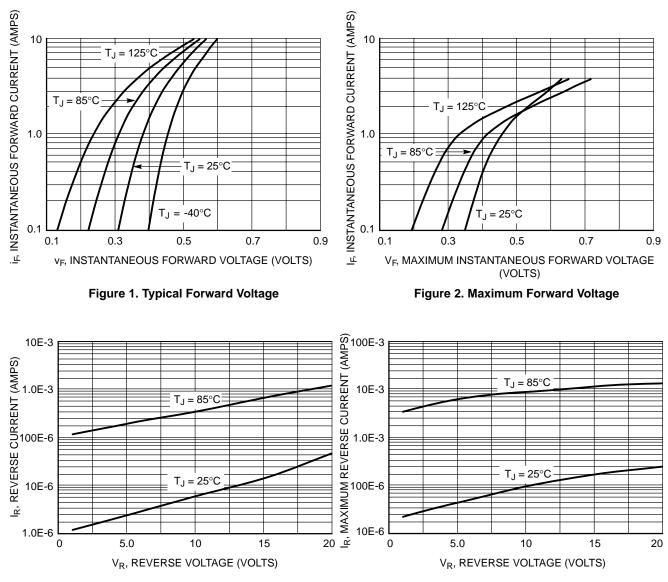
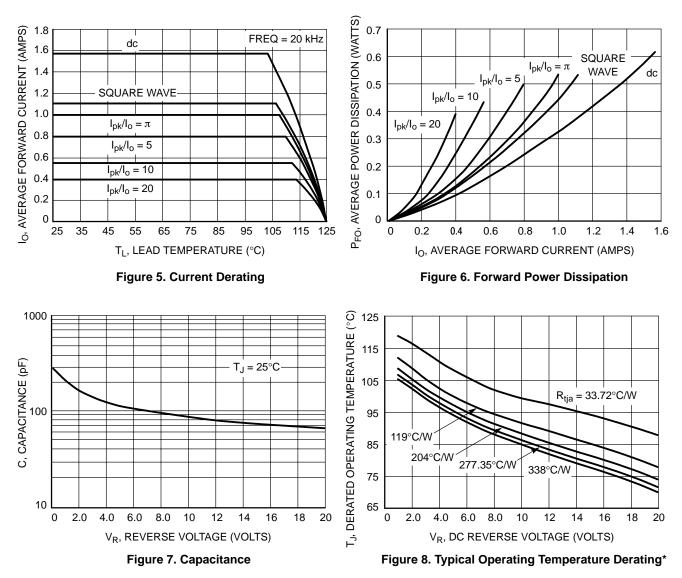
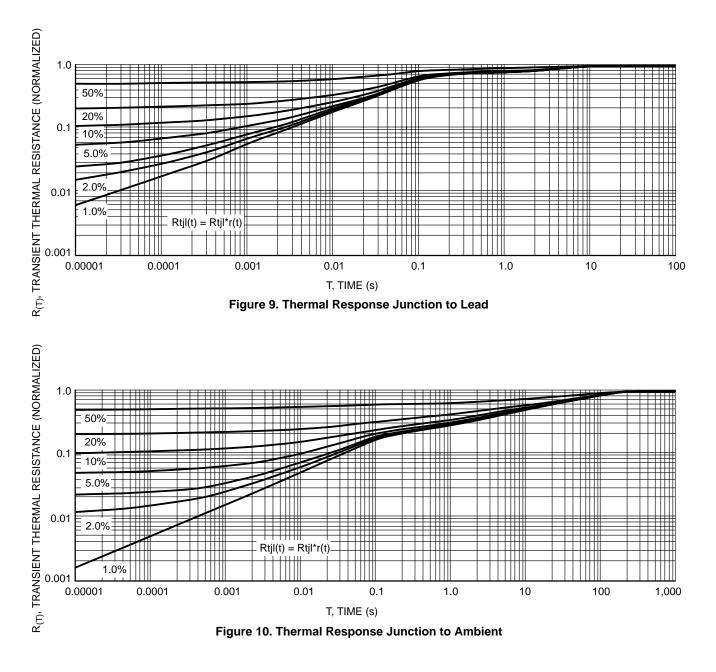



Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

MBRM120L

* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where


r(t) = thermal impedance under given conditions,

Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

MBRM120L

Surface Mount Schottky Power Rectifier

POWERMITE[®] Power Surface Mount Package

The Schottky Powermite employs the Schottky Barrier principle with a barrier metal and epitaxial construction that produces optimal forward voltage drop-reverse current tradeoff. The advanced packaging techniques provide for a highly efficient micro miniature, space saving surface mount Rectifier. With its unique heatsink design, the Powermite has the same thermal performance as the SMA while being 50% smaller in footprint area, and delivering one of the lowest height profiles, < 1.1 mm in the industry. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are ac/dc and dc-dc converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical.

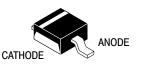
Features:

- Low Profile Maximum Height of 1.1 mm
- Small Footprint Footprint Area of 8.45 mm2
- Low V_F Provides Higher Efficiency and Extends Battery Life
- Supplied in 12 mm Tape and Reel
- Low Thermal Resistance with Direct Thermal Path of Die on Exposed Cathode Heat Sink

Mechanical Characteristics:

- Powermite is JEDEC Registered as DO-216AA
- Case: Molded Epoxy
- Epoxy Meets UL94V-0 at 1/8"
- Weight: 62 mg (approximately)
- Device Marking: BCG
- Lead and Mounting Surface Temperature for Soldering Purposes. 260°C Maximum for 10 Seconds

MAXIMUM RATINGS


Please See the Table on the Following Page

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 30 VOLTS

POWERMITE CASE 457 PLASTIC

MARKING DIAGRAM

BCG = Device Code M = Date Code

ORDERING INFORMATION

Device	Package	Shipping
MBRM130LT1	POWERMITE	3000/Tape & Reel
MBRM130LT3	POWERMITE	12,000/Tape & Reel

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	V	
Average Rectified Forward Current (At Rated V_R , T_C = 135°C)	IO	1.0	А	
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 100 kHz, $T_C = 135^{\circ}C$)	I _{FRM}	2.0	A	
Non-Repetitive Peak Surge Current (Non-Repetitive peak surge current, halfwave, single phase, 60 Hz)	I _{FSM}	50	A	
Storage Temperature	T _{stg}	-55 to 150	°C	
Operating Junction Temperature	TJ	-55 to 125	°C	
Voltage Rate of Change (Rated V_R , $T_J = 25^{\circ}C$)	dv/dt	10,000	V/μs	

THERMAL CHARACTERISTICS

Thermal Resistance - Junction-to-Lead (Anode) (Note 1)	R _{tjl}	35	°C/W
Thermal Resistance - Junction-to-Tab (Cathode) (Note 1)	R _{tjtab}	23	
Thermal Resistance - Junction-to-Ambient (Note 1)	Ŕ _{tja}	277	

1. Mounted with minimum recommended pad size, PC Board FR4, See Figures 9 & 10.

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 2), See Figure 2	VF	T _J = 25°C	T _J = 85°C	V
$(I_F = 0.1 \text{ A})$ $(I_F = 1.0 \text{ A})$ $(I_F = 3.0 \text{ A})$		0.30 0.38 0.52	0.20 0.33 0.50	
Maximum Instantaneous Reverse Current (Note 2), See Figure 4	Ι _R	T _J = 25°C	T _J = 85°C	mA
$(V_R = 30 V)$ $(V_R = 20 V)$ $(V_R = 10 V)$		0.41 0.13 0.05	11 5.3 3.2	

2. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2%.

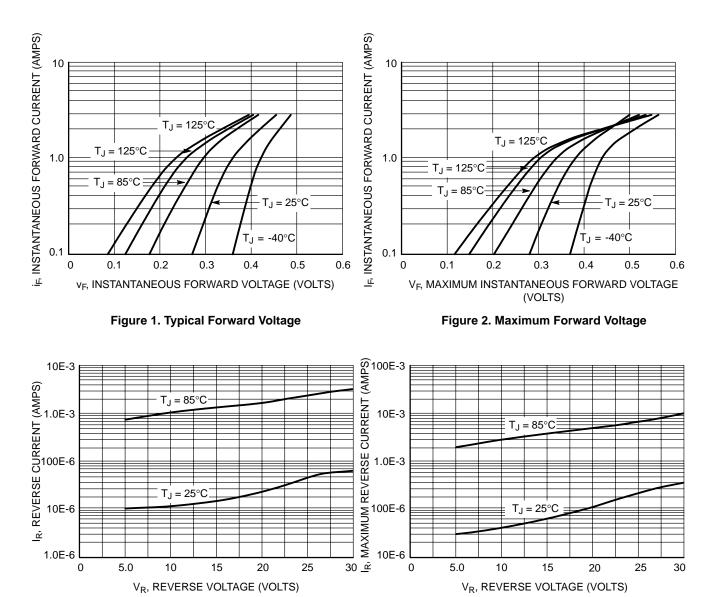
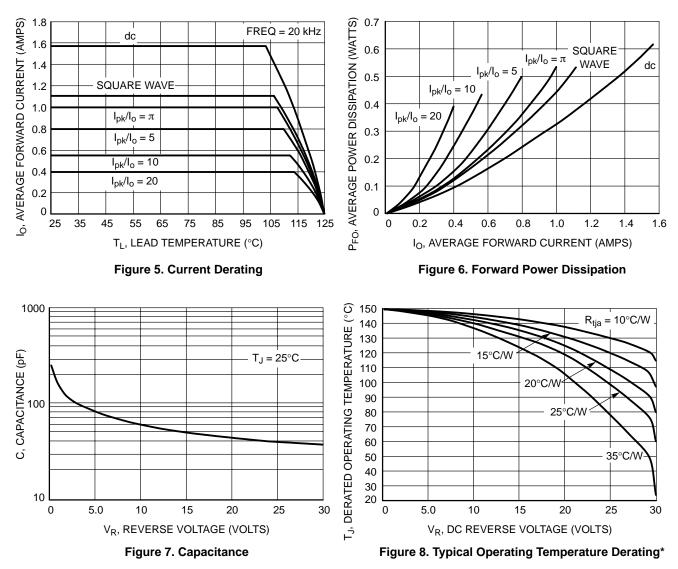
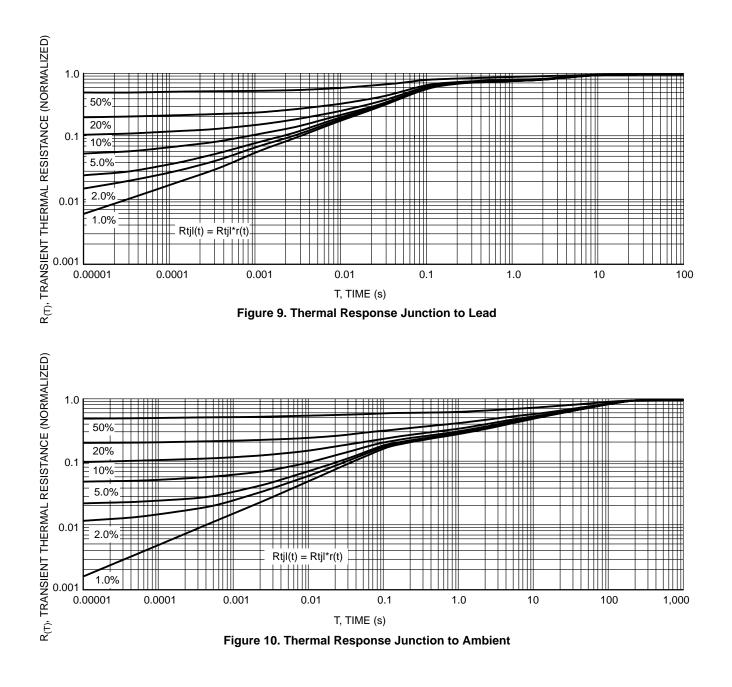



Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

MBRM130L

* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where


r(t) = thermal impedance under given conditions,

Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

MBRM130L

Surface Mount Schottky Power Rectifier

POWERMITE[®] Power Surface Mount Package

The Schottky Powermite employs the Schottky Barrier principle with a barrier metal and epitaxial construction that produces optimal forward voltage drop-reverse current tradeoff. The advanced packaging techniques provide for a highly efficient micro miniature, space saving surface mount Rectifier. With its unique heatsink design, the Powermite has the same thermal performance as the SMA while being 50% smaller in footprint area, and delivering one of the lowest height profiles, < 1.1 mm in the industry. Because of its small size, it is ideal for use in portable and battery powered products such as cellular and cordless phones, chargers, notebook computers, printers, PDAs and PCMCIA cards. Typical applications are ac/dc and dc-dc converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical.

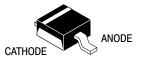
Features:

- Low Profile Maximum Height of 1.1 mm
- Small Footprint Footprint Area of 8.45 mm2
- Low V_F Provides Higher Efficiency and Extends Battery Life
- Supplied in 12 mm Tape and Reel
- Low Thermal Resistance with Direct Thermal Path of Die on Exposed Cathode Heat Sink

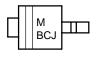
Mechanical Characteristics:

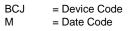
- Powermite is JEDEC Registered as DO-216AA
- Case: Molded Epoxy
- Epoxy Meets UL94V-0 at 1/8"
- Weight: 62 mg (approximately)
- Device Marking: BCJ
- Lead and Mounting Surface Temperature for Soldering Purposes. 260°C Maximum for 10 Seconds

MAXIMUM RATINGS


Please See the Table on the Following Page

ON Semiconductor®


http://onsemi.com


SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 40 VOLTS

POWERMITE CASE 457 PLASTIC

MARKING DIAGRAM

Device	Package	Shipping
MBRM140T1	POWERMITE	3000/Tape & Reel
MBRM140T3	POWERMITE	12,000/Tape & Reel

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	40	V
Average Rectified Forward Current (At Rated V_R , T_C = 110°C)	Ι _Ο	1.0	А
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 100 kHz, $T_C = 110^{\circ}C$)	I _{FRM}	2.0	A
Non-Repetitive Peak Surge Current (Non-Repetitive peak surge current, halfwave, single phase, 60 Hz)	I _{FSM}	50	A
Storage Temperature	T _{stg}	-55 to 150	°C
Operating Junction Temperature	TJ	-55 to 125	°C
Voltage Rate of Change (Rated V_R , $T_J = 25^{\circ}C$)	dv/dt	10,000	V/μs

THERMAL CHARACTERISTICS

Thermal Resistance - Junction-to-Lead (Anode) (Note 1)	R _{til}	35	°C/W
Thermal Resistance - Junction-to-Tab (Cathode) (Note 1)	R _{titab}	23	
Thermal Resistance - Junction-to-Ambient (Note 1)	R _{tja}	277	

1. Mounted with minimum recommended pad size, PC Board FR4, See Figures 9 & 10.

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 2), See Figure 2	V _F	T _J = 25°C	T _J = 85°C	V
$(I_F = 0.1 \text{ A})$ $(I_F = 1.0 \text{ A})$ $(I_F = 3.0 \text{ A})$		0.36 0.55 0.85	0.30 0.515 0.88	
Maximum Instantaneous Reverse Current (Note 2), See Figure 4	I _R	T _J = 25°C	T _J = 85°C	mA
(V _R = 40 V) (V _R = 20 V)		0.5 0.15	25 18	

2. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2%.

MBRM140

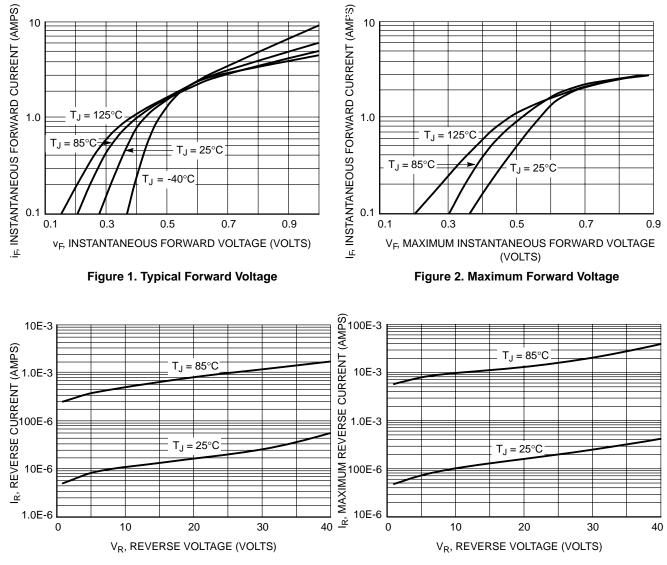
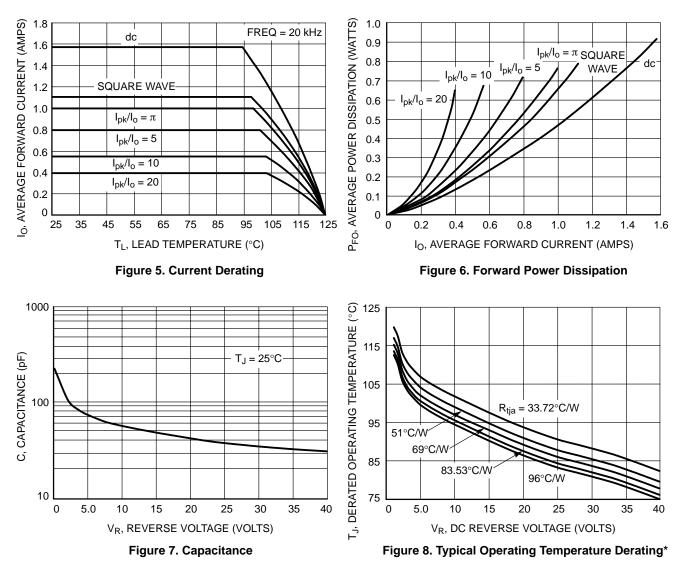
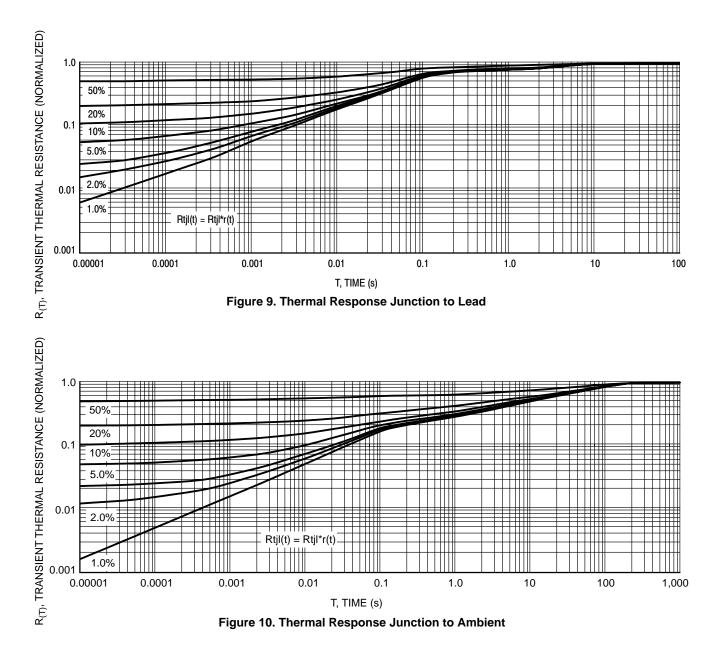



Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

MBRM140



* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where

- r(t) = thermal impedance under given conditions,
- Pf = forward power dissipation, and
- Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

MBRM140

MBRA120ET3

Surface Mount Schottky Power Rectifier

SMA Power Surface Mount Package

... employing the Schottky Barrier principle in a metal-to-silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes.

- Compact Package with J-Bend Leads Ideal for Automated Handling
- Highly Stable Oxide Passivated Junction
- Guardring for Over-Voltage Protection
- Optimized for Low Leakage Current

Mechanical Characteristics:

- Case: Molded Epoxy
- Epoxy Meets UL94, V_O at 1/8"
- Weight: 70 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Polarity: Polarity Band Indicates Cathode Lead
- Available in 12 mm Tape, 5000 Units per 13 inch Reel
- Marking: B1E2

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	V
Average Rectified Forward Current (At Rated V _R , T _C = 125°C)	Ι _Ο	1.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	40	A
Storage/Operating Case Temperature	T _{stg} , T _C	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +150	°C
Voltage Rate of Change (Rated V_R , T_J = 25°C)	dv/dt	10,000	V/μs

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1 AMPERE 20 VOLTS

SMA CASE 403D PLASTIC

B1E2

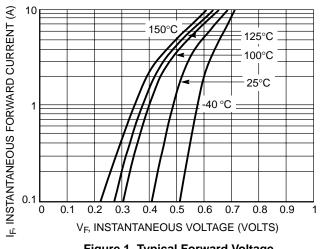
MARKING DIAGRAM

B1E2 = Device Code

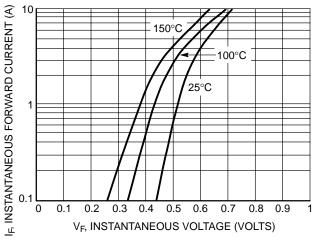
Device	Package	Shipping
MBRA120ET3	SMA	5000/Tape & Reel

MBRA120ET3

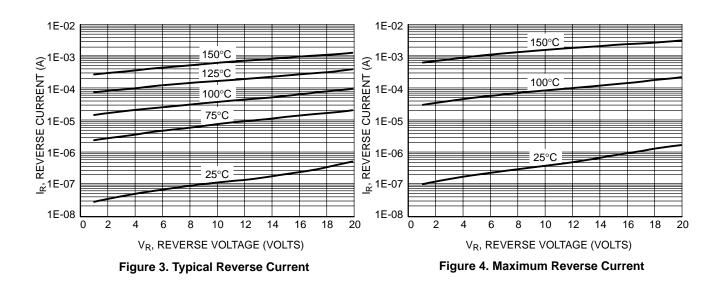
THERMAL CHARACTERISTICS


Characteristic	Symbol	5 mm x 5 mm (Note 2)	1 Inch x 1/2 inch (Note 3)	Unit
Thermal Resistance - Junction-to-Lead	R _{θJL}	34	20	°C/W
Thermal Resistance - Junction-to-Ambient	R _{θJA}	138	77	

ELECTRICAL CHARACTERISTICS


Maximum Instantaneous Forward Voltage (Note 1), See Figure 2	V _F	T _J = 25°C	T _J = 100°C	V
$(I_F = 0.1 \text{ A})$ $(I_F = 1.0 \text{ A})$ $(I_F = 2.0 \text{ A})$		0.455 0.530 0.595	0.360 0.455 0.540	
Maximum Instantaneous Reverse Current, See Figure 4	I _R	T _J = 25°C	T _J = 100°C	μΑ
$(V_R = 20 V)$ $(V_R = 10 V)$ $(V_R = 5.0 V)$		10 1.0 0.5	1600 500 300	

Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2%. 1.


Mounted on a Pad Size of 5 mm x 5 mm, PC Board FR4 (2 pads).
 Mounted on a Pad Size of 1 inch x 1/2 inch, PC Board FR4 (2 pads).

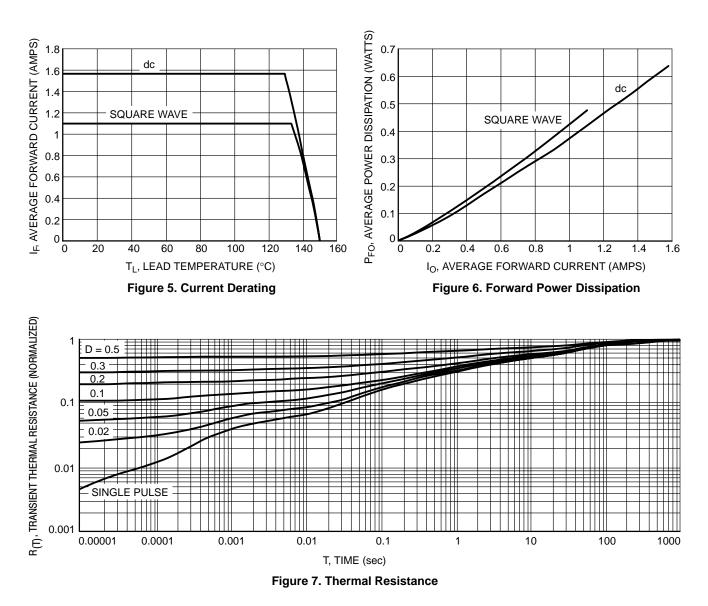


Figure 2. Maximum Forward Voltage

MBRA120ET3

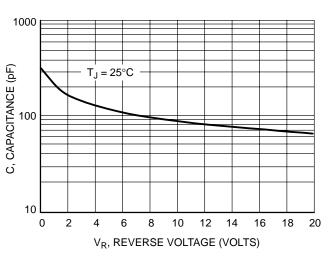


Figure 8. Typical Junction Capacitance

MBRA120LT3

Surface Mount Schottky Power Rectifier

SMA Power Surface Mount Package

... employing the Schottky Barrier principle in a metal-to-silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes.

- Compact Package with J-Bend Leads Ideal for Automated Handling
- Highly Stable Oxide Passivated Junction
- Guardring for Over-Voltage Protection
- Optimized for Low Leakage Current

Mechanical Characteristics:

- Case: Molded Epoxy
- Epoxy Meets UL94, V_O at 1/8"
- Weight: 70 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Polarity: Polarity Band Indicates Cathode Lead
- Available in 12 mm Tape, 5000 Units per 13 inch Reel
- ESD Protection: Human Body Model > 4000 V (Class 3) Machine Model > 400 V (Class C)
- Marking: B1L2

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	V
Average Rectified Forward Current (At Rated V _R , T _L = 110°C)	Ι _Ο	1.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	40	A
Storage/Operating Case Temperature Operating Junction Temperature	T _{stg} , T _C T _J	-55 to +125	°C
Voltage Rate of Change (Rated V _R , T _J = 25°C)	dv/dt	10,000	V/µs

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1 AMPERE 20 VOLTS

SMA CASE 403D PLASTIC

B1L2 = Device Code

Device	Package	Shipping
MBRA120LT3	SMA	5000/Tape & Reel

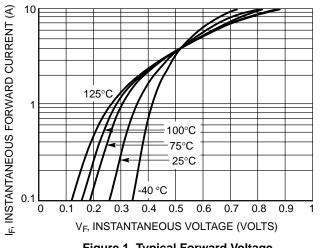
Semiconductor Components Industries, LLC, 2002 April, 2002 - Rev. 1

MBRA120LT3

THERMAL CHARACTERISTICS

Characteristic	Symbol	5 mm x 5 mm (Note 2)	1 Inch x 1/2 inch (Note 3)	Unit
Thermal Resistance - Junction-to-Lead	Psi _{JL} (Note 4)	34	20	°C/W
Thermal Resistance - Junction-to-Ambient	$R_{\theta JA}$	138	77	

ELECTRICAL CHARACTERISTICS


Maximum Instantaneous Forward Voltage (Note 1), See Figure 2	V _F	T _J = 25°C	T _J = 125°C	V
$(I_F = 0.1 \text{ A})$ $(I_F = 1.0 \text{ A})$ $(I_F = 2.0 \text{ A})$		0.300 0.395 0.445	0.15 0.30 0.40	
Maximum Instantaneous Reverse Current, See Figure 4	I _R	T _J = 25°C	T _J = 100°C	mA
(V _R = 20 V) (V _R = 10 V)		0.2 0.1	6.0 4.0	

1. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2%.

2. Mounted on a Pad Size of 5 mm x 5 mm, PC Board FR4 (2 pads).

3. Mounted on a Pad Size of 1 inch x 1/2 inch, PC Board FR4 (2 pads).

4. In compliance with JEDEC 51, these values (historically represented by $R_{\theta JL}$) are now referenced as Psi_{JL} .

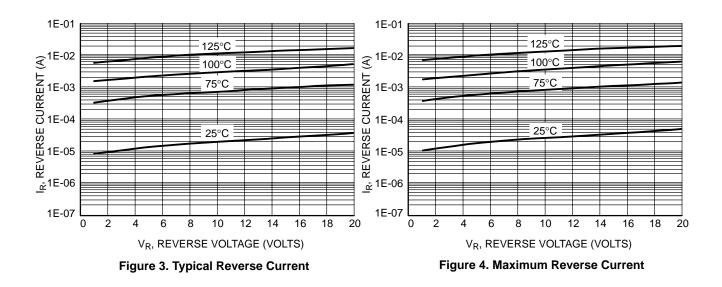
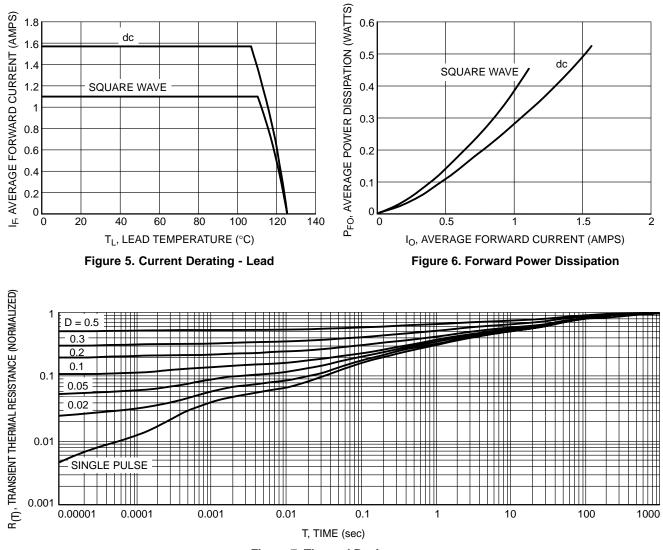




Figure 2. Maximum Forward Voltage

MBRA120LT3

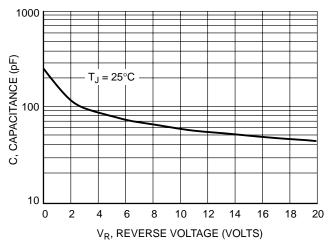


Figure 8. Typical Junction Capacitance

MBRA130LT3

Surface Mount Schottky Power Rectifier

SMA Power Surface Mount Package

... employing the Schottky Barrier principle in a metal-to-silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes.

- Compact Package with J-Bend Leads Ideal for Automated Handling
- Highly Stable Oxide Passivated Junction
- Guardring for Over-Voltage Protection
- Low Forward Voltage Drop

Mechanical Characteristics:

- Case: Molded Epoxy
- Epoxy Meets UL94, V_O at 1/8"
- Weight: 70 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Polarity: Cathode Lead Indicated by Either Notch in Plastic Body or Polarity Band
- Available in 12 mm Tape, 5000 Units per 13 inch Reel, Add "T3" Suffix to Part Number
- Marking: B1L3

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	V
Average Rectified Forward Current (At Rated V _R , T _C = 105°C)	Ι _Ο	1.0	А
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 100 kHz, T _C = 105°C)	I _{FRM}	2.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	25	A
Storage/Operating Case Temperature	T _{stg} , T _C	-55 to +150	°C
Operating Junction Temperature	ТJ	-55 to +125	°C
Voltage Rate of Change (Rated V_R , $T_J = 25^{\circ}C$)	dv/dt	10,000	V/μs

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 30 VOLTS

SMA CASE 403D PLASTIC

MARKING DIAGRAM

B1L3 = Device Code

Device	Package	Shipping
MBRA130LT3	SMA	5000/Tape & Reel

MBRA130LT3

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction-to-Lead (Note 1.)	R _{θJL}	35	°C/W
Thermal Resistance — Junction-to-Ambient (Note 1.)	R _{θJA}	86	

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 2.)		V _F	T _J = 25°C	T _J = 100°C	Volts
see Figure 2	(I _F = 1.0 A) (I _F = 2.0 A)		0.41 0.47	0.35 0.43	
Maximum Instantaneous Reverse Current		I _R	T _J = 25°C	T _J = 100°C	mA
see Figure 4	(V _R = 30 V) (V _R = 15 V)		1.0 0.4	25 12	

1. Mounted on 2" Square PC Board with 1" Square Total Pad Size, PC Board FR4. 2. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2.0%.

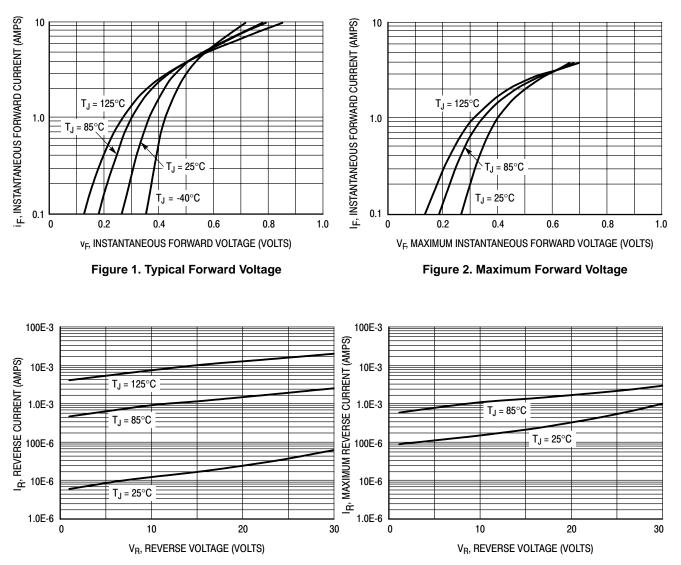


Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

MBRA130LT3

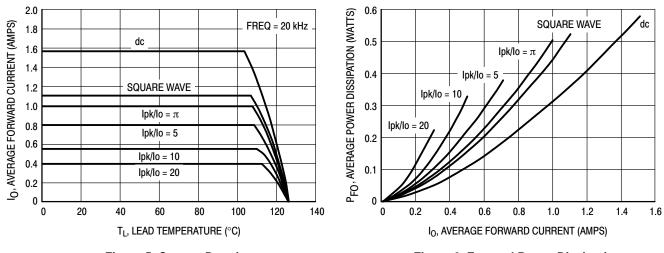
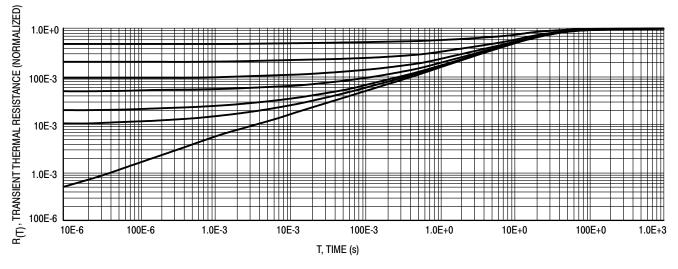



Figure 6. Forward Power Dissipation

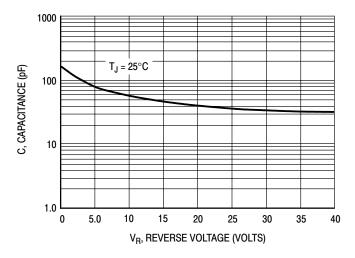


Figure 8. Capacitance

MBRA140T3

Surface Mount Schottky Power Rectifier

SMA Power Surface Mount Package

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State of the art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency rectification, or as free wheeling and polarity diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bent Leads
- Rectangular Package for Automated Handling
- Highly Stable Oxide Passivated Junction
- Very Low Forward Voltage Drop
- Guardring for Stress Protection

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 70 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm tape, 5000 units per 13 inch reel
- Polarity: Cathode Lead Indicated by Either Notch in Plastic Body or Polarity Band
- Marking: B14

MAXIMUM RATINGS

Symbol	Value	Unit
V _{RRM} V _{RWM} V _R	40	V
Ι _Ο	1.0	A
I _{FRM}	2.0	A
I _{FSM}	30	A
T _{stg} , T _C	-55 to +150	°C
TJ	-55 to +125	°C
dv/dt	10,000	V/μs
	V _{RRM} V _{RWM} V _R I _O I _{FRM} I _{FSM} T _{stg} , T _C T _J	V _{RRM} 40 V _{RWM} 40 V _{RWM} 40 Io 1.0 I _{FRM} 2.0 I _{FSM} 30 T _{stg} , T _C -55 to +150 T _J -55 to +125

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 40 VOLTS

SMA CASE 403D PLASTIC

MARKING DIAGRAM

B14 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRA140T3	SMA	5000/Tape & Reel

Semiconductor Components Industries, LLC, 2002 April, 2002 - Rev. 5

MBRA140T3

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction-to-Lead (Note 1.)	R _{θJL}	35	°C/W
Thermal Resistance — Junction-to-Ambient (Note 1.)	R _{θJA}	86	

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 2.)		V _F	T _J = 25°C	T _J = 100°C	Volts
see Figure 2 for other Values	(I _F = 1.0 A) (I _F = 2.0 A)		0.55 0.71	0.505 0.74	
Maximum Instantaneous Reverse Current		I _R	T _J = 25°C	T _J = 100°C	mA
see Figure 4 for other Values	(V _R = 40 V) (V _R = 20 V)		0.5 0.1	10 4.0	

1. Mounted on 2" Square PC Board with 1" Square Total Pad Size, PC Board FR4.2. Pulse Test: Pulse Width $\leq 250 \ \mu$ s, Duty Cycle $\leq 2.0\%$.

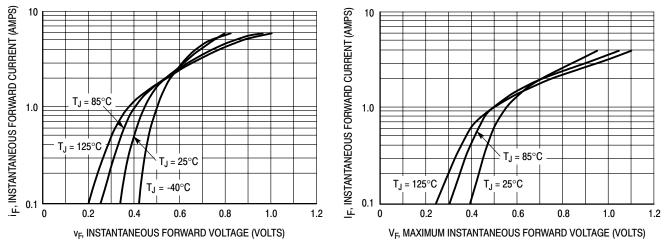
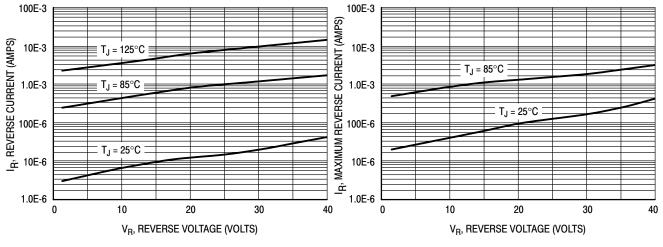
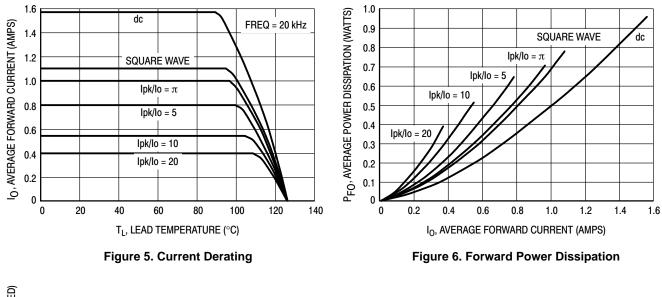



Figure 1. Typical Forward Voltage


Figure 2. Maximum Forward Voltage

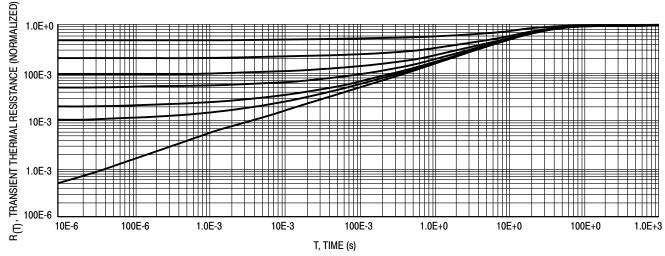


Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

MBRA140T3

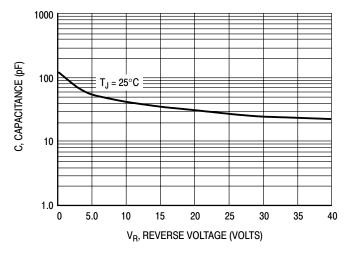


Figure 8. Capacitance

MBRA160T3

Surface Mount Schottky Power Rectifier

SMA Power Surface Mount Package

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State of the art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency rectification, or as free wheeling and polarity diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bent Leads
- Rectangular Package for Automated Handling
- Highly Stable Oxide Passivated Junction
- Very Low Forward Voltage Drop
- Guardring for Stress Protection

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 70 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm tape, 5000 units per 13 inch reel
- Polarity: Cathode Lead Indicated by Polarity Band
- ESD Ratings: Machine Model = C
 - Human Body Model = 3B
- Marking: B16

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	60	V
Average Rectified Forward Current (At Rated V _R , T _C = 105°C)	۱ ₀	1.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	40	A
Storage/Operating Case Temperature	T _{stg} , T _C	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +125	°C
Voltage Rate of Change (Rated V _R , T _J = 25°C)	dv/dt	10,000	V/μs

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 60 VOLTS

SMA CASE 403D PLASTIC

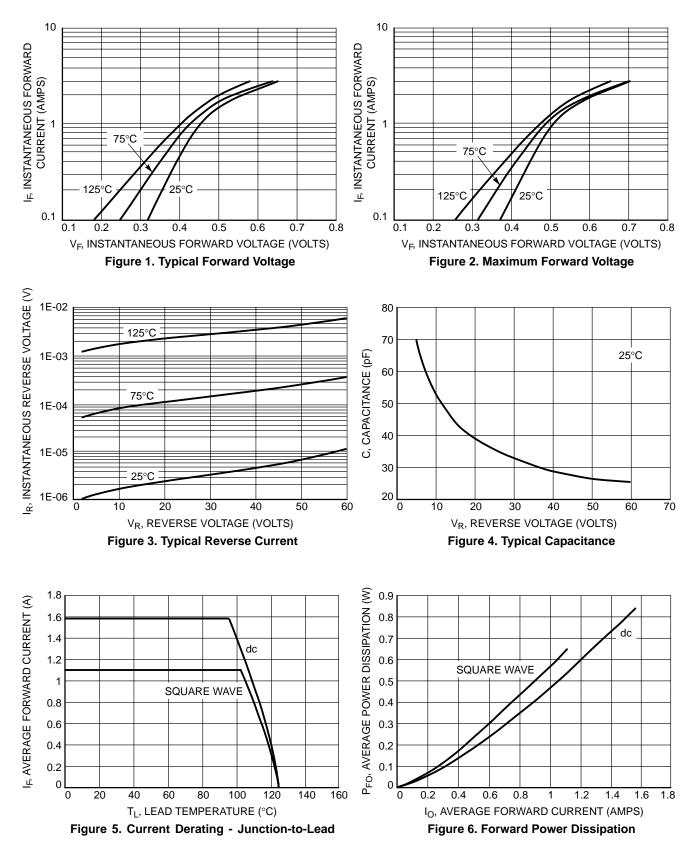
MARKING DIAGRAM

B16 = Device Code

Device	Package	Shipping
MBRA160T3	SMA	5000/Tape & Reel

MBRA160T3

THERMAL CHARACTERISTICS


Characteristic	Symbol	Value	Unit
Thermal Resistance - Junction-to-Lead (Note 1)	R _{θJL}	35	°C/W
Thermal Resistance - Junction-to-Ambient (Note 1)	R _{θJA}	86	

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 2)		V _F	$T_J = 25^{\circ}C$	T _J = 125°C	Volts
······································	(I _F = 1.0 A)		0.510	0.475	
Maximum Instantaneous Reverse Current		I _R	T _J = 25°C	T _J = 125°C	mA
	(V _R = 60 V)		0.2	10	

1. Mounted on 2" Square PC Board with 1" Square Total Pad Size, PC Board FR4.2. Pulse Test: Pulse Width $\leq 250 \ \mu$ s, Duty Cycle $\leq 2.0\%$.

MBRA160T3

Surface Mount Schottky Power Rectifier

SMA Power Surface Mount Package

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State of the art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency rectification, or as free wheeling and polarity diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bent Leads
- Rectangular Package for Automated Handling
- Highly Stable Oxide Passivated Junction
- Very Low Forward Voltage Drop
- Guardring for Stress Protection

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 70 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm tape, 5000 units per 13 inch reel
- Polarity: Cathode Lead Indicated by Polarity Band
- ESD Ratings: Machine Model = C
 - Human Body Model = 3B
- Marking: SS16

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	60	V
Average Rectified Forward Current (At Rated V _R , T _C = 105°C)	۱ ₀	1.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	40	A
Storage/Operating Case Temperature	T _{stg} , T _C	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +125	°C
Voltage Rate of Change (Rated V _R , T _J = 25°C)	dv/dt	10,000	V/μs

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERES 60 VOLTS

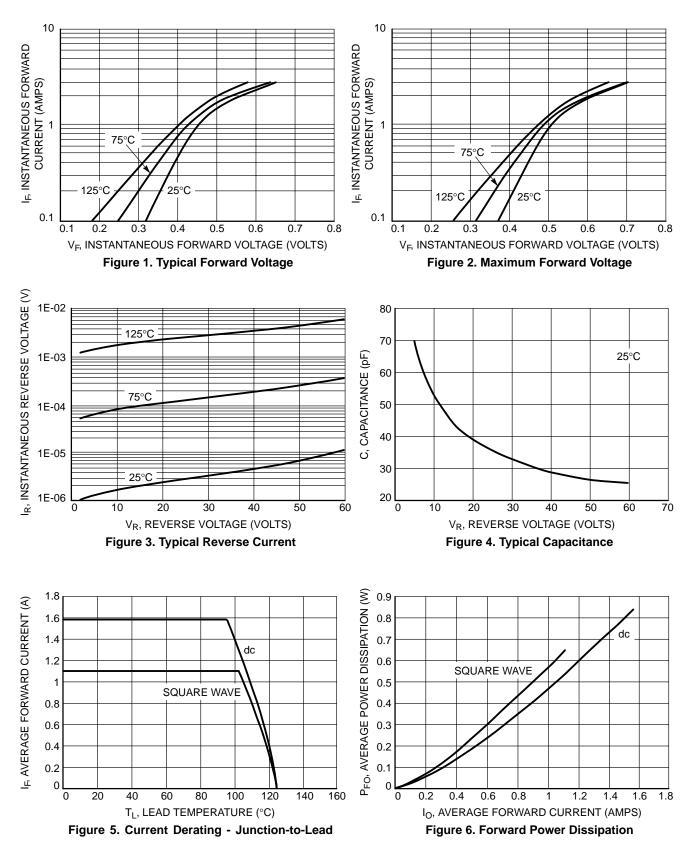
SMA CASE 403D PLASTIC

MARKING DIAGRAM

SS16 = Device Code

Device	Package	Shipping
SS16	SMA	5000/Tape & Reel

THERMAL CHARACTERISTICS


Characteristic	Symbol	Value	Unit
Thermal Resistance - Junction-to-Lead (Note 1)	R _{θJL}	35	°C/W
Thermal Resistance - Junction-to-Ambient (Note 1)	R _{θJA}	86	

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 2)		V _F	$T_J = 25^{\circ}C$	T _J = 125°C	Volts
······································	(I _F = 1.0 A)		0.510	0.475	
Maximum Instantaneous Reverse Current		I _R	T _J = 25°C	T _J = 125°C	mA
	(V _R = 60 V)		0.2	10	

Mounted on 2" Square PC Board with 1" Square Total Pad Size, PC Board FR4.
 Pulse Test: Pulse Width ≤ 250 μs, Duty Cycle ≤ 2.0%.

SS16

MBRA210ET3

Surface Mount Schottky Power Rectifier

SMA Power Surface Mount Package

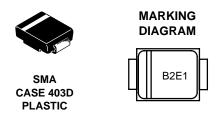
... employing the Schottky Barrier principle in a metal-to-silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes. Typical applications are ac/dc and dc-dc converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical.

- Low I_R, Extends Battery Life
- 1st in the Market Place with a 10 V_R Schottky Rectifier
- Compact Package with J-Bend Leads Ideal for Automated Handling
- Highly Stable Oxide Passivated Junction
- Guardring for Over-Voltage Protection
- Optimized for Low Leakage Current

Mechanical Characteristics:

- Case: Molded Epoxy
- Epoxy Meets UL94, V_O at 1/8"
- Weight: 70 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Polarity: Polarity Band Indicates Cathode Lead
- ESD Ratings: Machine Model = C
 - Human Body Model = 3B
- Available in 12 mm Tape, 5000 Units per 13 inch Reel

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	10	V
Average Rectified Forward Current (At Rated V_R , T_C = 125°C)	Ι _Ο	2.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	100	A
Storage/Operating Case Temperature	T _{stg} , T _C	-65 to +150	°C
Operating Junction Temperature	TJ	-65 to +150	°C
Voltage Rate of Change (Rated V_R , T_J = 25°C)	dv/dt	10,000	V/μs

ON Semiconductor®

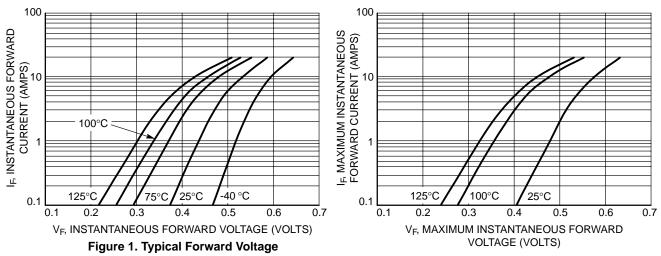
http://onsemi.com

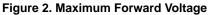
SCHOTTKY BARRIER RECTIFIER 2 AMPERES 10 VOLTS

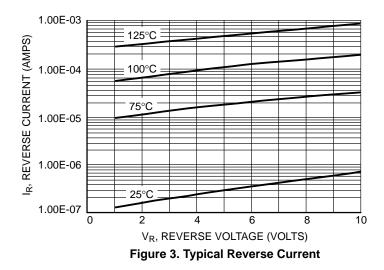
B2E1 = Device Code

Device	Package	Shipping
MBRA210ET3	SMA	5000/Tape & Reel

Semiconductor Components Industries, LLC, 2002
 December, 2002 - Rev. 3


THERMAL CHARACTERISTICS


Characteristic	Symbol	Min Pad	1 Inch Pad	Unit
Thermal Resistance - Junction-to-Lead (Note 1)	R _{θJL}	22	15	°C/W
Thermal Resistance - Junction-to-Ambient (Note 1)	R _{θJA}	150	81	


ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 2)	V _F	T _J = 25°C	T _J = 100°C	V
(I _F = 0.1 A) (I _F = 1.0 A) (I _F = 2.0 A)		0.405 0.480 0.500	0.275 0.355 0.385	
Maximum Instantaneous Reverse Current	I _R	T _J = 25°C	T _J = 100°C	μΑ
(V _R = 10 V) (V _R = 5.0 V)		15 50	200 500	

Mounted on a 3" square FR4 PC Board with min. pads or 1" square copper heat spreader.
 Pulse Test: Pulse Width ≤ 250 µs, Duty Cycle ≤ 2%.

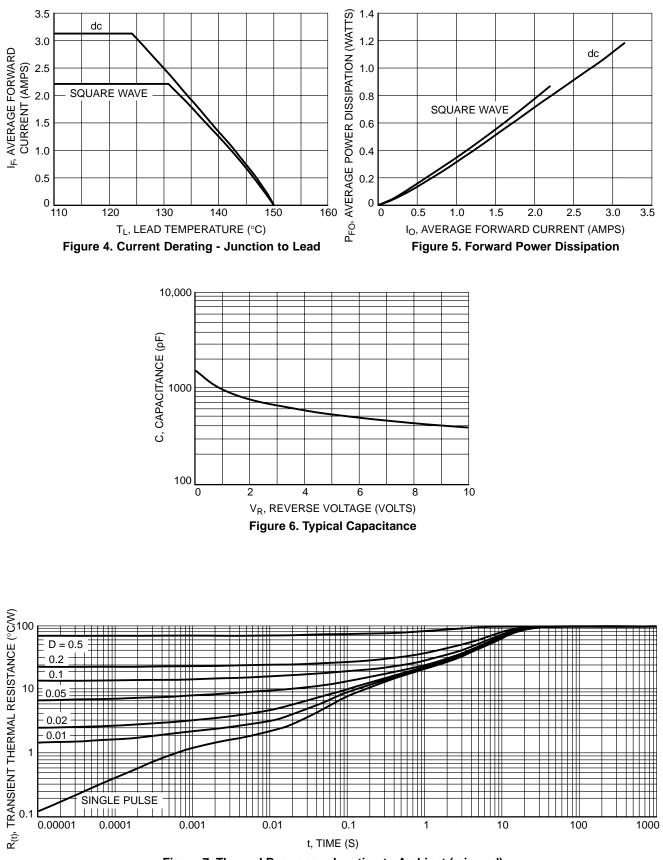


Figure 7. Thermal Response, Junction to Ambient (min pad)

MBRA210ET3

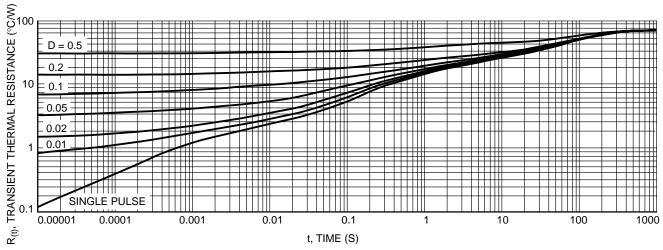


Figure 8. Thermal Response, Junction to Ambient (1 inch pad)

MBRA210LT3

Surface Mount Schottky Power Rectifier

SMA Power Surface Mount Package

... employing the Schottky Barrier principle in a metal-to-silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes. Typical applications are ac/dc and dc-dc converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical.

- Ultra Low V_F
- 1st in the Market Place with a 10 V_R Schottky Rectifier
- Compact Package with J-Bend Leads Ideal for Automated Handling
- Highly Stable Oxide Passivated Junction
- Guardring for Over-Voltage Protection
- Optimized for Low Forward Voltage

Mechanical Characteristics:

- Case: Molded Epoxy
- Epoxy Meets UL94, V_O at 1/8"
- Weight: 70 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Polarity: Polarity Band Indicates Cathode Lead
- ESD Ratings: Machine Model = C
 - Human Body Model = 3A
- Available in 12 mm Tape, 5000 Units per 13 inch Reel
- Marking: B2L1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	10	V
Average Rectified Forward Current (At Rated V _R , T _L = 110°C)	Ι _Ο	2.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	160	A
Storage/Operating Case Temperature Operating Junction Temperature	T _{stg} , T _C T _J	-55 to +125	°C
Voltage Rate of Change (Rated V_R , T_J = 25°C)	dv/dt	10,000	V/µs

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 2 AMPERES 10 VOLTS

B2L1

MARKING

DIAGRAM

B2L1 = Device Code

Device	Package	Shipping
MBRA210LT3	SMA	5000/Tape & Reel

[©] Semiconductor Components Industries, LLC, 2002 December, 2002 - Rev. 3

THERMAL CHARACTERISTICS

Characteristic	Symbol	Min Pad	1 Inch Pad	Unit
Thermal Resistance - Junction-to-Lead	R _{θJL}	22	15	°C/W
Thermal Resistance - Junction-to-Ambient	R _{θJA}	150	81	

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 1)	V _F	T _J = 25°C	T _J = 100°C	V
$(I_F = 0.1 \text{ A})$ $(I_F = 1.0 \text{ A})$ $(I_F = 2.0 \text{ A})$		0.260 0.325 0.350	0.15 0.23 0.26	
Maximum Instantaneous Reverse Current	I _R	T _J = 25°C	T _J = 100°C	mA
(V _R = 5.0 V) (V _R = 10 V)		0.25 0.70	40 60	

1. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2%.

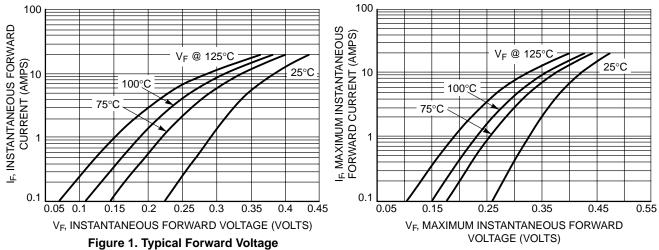
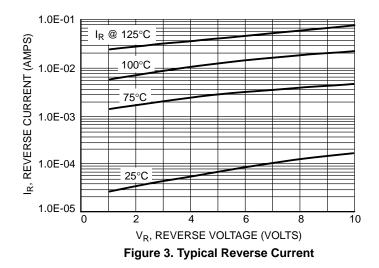



Figure 2. Maximum Forward Voltage

MBRA210LT3

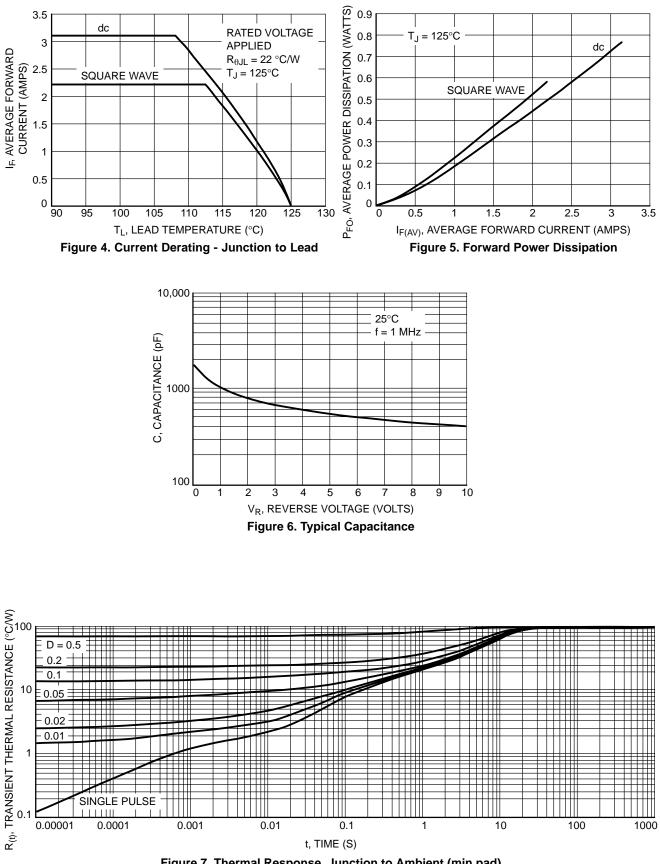


Figure 7. Thermal Response, Junction to Ambient (min pad)

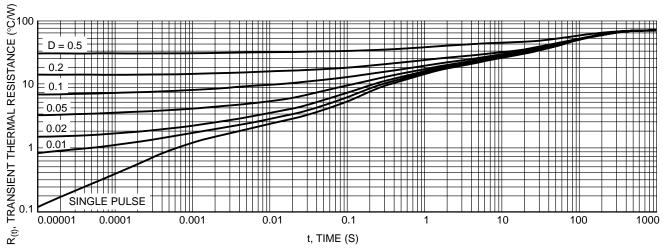


Figure 8. Thermal Response, Junction to Ambient (1 inch pad)

MBRS120T3

Preferred Device

Surface Mount Schottky Power Rectifier

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency rectification, or as free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- Highly Stable Oxide Passivated Junction
- Very Low Forward Voltage Drop (0.55 Volts Max @ 1.0 A, T_J = 25°C)
- Excellent Ability to Withstand Reverse Avalanche Energy Transients
- Guardring for Stress Protection

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 95 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 2500 units per reel
- Cathode Polarity Band
- Marking: B12

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	V
Average Rectified Forward Current (T _L = 115°C)	I _{F(AV)}	1.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	40	A
Operating Junction Temperature	TJ	-65 to +125	°C

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERE 20 VOLTS

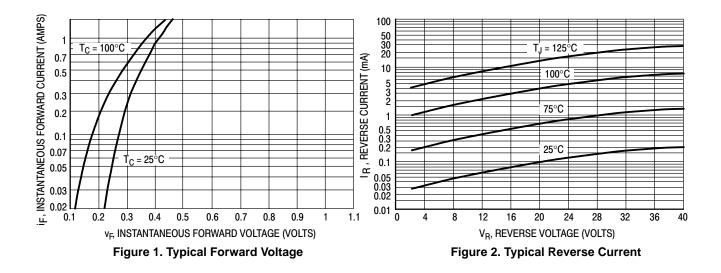
SMB CASE 403A PLASTIC

MARKING DIAGRAM

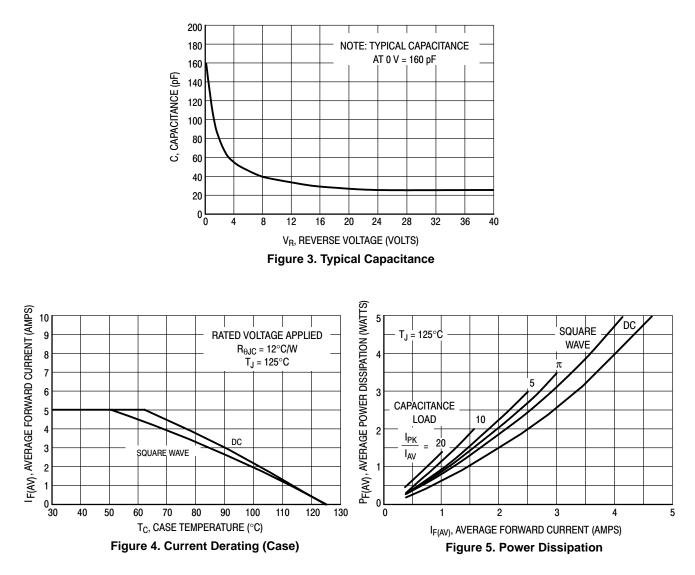
B12 = Device Code

ORDERING INFORMATION

Device	Package	Package Shipping	
MBRS120T3	SMB	2500/Tape & Reel	


Preferred devices are recommended choices for future use and best overall value.

MBRS120T3


THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction to Lead $(T_L = 25^{\circ}C)$	R _{θJL}	12	°C/W
ELECTRICAL CHARACTERISTICS			
Maximum Instantaneous Forward Voltage (Note 1.) $(i_F = 1.0 \text{ A}, \text{ T}_J = 25^{\circ}\text{C})$	V _F	0.6	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 100^{\circ}C$)	İR	1.0 10	mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MBRS120T3

MBRS130LT3

Preferred Device

Schottky Power Rectifier

Surface Mount Power Package

... Employs the Schottky Barrier principle in a large area metal- to- silicon power diode. State- of- the- art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency rectification, or as free wheeling and polarity protection diodes, in surface mount applications where compact size and weight are critical to the system.

- Very Low Forward Voltage Drop (0.395 Volts Max @ $1.0 \text{ A}, \text{T}_{J} = 25^{\circ}\text{C}$)
- Small Compact Surface Mountable Package with J-Bend Leads
- Highly Stable Oxide Passivated Junction
- Guardring for Stress Protection

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 95 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 2500 units per reel
- Cathode Polarity Band
- Marking: 1BL3

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	V
Average Rectified Forward Current $T_L = 120^{\circ}C$ $T_L = 110^{\circ}C$	I _{F(AV)}	1.0 2.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	40	A
Operating Junction Temperature	TJ	-65 to +125	°C

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERE 30 VOLTS

SMB CASE 403A PLASTIC

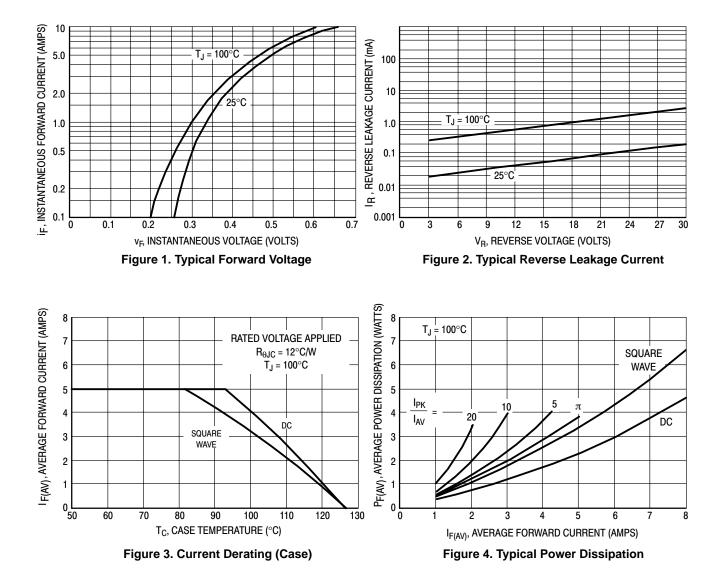
MARKING DIAGRAM

1BL3 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRS130LT3	SMB	2500/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.


MBRS130LT3

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance — Junction to Lead $(T_L = 25^{\circ}C)$	$R_{ extsf{ heta}JL}$	12	°C/W
ELECTRICAL CHARACTERISTICS			

Maximum Instantaneous Forward Voltage (Note 1.) ($i_F = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}$) ($i_F = 2.0 \text{ A}, T_J = 25^{\circ}\text{C}$)	V _F	0.395 0.445	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 100^{\circ}C$)	I _R	1.0 10	mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2%.

MBRS130LT3

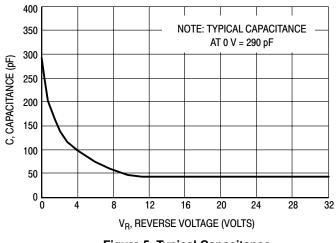


Figure 5. Typical Capacitance

MBRS130T3

Preferred Device

Surface Mount Schottky Power Rectifier

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency rectification, or as free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- Highly Stable Oxide Passivated Junction
- Very Low Forward Voltage Drop (0.55 Volts Max @ 1.0 A, T_J = 25°C)
- Excellent Ability to Withstand Reverse Avalanche Energy Transients
- Guardring for Stress Protection

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 95 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 2500 units per reel
- Cathode Polarity Band
- Marking: B13

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	V
Average Rectified Forward Current (T _L = 115°C)	I _{F(AV)}	1.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	40	A
Operating Junction Temperature	TJ	-65 to +125	°C

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERE 30 VOLTS

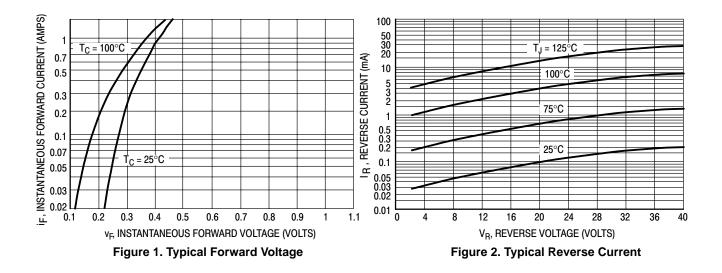
SMB CASE 403A PLASTIC

MARKING DIAGRAM

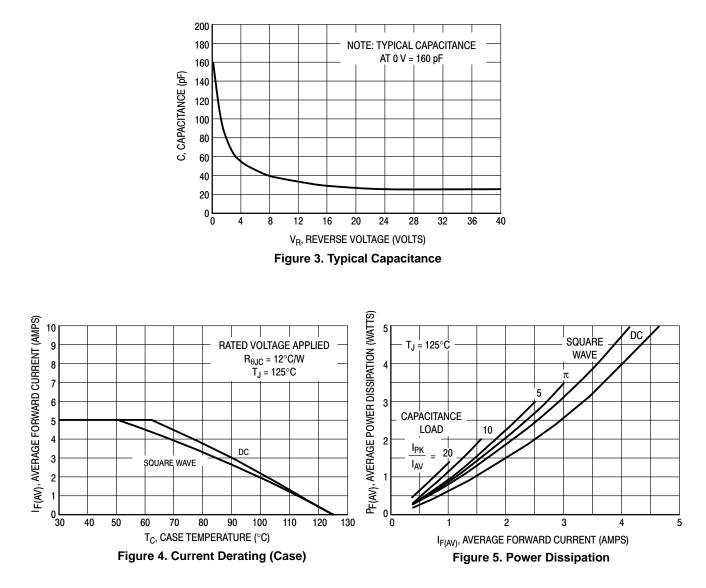
B13 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRS130T3	SMB	2500/Tape & Reel


Preferred devices are recommended choices for future use and best overall value.

MBRS130T3


THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction to Lead $(T_L = 25^{\circ}C)$	R _{θJL}	12	°C/W
ELECTRICAL CHARACTERISTICS			
Maximum Instantaneous Forward Voltage (Note 1.) $(i_F = 1.0 \text{ A}, \text{ T}_J = 25^{\circ}\text{C})$	V _F	0.6	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 100^{\circ}C$)	İR	1.0 10	mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MBRS130T3

Preferred Device

Surface Mount Schottky Power Rectifier

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency rectification, or as free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- Highly Stable Oxide Passivated Junction
- Very Low Forward Voltage Drop (0.55 Volts Max @ 1.0 A, T_J = 25°C)
- Excellent Ability to Withstand Reverse Avalanche Energy Transients
- Guardring for Stress Protection

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 95 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 2500 units per reel
- Cathode Polarity Band
- Marking: B14

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	40	V
Average Rectified Forward Current (T _L = 115°C)	I _{F(AV)}	1.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	40	A
Operating Junction Temperature	TJ	-65 to +125	°C

ON Semiconductor[™]

http://onsemi.com

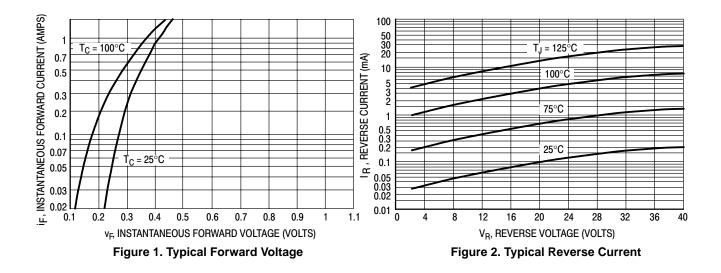
SCHOTTKY BARRIER RECTIFIER 1.0 AMPERE 40 VOLTS

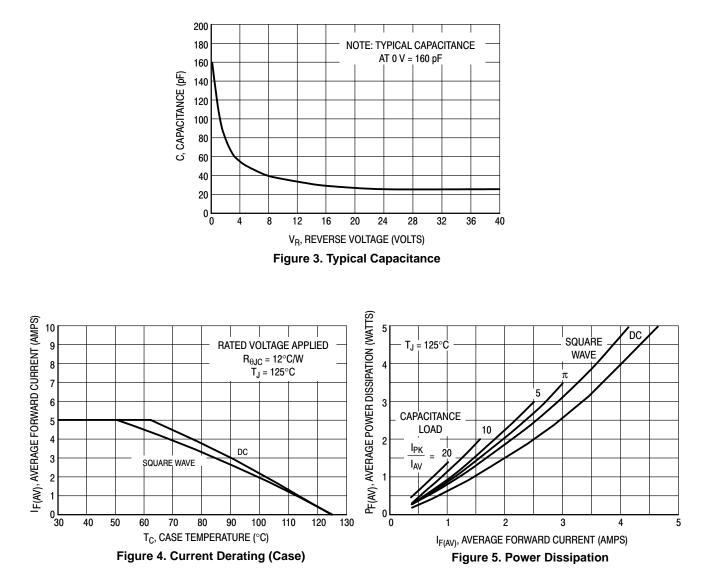
SMB CASE 403A PLASTIC

MARKING DIAGRAM

B14 = Device Code

ORDERING INFORMATION


Device	Package	Shipping
MBRS140T3	SMB	2500/Tape & Reel


Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction to Lead $(T_L = 25^{\circ}C)$	R _{θJL}	12	°C/W
ELECTRICAL CHARACTERISTICS			
Maximum Instantaneous Forward Voltage (Note 1.) $(i_F = 1.0 \text{ A}, \text{ T}_J = 25^{\circ}\text{C})$	V _F	0.6	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 100^{\circ}C$)	İR	1.0 10	mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

Surface Mount Schottky Power Rectifier

SMB Power Surface Mount Package

... employing the Schottky Barrier principle in a metal-to-silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes.

- Compact Package with J-Bend Leads Ideal for Automated Handling
- Highly Stable Oxide Passivated Junction
- Guardring for Over-Voltage Protection
- Low Forward Voltage Drop
- Mechanical Characteristics:
- Case: Molded Epoxy
- Epoxy Meets UL94, VO at 1/8"
- Weight: 95 mg (approximately)
- Cathode Polarity Band
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Available in 12 mm Tape, 2500 Units per 13" Reel, Add "T3" Suffix to Part Number
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Marking: B14L

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	40	V
Average Rectified Forward Current (At Rated V _R , T _C = 110°C)	Ι _Ο	1.0	A
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 100 kHz, T _C = 110°C)	I _{FRM}	2.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	40	A
Storage/Operating Case Temperature	T _{stg} , T _C	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +125	°C
Voltage Rate of Change (Rated V_R , T_J = 25°C)	dv/dt	10,000	V/μs

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERE 40 VOLTS

SMB CASE 403A PLASTIC

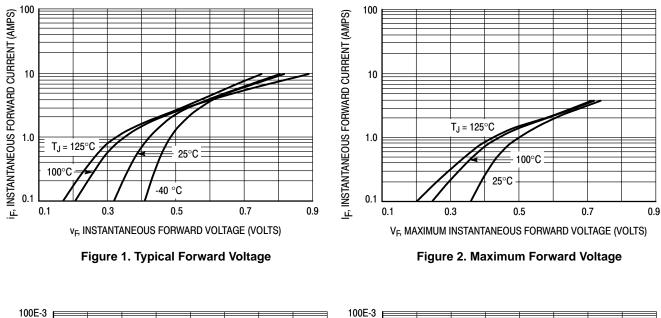
MARKING DIAGRAM

B14L = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRS140LT3	SMB	2500/Tape & Reel

THERMAL CHARACTERISTICS


Characteristic	Symbol	Мах	Unit
Thermal Resistance — Junction-to-Lead (Note 1.) Thermal Resistance — Junction-to-Ambient (Note 2.)	$R_{ heta JL}$ $R_{ heta JA}$	24 80	°C/W

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 3.)		VF	T _J = 25°C	T _J = 125°C	Volts
see Figure 2	(i _F = 1.0 A) (i _F = 2.0 A)		0.5 0.6	0.425 0.58	
Maximum Instantaneous Reverse Current (Note 3.)		I _R	T _J = 25°C	T _J = 100°C	mA
see Figure 4	(V _R = 40 V) (V _R = 20 V)		0.4 0.02	10 5.0	

1. Mounted with minimum recommended pad size, PC Board FR4.

2. 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board. 3. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2.0%.

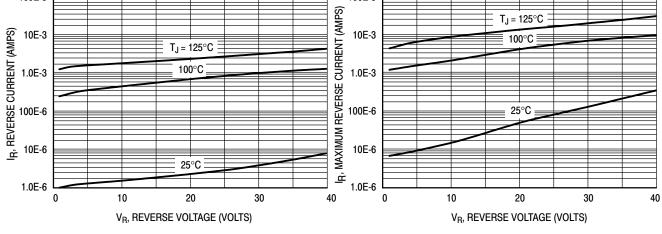
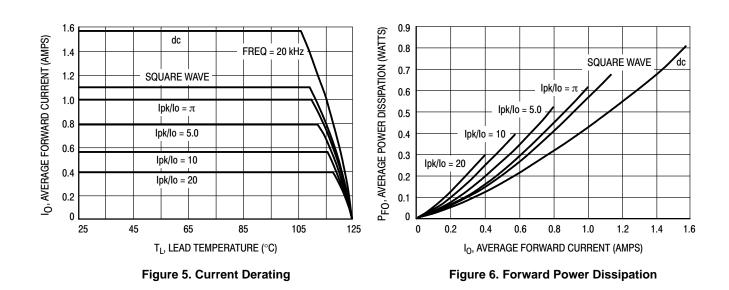
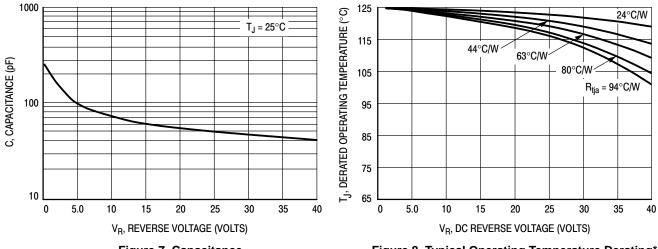




Figure 3. Typical Reverse Current

* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where r(t) = thermal impedance under given conditions,

r(t) = thermal impedance under given conditions, Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

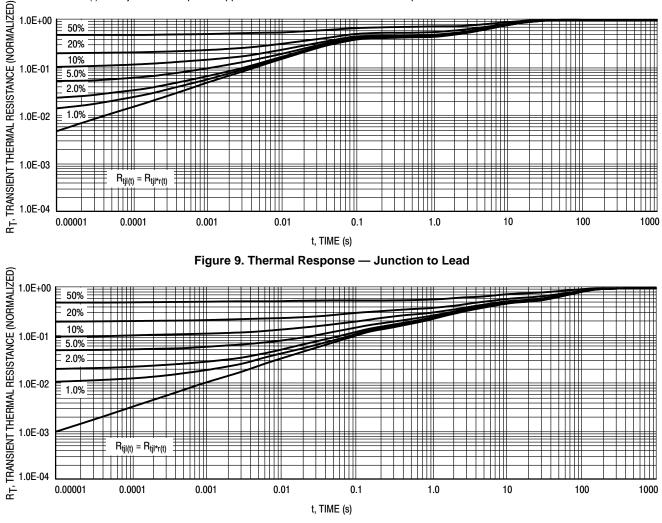


Figure 10. Thermal Response — Junction to Ambient

MBRS1100T3, MBRS190T3

Preferred Devices

Schottky Power Rectifier

Surface Mount Power Package

Schottky Power Rectifiers employ the use of the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency rectification, or as free wheeling and polarity protection diodes, in surface mount applications where compact size and weight are critical to the system. These state-of-the-art devices have the following features:

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- Highly Stable Oxide Passivated Junction
- High Blocking Voltage 100 Volts
- 150°C Operating Junction Temperature
- Guardring for Stress Protection

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 95 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 2500 units per reel
- Cathode Polarity Band
- Markings; MBRS190T3: B19 MBRS1100T3: B1C

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage MBRS190T3 MBRS1100T3	V _{RRM} V _{RWM} V _R	90 100	V
Average Rectified Forward Current $T_L = 120^{\circ}C$ $T_L = 100^{\circ}C$	I _{F(AV)}	1.0 2.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	50	A
Operating Junction Temperature	TJ	-65 to +150	°C
Voltage Rate of Change	dv/dt	10	V/ns

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERE 90, 100 VOLTS

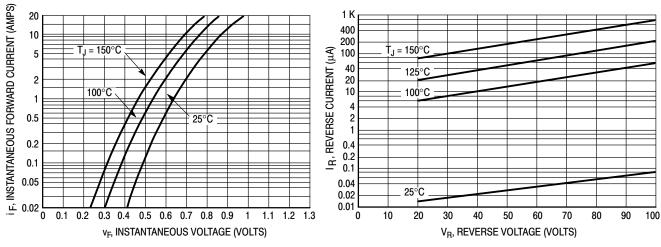
SMB CASE 403A PLASTIC

MARKING DIAGRAM

B1x = Device Code x = 9 or C

ORDERING INFORMATION

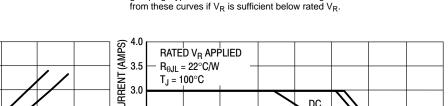
Device	Package	Shipping
MBRS1100T3	SMB	2500/Tape & Reel
MBRS190T3	SMB	2500/Tape & Reel

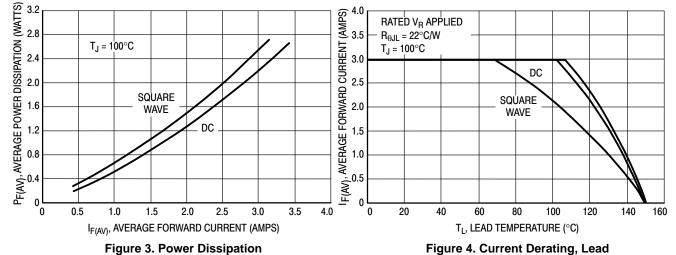

Preferred devices are recommended choices for future use and best overall value.

MBRS1100T3, MBRS190T3

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance — Junction to Lead ($T_L = 25^{\circ}C$)	R _{θJL}	22	°C/W
ELECTRICAL CHARACTERISTICS			
Maximum Instantaneous Forward Voltage (Note 1.) ($i_F = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}$)	V _F	0.75	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, TJ = 25°C) (Rated dc Voltage, T _J = 100°C)	I _R	0.5 5.0	mA


1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.



TYPICAL ELECTRICAL CHARACTERISTICS

Figure 1. Typical Forward Voltage

Figure 2. Typical Reverse Current* *The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated

MBRS1100T3, MBRS190T3

TYPICAL ELECTRICAL CHARACTERISTICS

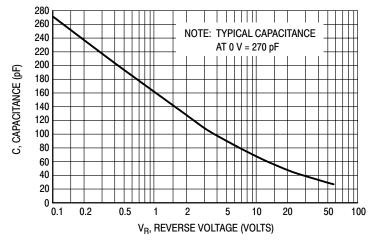


Figure 5. Typical Capacitance

Surface Mount Schottky Power Rectifier

SMB Power Surface Mount Package

... employing the Schottky Barrier principle in a metal-to-silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes.

- Compact Package with J-Bend Leads Ideal for Automated Handling
- Highly Stable Oxide Passivated Junction
- Guardring for Over-Voltage Protection
- Low Forward Voltage Drop
- Mechanical Characteristics:
- Case: Molded Epoxy
- Epoxy Meets UL94, VO at 1/8"
- Weight: 95 mg (approximately)
- Cathode Polarity Band
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Available in 12 mm Tape, 2500 Units per 13" Reel, Add "T3" Suffix to Part Number
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Marking: BGJ

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	40	V
Average Rectified Forward Current (At Rated V_R , $T_C = 100^{\circ}C$)	Ι _Ο	1.5	A
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 100 kHz, $T_C = 105^{\circ}C$)	I _{FRM}	3.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	40	A
Storage/Operating Case Temperature	T _{stg} , T _C	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +125	°C
Voltage Rate of Change (Rated V_R , T_J = 25°C)	dv/dt	10,000	V/μs

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.5 AMPERES 40 VOLTS

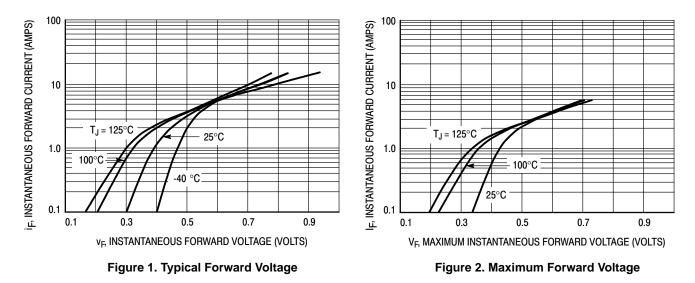
SMB CASE 403A PLASTIC

MARKING DIAGRAM

BGJ = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRS1540T3	SMB	2500/Tape & Reel


THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction-to-Lead (Note 1.)	R _{θJL}	24	°C/W
Thermal Resistance — Junction-to-Ambient (Note 2.)	R _{θJA}	80	

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 3.)		٧F	$T_J = 25^{\circ}C$	T _J = 125°C	Volts
see Figure 2	(i _F = 1.5 A) (i _F = 3.0 A)		0.46 0.54	0.39 0.54	
Maximum Instantaneous Reverse Current (Note 3.)		I _R	$T_J = 25^{\circ}C$	T _J = 100°C	mA
see Figure 4	(V _R = 40 V) (V _R = 20 V)		0.8 0.1	5.7 1.6	

1. Mounted with minimum recommended pad size, PC Board FR4.2. 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.3. Pulse Test: Pulse Width $\leq 250 \ \mu$ s, Duty Cycle $\leq 2.0\%$.

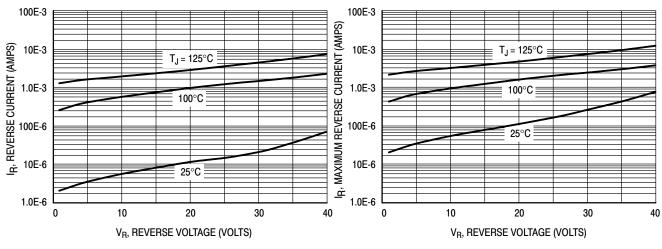
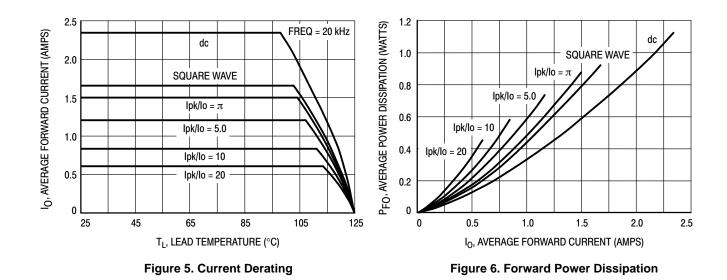
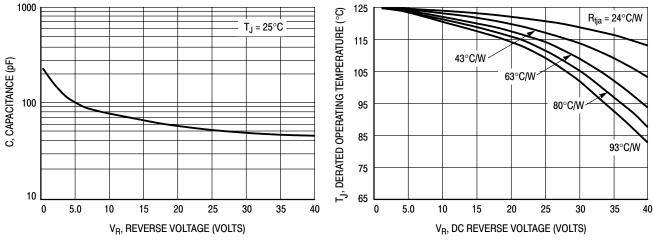




Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where

r(t) = thermal impedance under given conditions,

Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

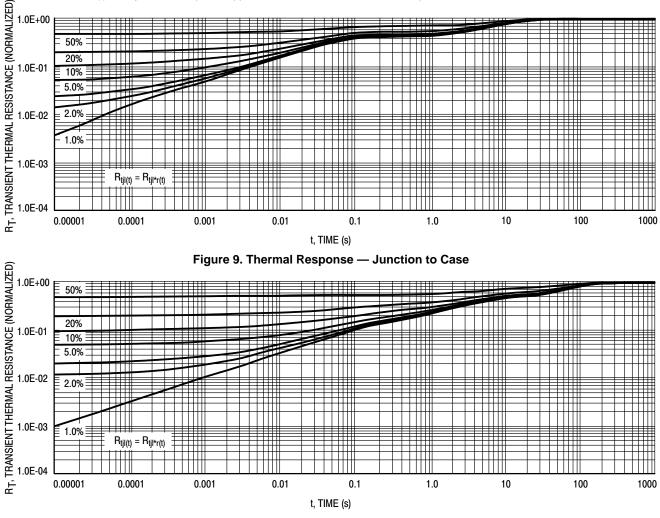


Figure 10. Thermal Response — Junction to Ambient

Surface Mount Schottky Power Rectifier

SMB Power Surface Mount Package

... employing the Schottky Barrier principle in a metal-to-silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes.

- Compact Package with J-Bend Leads Ideal for Automated Handling
- Highly Stable Oxide Passivated Junction
- Guardring for Over-Voltage Protection
- Low Forward Voltage Drop
- Mechanical Characteristics:
- Case: Molded Epoxy
- Epoxy Meets UL94, VO at 1/8"
- Weight: 95 mg (approximately)
- Cathode Polarity Band
- Maximum Temperature of 260°C/10 Seconds for Soldering
- Available in 12 mm Tape, 2500 Units per 13" Reel, Add "T3" Suffix to Part Number
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Marking: 2BL4

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	40	V
Average Rectified Forward Current (At Rated V _R , T _C = 100°C)	Ι _Ο	2.0	A
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz, T _C = 105°C)	I _{FRM}	4.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	25	A
Storage/Operating Case Temperature	T _{stg} , T _C	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +125	°C
Voltage Rate of Change (Rated V_R , T_J = 25°C)	dv/dt	10,000	V/μs

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 2.0 AMPERES 40 VOLTS

SMB CASE 403A PLASTIC

MARKING DIAGRAM

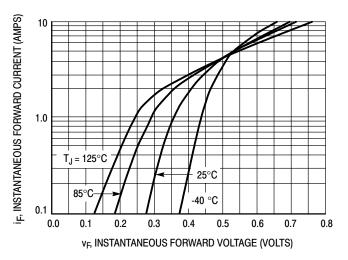
2BL4 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRS240LT3	SMB	2500/Tape & Reel

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction-to-Lead (Note 1.)	R _{θJL}	18	°C/W
Thermal Resistance — Junction-to-Ambient (Note 3.)	R _{θJA}	78	


ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 2.)		VF	T _J = 25°C	T _J = 125°C	Volts
see Figure 2	(I _F = 2.0 A) (I _F = 4.0 A)		0.43 0.54	0.375 0.55	
Maximum Instantaneous Reverse Current (Note 2.)		I _R	T _J = 25°C	$T_J = 100^{\circ}C$	mA
	(V _R = 40 V)		2.0	60	
see Figure 4	$(V_R = 20 V)$		0.5	40	

1. Mounted with minimum recommended pad size, PC Board FR4.

2. Pulse Test: Pulse Width $\leq 250 \ \mu$ s, Duty Cycle $\leq 2.0\%$.

3. 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.

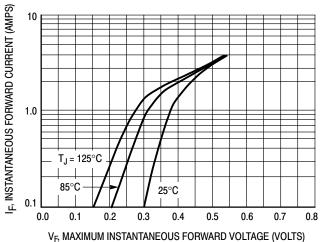


Figure 2. Maximum Forward Voltage

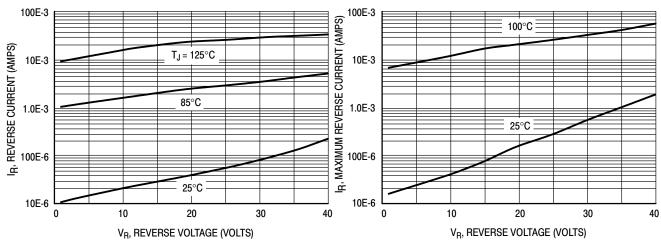


Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

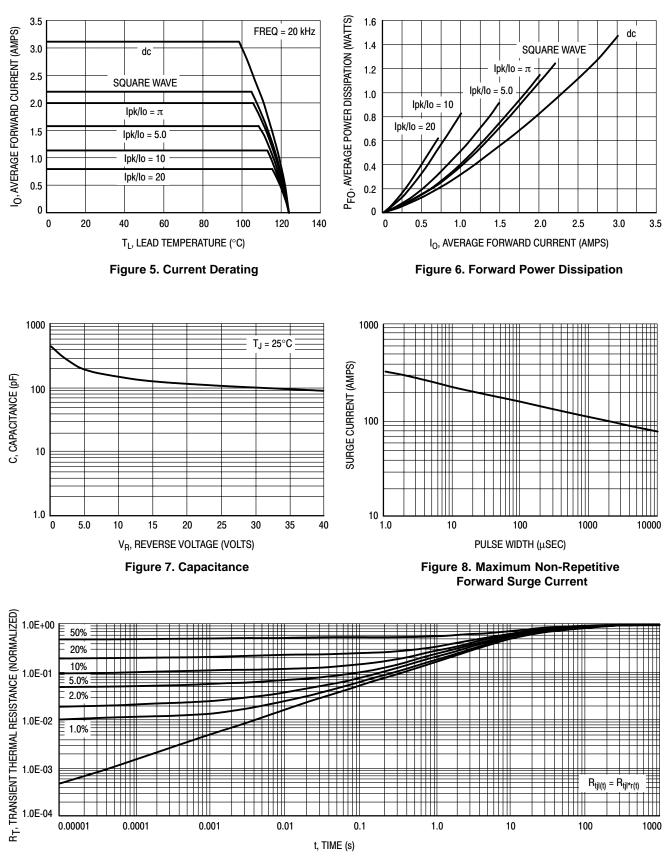


Figure 9. Thermal Response

Surface Mount Schottky Power Rectifier

SMB Power Surface Mount Package

... employing the Schottky Barrier principle in a metal-to-silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes.

- Compact Package with J-Bend Leads Ideal for Automated Handling
- Highly Stable Oxide Passivated Junction
- Guardring for Over-Voltage Protection
- Low Forward Voltage Drop
- Mechanical Characteristics:
- Case: Molded Epoxy
- Epoxy Meets UL94, VO at 1/8"
- Weight: 95 mg (approximately)
- Maximum Temperature of 260°C / 10 Seconds for Soldering
- Cathode Polarity Band
- Available in 12 mm Tape, 2500 Units per 13 inch Reel, Add "T3" Suffix to Part Number
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Marking: BKJL

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	40	V
Average Rectified Forward Current (At Rated V _R , T _C = 103°C)	Ι _Ο	2.0	A
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz, T _C = 104°C)	I _{FRM}	4.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	70	A
Storage/Operating Case Temperature	T _{stg} , T _C	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +125	°C
Voltage Rate of Change (Rated V_R , T_J = 25°C)	dv/dt	10,000	V/μs

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 2.0 AMPERES 40 VOLTS

SMB CASE 403A PLASTIC

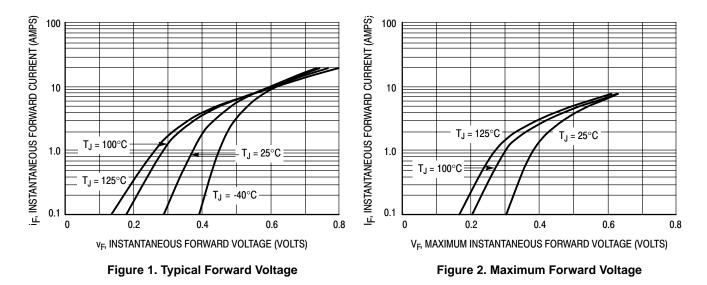
MARKING DIAGRAM

BKJL = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRS2040LT3	SMB	2500/Tape & Reel

© Semiconductor Components Industries, LLC, 2000 October, 2000 - Rev. 2


THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction-to-Lead (Note 1.) Thermal Resistance — Junction-to-Ambient (Note 2.)	$R_{ extsf{ heta}JL}$ $R_{ hetaJA}$	22.5 78	°C/W

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 3.)		V _F	$T_J = 25^{\circ}C$	T _J = 125°C	Volts
see Figure 2	(I _F = 2.0 A) (I _F = 4.0 A)		0.43 0.50	0.34 0.45	
Maximum Instantaneous Reverse Current (Note 3.)		I _R	T _J = 25°C	T _J = 100°C	mA
see Figure 4	(V _R = 40 V) (V _R = 20 V)		0.8 0.1	20 6.0	

1. Minimum pad size (0.108 X 0.085 inch) for each lead on FR4 board.2. 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.3. Pulse Test: Pulse Width $\leq 250 \ \mu$ s, Duty Cycle $\leq 2.0\%$.

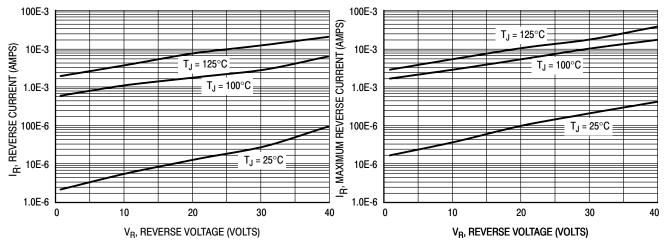
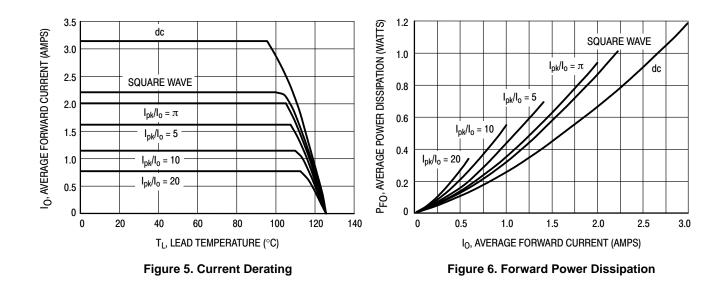
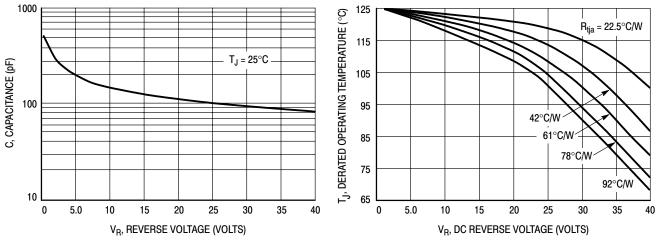
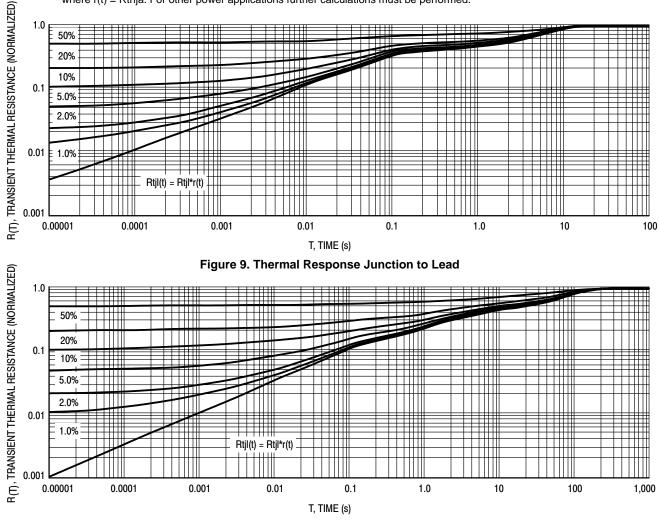




Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current


* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where

r(t) = thermal impedance under given conditions,

Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = R thia. For other power applications further calculations must be performed.

MBRS260T3

Surface Mount Schottky Power Rectifier

SMB Power Surface Mount Package

... employing the Schottky Barrier principle in a metal-to-silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes.

- Compact Package with J-Bend Leads Ideal for Automated Handling
- Highly Stable Oxide Passivated Junction
- Guardring for Over-Voltage Protection
- Low Forward Voltage Drop
- Mechanical Characteristics:
- Case: Molded Epoxy
- Epoxy Meets UL94, VO at 1/8"
- Weight: 95 mg (approximately)
- Cathode Polarity Band
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Available in 12 mm Tape, 2500 Units per 13" Reel, Add "T3" Suffix to Part Number
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- ESD Ratings: Machine Model = C
 - Human Body Model = 3B
- Marking: B26

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	60	V
Average Rectified Forward Current (At Rated V _R , T _L = 95°C)	Ι _Ο	2.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	40	A
Storage/Operating Case Temperature	T _{stg} , T _C	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +125	°C
Voltage Rate of Change (Rated V _R , T _J = 25°C)	dv/dt	10,000	V/μs

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 2.0 AMPERES 60 VOLTS

SMB CASE 403A PLASTIC

MARKING DIAGRAM

B26 = Device Code

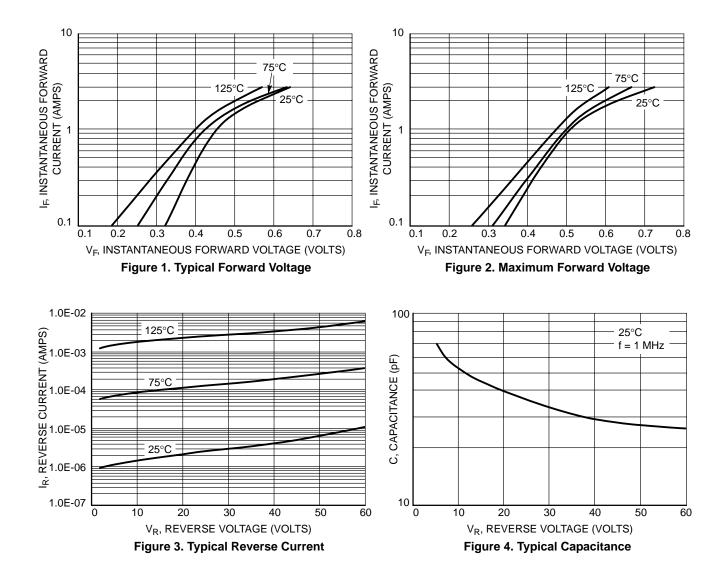
ORDERING INFORMATION

Device	Package	Shipping
MBRS260T3	SMB	2500/Tape & Reel

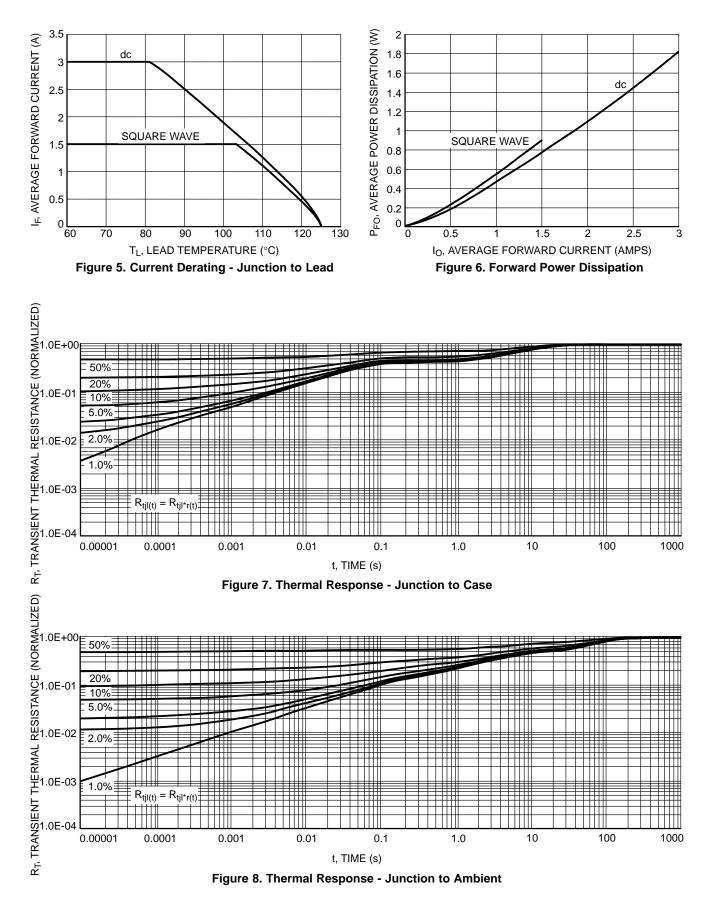
MBRS260T3

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance - Junction-to-Lead (Note 1.) Thermal Resistance - Junction-to-Ambient (Note 2.)	$R_{ extsf{ heta}JL}$ $R_{ hetaJA}$	24 80	°C/W


ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 3.)	٧F	T _J = 25°C	T _J = 125°C	Volts
$(i_{F} = 1.0 \text{ A})$ $(i_{F} = 2.0 \text{ A})$		0.51 0.63	0.475 0.55	
Maximum Instantaneous Reverse Current (Note 3.)	I _R	T _J = 25°C	T _J = 125°C	mA
$(V_R = 60 \text{ V})$		0.2	10	


1. Mounted with minimum recommended pad size, PC Board FR4.

2. 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.

3. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2.0%.

MBRS260T3

Surface Mount Schottky Power Rectifier

SMB Power Surface Mount Package

... employing the Schottky Barrier principle in a metal-to-silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes.

- Compact Package with J-Bend Leads Ideal for Automated Handling
- Highly Stable Oxide Passivated Junction
- Guardring for Over-Voltage Protection
- Low Forward Voltage Drop
- Mechanical Characteristics:
- Case: Molded Epoxy
- Epoxy Meets UL94, VO at 1/8"
- Weight: 95 mg (approximately)
- Cathode Polarity Band
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Available in 12 mm Tape, 2500 Units per 13" Reel, Add "T3" Suffix to Part Number
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- ESD Ratings: Machine Model = C Human Body Model = 3B
- Marking: SS26

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	60	V
Average Rectified Forward Current (At Rated V _R , T _L = 95°C)	Ι _Ο	2.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	40	A
Storage/Operating Case Temperature	T _{stg} , T _C	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +125	°C
Voltage Rate of Change (Rated V _R , T _J = 25°C)	dv/dt	10,000	V/μs

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 2.0 AMPERES 60 VOLTS

SMB CASE 403A PLASTIC

MARKING DIAGRAM

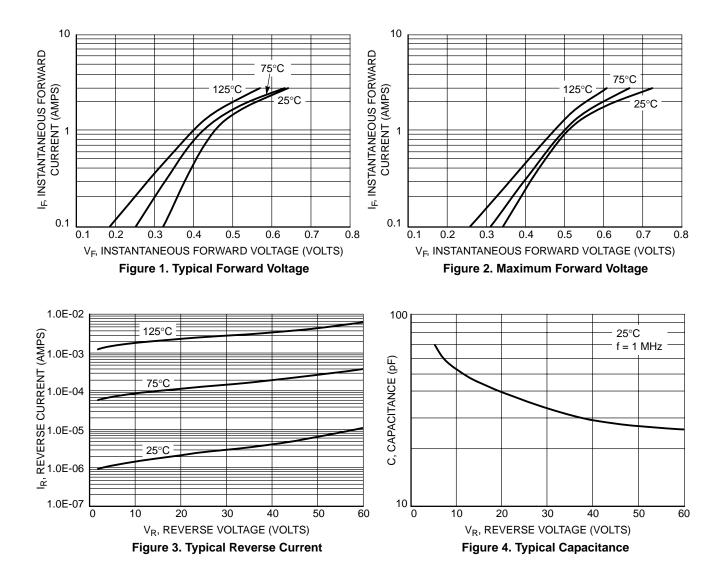
SS26 = Device Code

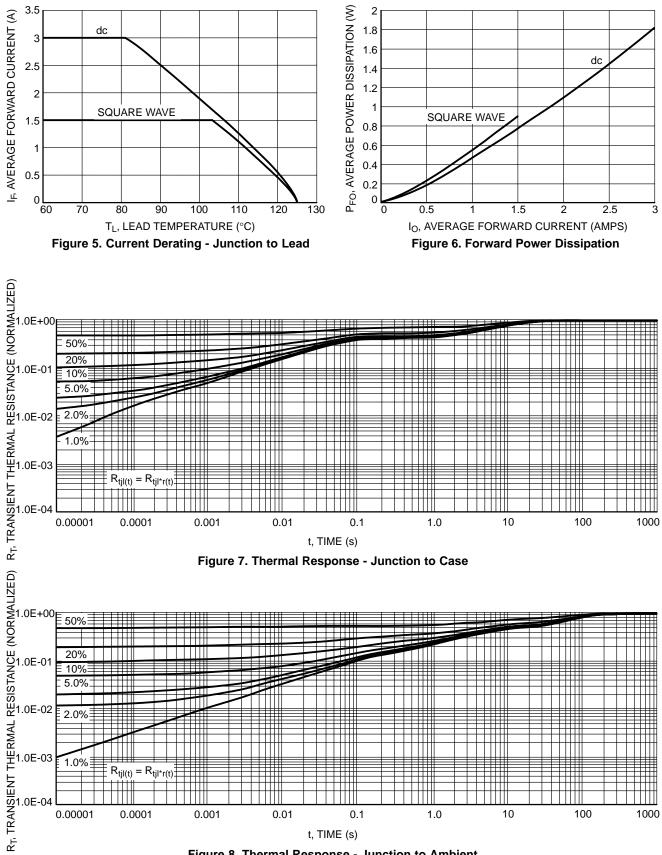
ORDERING INFORMATION

Device	Package	Shipping
SS26	SMB	2500/Tape & Reel

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance - Junction-to-Lead (Note 1.) Thermal Resistance - Junction-to-Ambient (Note 2.)	$R_{ extsf{ heta}JL}$ $R_{ hetaJA}$	24 80	°C/W


ELECTRICAL CHARACTERISTICS


Maximum Instantaneous Forward Voltage (Note 3.) $\begin{array}{l} (i_{F}=1.0 \text{ A}) \\ (i_{F}=2.0 \text{ A}) \end{array}$		T _J = 25°C	T _J = 125°C	Volts
		0.51 0.63	0.475 0.55	
Maximum Instantaneous Reverse Current (Note 3.)	I _R	T _J = 25°C	T _J = 125°C	mA
$(V_R = 60 \text{ V})$		0.2	10	

1. Mounted with minimum recommended pad size, PC Board FR4.

2. 1 inch square pad size (1 x 0.5 inch for each lead) on FR4 board.

3. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2.0%.

MBRS320T3, MBRS330T3, MBRS340T3, MBRS360T3

Preferred Devices

Surface Mount Schottky Power Rectifier

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency rectification, or as free wheeling and polarity protection diodes, in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- Highly Stable Oxide Passivated Junction
- Very Low Forward Voltage Drop (0.5 Volts Max @ 3.0 A, T_J = 25°C)
- Excellent Ability to Withstand Reverse Avalanche Energy Transients
- Guardring for Stress Protection

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 217 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 16 mm Tape and Reel, 2500 units per reel
- Polarity: Notch in Plastic Body Indicates Cathode Lead
- Marking: B32, B33, B34, B36

MAXIMUM RATINGS

Please See the Table on the Following Page

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIERS 3.0 AMPERES 20, 30, 40, 60 VOLTS

SMC CASE 403 PLASTIC

MARKING DIAGRAM

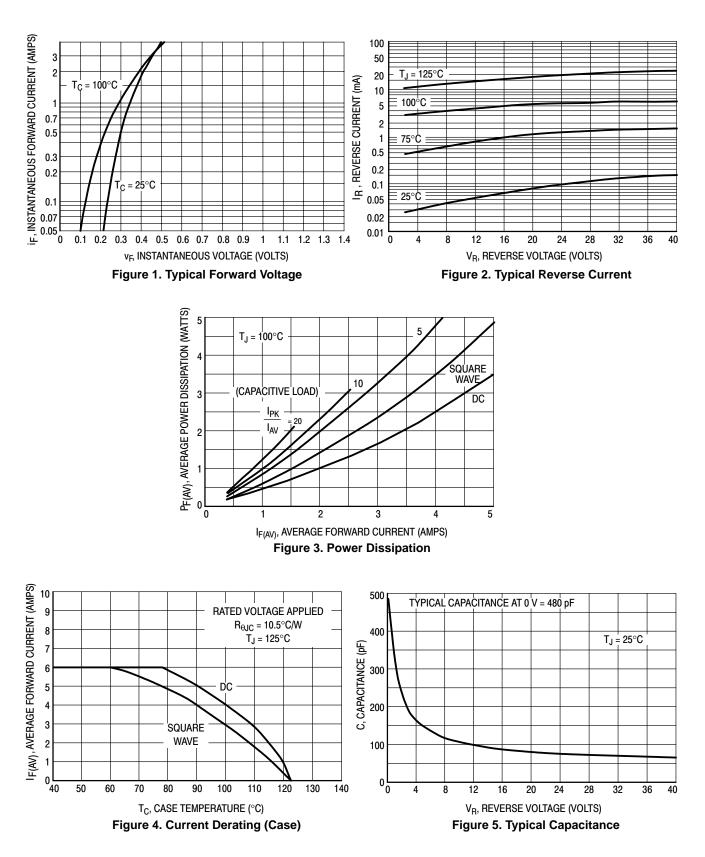
B3x = Device Codex = 2, 3, 4 or 6 Y = Year

W = Work Week

ORDERING INFORMATION

Device	Package	Shipping		
MBRS320T3	SMC	2500/Tape & Reel		
MBRS330T3	SMC	2500/Tape & Reel		
MBRS340T3	SMC	2500/Tape & Reel		
MBRS360T3	SMC	2500/Tape & Reel		

Preferred devices are recommended choices for future use and best overall value.


MBRS320T3, MBRS330T3, MBRS340T3, MBRS360T3

MAXIMUM RATINGS

Rating	Symbol	MBRS320T3	MBRS330T3	MBRS340T3	MBRS360T3	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	30	40	60	Volts
Average Rectified Forward Current	I _{F(AV)}	3.0 @ T _L = 100°C 4.0 @ T _L = 90°C				
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	80	80	80	80	Amps
Operating Junction Temperature	TJ	- 65 to +125	- 65 to +125 - 65 to +125			°C
THERMAL CHARACTERISTICS						
Thermal Resistance — Junction to Lead	$R_{ extsf{ heta}JL}$	11	11	11	11	°C/W
ELECTRICAL CHARACTERISTICS						•
Maximum Instantaneous Forward Voltage (Note 1.) ($i_F = 3.0 \text{ A}, \text{ T}_J = 25^{\circ}\text{C}$)	V _F	0.50	0.50	0.525	0.740	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 100^{\circ}C$)	i _R	2.0 20	2.0 20	2.0 20	0.5 20	mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MBRS320T3, MBRS330T3, MBRS340T3, MBRS360T3

MBRS3100T3

Preferred Device

Surface Mount Schottky Power Rectifier

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency rectification, or as free wheeling and polarity protection diodes, in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- Highly Stable Oxide Passivated Junction
- Excellent Ability to Withstand Reverse Avalanche Energy Transients
- Guardring for Stress Protection

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 217 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 16 mm Tape and Reel, 2500 units per reel
- Polarity: Notch in Plastic Body Indicates Cathode Lead
- ESD Ratings: Machine Model = C
 - Human Body Model = 3B
- Marking: B310

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	100	Volts
Average Rectified Forward Current (At Rated V _R , T_L = 100°C)	I _{F(AV)}	3.0	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load condi- tions halfwave, single phase, 60 Hz)	I _{FSM}	130	Amps
Operating Junction Temperature Range	TJ	- 65 to +150	°C
THERMAL CHARACTERISTICS			
Thermal Resistance - Junction to Lead	R _{0.II}	11	°C/W

ON Semiconductor[™]

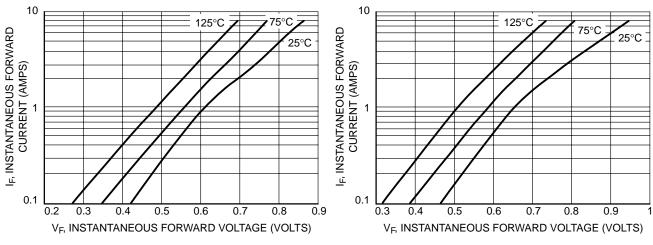
http://onsemi.com

SCHOTTKY BARRIER RECTIFIERS 3.0 AMPERES 100 VOLTS

SMC CASE 403 PLASTIC

MARKING DIAGRAM

Y = Year WW = Work Week B310 = Device Code


ORDERING INFORMATION

Device	Package	Shipping
MBRS3100T3	SMC	2500/Tape & Reel

ELECTRICAL CHARACTERISTICS

	VF	0.79 0.90 0.62 0.70	Volts
Maximum Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 125^{\circ}C$)	İR	0.05 5.0	mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

1E-03

1E-04

1E-05

1E-06

1E-07

1E-08

0

IR, REVERSE CURRENT (AMPS)

125°C

≡ 75°C

25°C

20

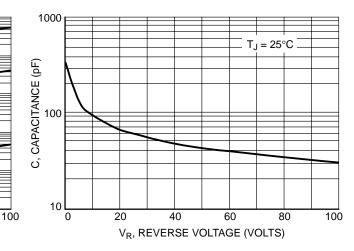


Figure 3. Typical Reverse Current

V_R, REVERSE VOLTAGE (VOLTS)

60

80

40

Figure 4. Typical Capacitance

MBRS3100T3

Figure 5. Current Derating - Lead

Figure 6. Forward Power Dissipation

MBRS410ET3

Preferred Device

Surface Mount Schottky Power Rectifier

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency rectification, or as free wheeling and polarity protection diodes, in surface mount applications where compact size and weight are critical to the system. Typical applications are ac/dc and dc-dc converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical.

- Very Low V_F Accompanied by Low I_R
- 1st in the Market Place with a 10 V_R Schottky Rectifier
- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- Highly Stable Oxide Passivated Junction
- Designed for Low Leakage
- Excellent Ability to Withstand Reverse Avalanche Energy Transients
- Guardring for Stress Protection

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 217 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 16 mm Tape and Reel, 2500 units per reel
- Polarity: Notch in Plastic Body Indicates Cathode Lead
- ESD Ratings: Machine Model = C
 - Human Body Model = 3B
- Marking: B4E1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	10	V
Average Rectified Forward Current (@ T _L = 130°C)	Ι _Ο	4.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	250	A
Operating Junction Temperature	TJ	-65 to +150	°C

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIERS 4.0 AMPERES 10 VOLTS

SMC CASE 403 PLASTIC

MARKING DIAGRAM

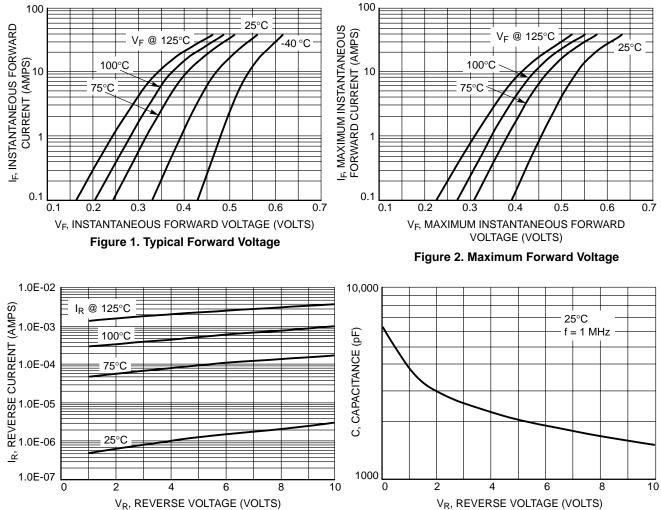
Y = Year WW = Work Week B4E1= Device Code

ORDERING INFORMATION

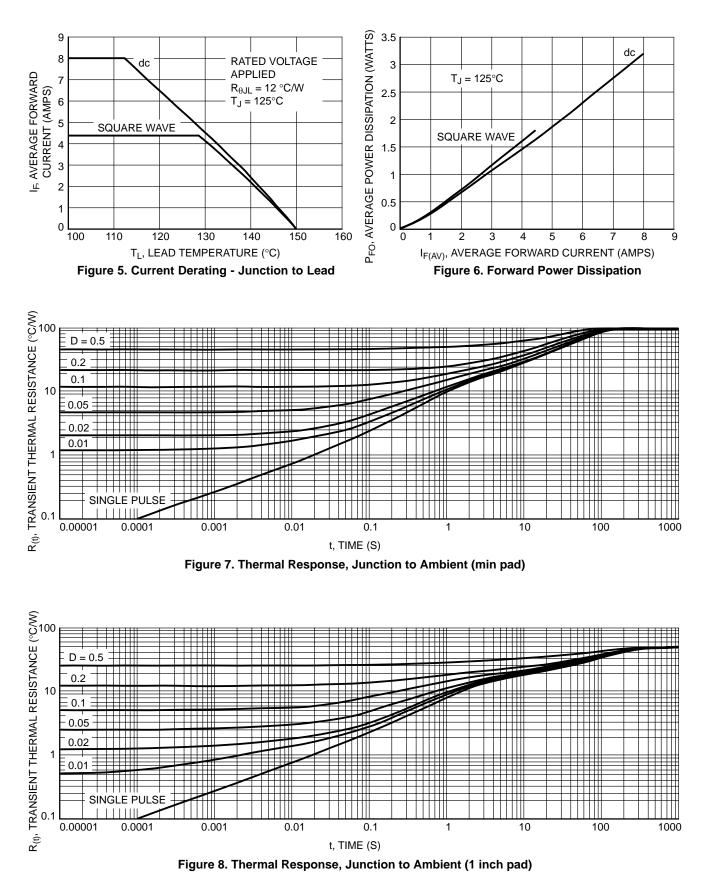
Device	Package	Shipping
MBRS410ET3	SMC	2500/Tape & Reel

MBRS410ET3

THERMAL CHARACTERISTICS


Characteristic	Symbol	5 mm x 5 mm (Note 2)	1 Inch x 1/2 inch	Unit
Thermal Resistance - Junction-to-Lead	R _{θJL}	12	7.0	°C/W
Thermal Resistance - Junction-to-Ambient	R _{θJA}	109	59	

ELECTRICAL CHARACTERISTICS


Maximum Instantaneous Forward Voltage (Note 1)	V _F	T _J = 25°C	T _J = 100°C	V
$(I_F = 2.0 \text{ A})$ $(I_F = 4.0 \text{ A})$ $(I_F = 8.0 \text{ A})$		0.475 0.500 0.525	0.370 0.395 0.430	
Maximum Instantaneous Reverse Current (Note 1)	I _R	T _J = 25°C	T _J = 100°C	μΑ
(Rated dc Voltage, $V_R = 5.0 \text{ V}$) (Rated dc Voltage, $V_R = 10 \text{ V}$)		50 150	2000 4000	

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Mounted with Minimum Recommended Pad Size, PC Board FR4.

Figure 3. Typical Reverse Current

MBRS410ET3

MBRS410LT3

Preferred Device

Surface Mount Schottky Power Rectifier

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency rectification, or as free wheeling and polarity protection diodes, in surface mount applications where compact size and weight are critical to the system. Typical applications are ac/dc and dc-dc converters, reverse battery protection, and "Oring" of multiple supply voltages and any other application where performance and size are critical.

- Ultra Low V_F
- 1st in the Market Place with a 10 V_R Schottky Rectifier
- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- Highly Stable Oxide Passivated Junction
- Very Low Forward Voltage Drop
- Excellent Ability to Withstand Reverse Avalanche Energy Transients
- Guarding for Stress Protection

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 217 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 16 mm Tape and Reel, 2500 units per reel
- Polarity: Notch in Plastic Body Indicates Cathode Lead
- ESD Ratings: Machine Model = C
 - Human Body Model = 3B
- Marking: B4L1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	10	V
Average Rectified Forward Current (@ T _L = 110°C)	Ι _Ο	4.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	A
Operating Junction Temperature	TJ	-65 to +125	°C

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIERS 4.0 AMPERES 10 VOLTS

SMC CASE 403 PLASTIC

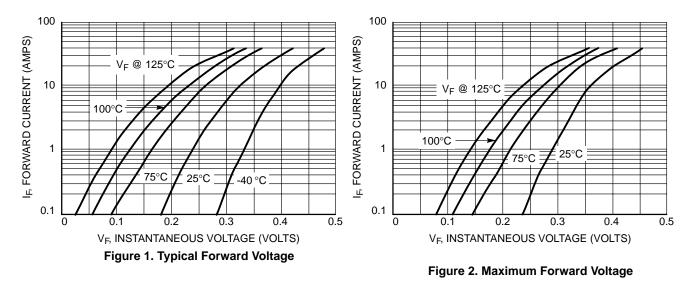
MARKING DIAGRAM

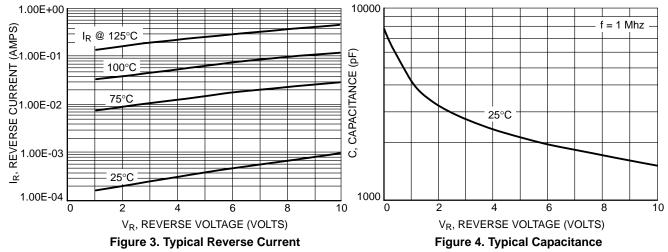
Y = Year WW = Work Week B4L1 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRS410LT3	SMC	2500/Tape & Reel

MBRS410LT3


THERMAL CHARACTERISTICS


Characteristic	Symbol	Min Pad (Note 2)	1 Inch Pad	Unit
Thermal Resistance - Junction-to-Lead	R _{θJL}	12	7.0	°C/W
Thermal Resistance - Junction-to-Ambient	R _{θJA}	109	59	

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 1)	V _F	T _J = 25°C	T _J = 100°C	V
$(I_F = 2.0 \text{ A})$ $(I_F = 4.0 \text{ A})$ $(I_F = 8.0 \text{ A})$		0.31 0.33 0.35	0.200 0.225 0.250	
Maximum Instantaneous Reverse Current (Note 1)	I _R	T _J = 25°C	T _J = 100°C	mA
(Rated dc Voltage, $V_R = 5.0 \text{ V}$) (Rated dc Voltage, $V_R = 10 \text{ V}$)		2.0 5.0	100 200	

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Mounted with Minimum Recommended Pad Size, PC Board FR4.

MBRS410LT3

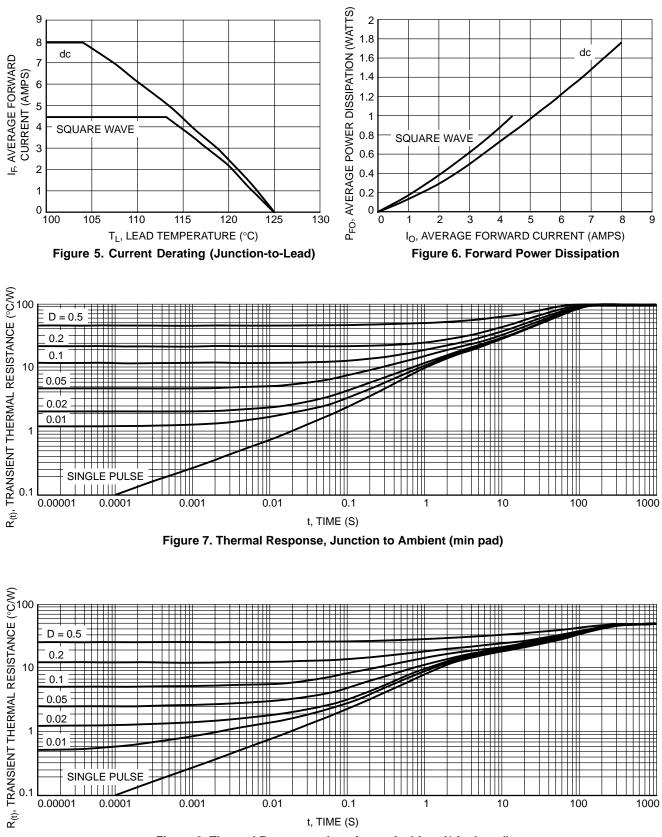


Figure 8. Thermal Response, Junction to Ambient (1 inch pad)

MBRD320, MBRD330, MBRD340, MBRD350, MBRD360

MBRD320, MBRD340 and MBRD360 are Preferred Devices

SWITCHMODE™ Power Rectifiers

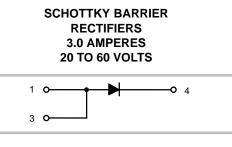
DPAK Surface Mount Package

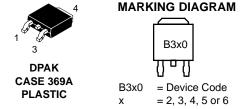
... designed for use as output rectifiers, free wheeling, protection and steering diodes in switching power supplies, inverters and other inductive switching circuits. These state-of-the-art devices have the following features:

- Extremely Fast Switching
- Extremely Low Forward Drop
- Platinum Barrier with Avalanche Guardrings

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 75 units per plastic tube
- Available in 16 mm Tape and Reel, 2500 units per reel, by adding a "T4" suffix to the part number
- Marking: B320, B330, B340, B350, B360


MAXIMUM RATINGS


Please See the Table on the Following Page

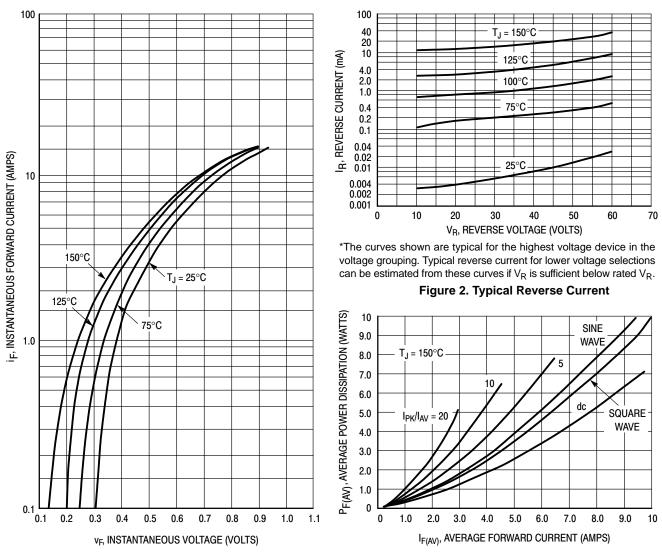
ON Semiconductor[™]

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
MBRD320	DPAK	75 Units/Rail
MBRD320RL	DPAK	1800/Tape & Reel
MBRD320T4	DPAK	2500/Tape & Reel
MBRD330	DPAK	75 Units/Rail
MBRD330RL	DPAK	1800/Tape & Reel
MBRD330T4	DPAK	2500/Tape & Reel
MBRD340	DPAK	75 Units/Rail
MBRD340RL	DPAK	1800/Tape & Reel
MBRD340T4	DPAK	2500/Tape & Reel
MBRD350	DPAK	75 Units/Rail
MBRD350RL	DPAK	1800/Tape & Reel
MBRD350T4	DPAK	2500/Tape & Reel
MBRD360	DPAK	75 Units/Rail
MBRD360RL	DPAK	1800/Tape & Reel
MBRD360T4	DPAK	2500/Tape & Reel

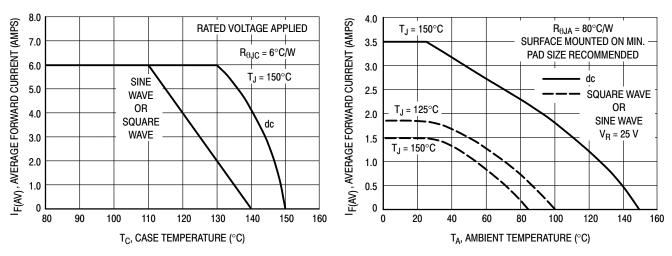
MBRD320, MBRD330, MBRD340, MBRD350, MBRD360


MAXIMUM RATINGS

- 4	Symbol		MBRD				
Rating	Symbol	320	330	340	350	360	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	30	40	50	60	Volts
Average Rectified Forward Current (T _C = +125°C, Rated V _R)	I _{F(AV)}		•	3	•	•	Amps
Peak Repetitive Forward Current, $T_C = +125^{\circ}C$ (Rated V _R , Square Wave, 20 kHz)	I _{FRM}			6			Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}			75			Amps
ak Repetitive Reverse Surge Current (2 µs, 1 kHz) I _{RRM} 1		Amp					
Operating Junction Temperature Range	TJ	-65 to +150			°C		
Storage Temperature Range	T _{stg}	-65 to +175			°C		
Voltage Rate of Change (Rated V _R)	dv/dt	/dt 10,000			V/µs		
THERMAL CHARACTERISTICS							
Maximum Thermal Resistance, Junction to Case	R _{θJC} 6			°C/W			
Maximum Thermal Resistance, Junction to Ambient (Note 1.)	$R_{\theta JA}$			80			°C/W
ELECTRICAL CHARACTERISTICS	·						
Maximum Instantaneous Forward Voltage (Note 2.) $i_F = 3 \text{ Amps}, T_C = +25^{\circ}\text{C}$ $i_F = 3 \text{ Amps}, T_C = +125^{\circ}\text{C}$ $i_F = 6 \text{ Amps}, T_C = +25^{\circ}\text{C}$ $i_F = 6 \text{ Amps}, T_C = +125^{\circ}\text{C}$	V _F			0.6 0.45 0.7 0.625			Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, $T_C = +25^{\circ}C$) (Rated dc Voltage, $T_C = +125^{\circ}C$)	i _R			mA			

1. Rating applies when surface mounted on the minimum pad size recommended.

2. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.


MBRD320, MBRD330, MBRD340, MBRD350, MBRD360

TYPICAL CHARACTERISTICS

Figure 1. Typical Forward Voltage

Figure 3. Average Power Dissipation

MBRD320, MBRD330, MBRD340, MBRD350, MBRD360

Figure 5. Current Derating, Ambient

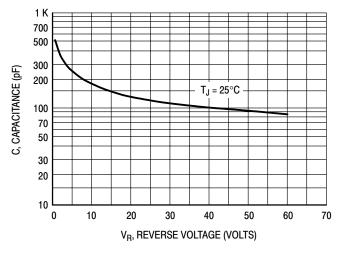


Figure 6. Typical Capacitance

MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT

MBRD620CT, MBRD640CT and MBRD660CT are Preferred Devices

SWITCHMODE™ Power Rectifiers

DPAK Surface Mount Package

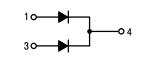
... in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

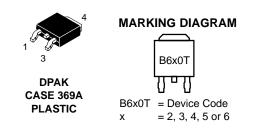
- Extremely Fast Switching
- Extremely Low Forward Drop
- Platinum Barrier with Avalanche Guardrings

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 75 units per plastic tube
- Available in 16 mm Tape and Reel, 2500 units per reel, by adding a "T4" suffix to the part number
- Marking: B620T, B630T, B640T, B650T, B660T

MAXIMUM RATINGS


Please See the Table on the Following Page



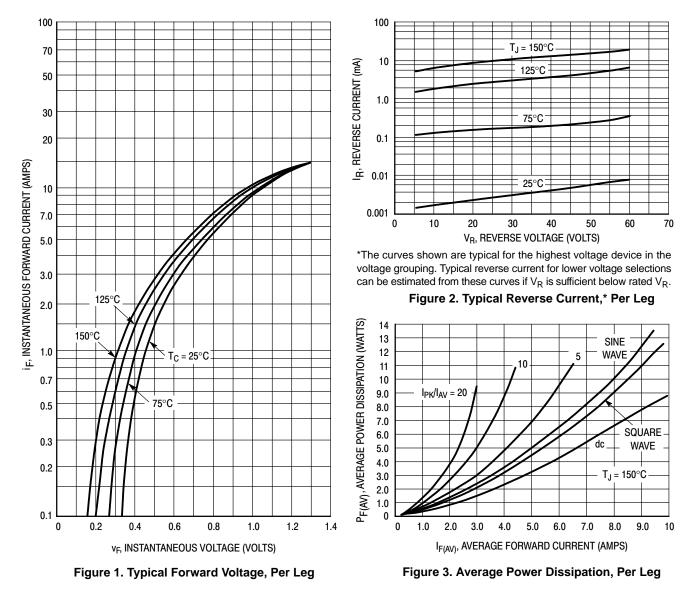
ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIERS 6.0 AMPERES 20 TO 60 VOLTS

ORDERING INFORMATION

Device	Package	Shipping
MBRD620CTT4	DPAK	2500/Tape & Reel
MBRD630CTT4	DPAK	2500/Tape & Reel
MBRD640CTT4	DPAK	2500/Tape & Reel
MBRD650CT	DPAK	75 Units/Rail
MBRD650CTT4	DPAK	2500/Tape & Reel
MBRD660CT	DPAK	75 Units/Rail
MBRD660CTRL	DPAK	1800/Tape & Reel
MBRD660CTT4	DPAK	2500/Tape & Reel


MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT

MAXIMUM RATINGS

- 4		MBRD					
Rating	Symbol	620CT	630CT	640CT	650CT	660CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	30	40	50	60	Volts
Average Rectified Forward CurrentPer Diode $T_C = 130^{\circ}C$ (Rated V_R)Per Device	I _{F(AV)}			3 6			Amps
Peak Repetitive Forward Current, T _C = 130°C (Rated V _R , Square Wave, 20 kHz) Per Diode		6					Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)		75				Amps	
Peak Repetitive Reverse Surge Current (2 µs, 1 kHz)		1				Amp	
Operating Junction Temperature		-65 to +150					°C
Storage Temperature		-65 to +175					°C
Voltage Rate of Change (Rated V _R)	dv/dt	10,000				V/µs	
THERMAL CHARACTERISTICS PER DIODE							
Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	6				°C/W	
Maximum Thermal Resistance, Junction to Ambient (Note 1.)	$R_{\theta JA}$	80				°C/W	
ELECTRICAL CHARACTERISTICS PER DIODE							
Maximum Instantaneous Forward Voltage (Note 2.) $i_F = 3 \text{ Amps}, T_C = 25^{\circ}\text{C}$ $i_F = 3 \text{ Amps}, T_C = 125^{\circ}\text{C}$ $i_F = 6 \text{ Amps}, T_C = 25^{\circ}\text{C}$ $i_F = 6 \text{ Amps}, T_C = 125^{\circ}\text{C}$				0.7 0.65 0.9 0.85			Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, $T_C = 25^{\circ}C$) (Rated dc Voltage, $T_C = 125^{\circ}C$)				0.1 15			mA

1. Rating applies when surface mounted on the minimum pad size recommended. 2. Pulse Test: Pulse Width = $300 \ \mu$ s, Duty Cycle $\le 2.0\%$.

MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT

TYPICAL CHARACTERISTICS

MBRD620CT, MBRD630CT, MBRD640CT, MBRD650CT, MBRD660CT

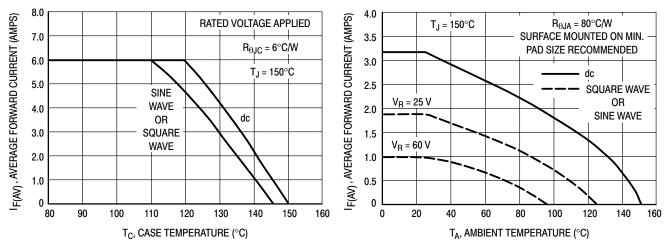


Figure 5. Current Derating, Ambient, Per Leg

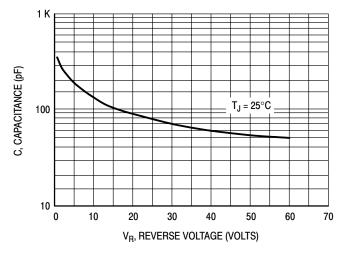


Figure 6. Typical Capacitance, Per Leg

MBRD835L

Preferred Device

SWITCHMODE™ Power Rectifier

DPAK Surface Mount Package

This SWITCHMODE power rectifier which uses the Schottky Barrier principle with a proprietary barrier metal, is designed for use as output rectifiers, free wheeling, protection and steering diodes in switching power supplies, inverters and other inductive switching circuits. This state of the art device has the following features:

- Low Forward Voltage
- 125°C Operating Junction Temperature
- Epoxy Meets UL94, VO at 1/8"
- Compact Size
- Lead Formed for Surface Mount
- **Mechanical Characteristics**

• Case: Epoxy, Molded

- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 75 units per plastic tube
- Available in 16 mm Tape and Reel, 2500 units per 13" reel, by adding a "T4" suffix to the part number
- Marking: B835L

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	35	V
Average Rectified Forward Current (At Rated V _R , T _C = 88°C)	I _{F(AV)}	8.0	A
Peak Repetitive Forward Current (At Rated V_R , Square Wave, 20 kHz, $T_C = 80^{\circ}C$)	I _{FRM}	16	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	75	A
Repetitive Avalanche Current (Current Decaying Linearly to Zero in 1 µs, Frequency Limited by T _{Jmax})	I _{AR}	2.0	A
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ	-65 to +125	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/µs

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 8.0 AMPERES 35 VOLTS

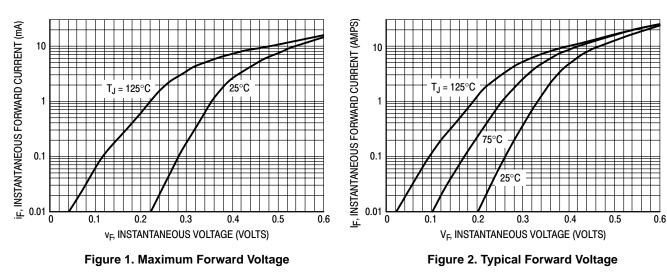
CASE 369A STYLE 3

MARKING DIAGRAM

B835L = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRD835L	DPAK	75 Units/Rail
MBRD835LT4	DPAK	2500/Tape & Reel


MBRD835L

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance — Junction to Case	$R_{\theta JC}$	6	°C/W
Thermal Resistance — Junction to Ambient (Note 1.)	R_{\thetaJA}	80	°C/W
ELECTRICAL CHARACTERISTICS	·		
Maximum Instantaneous Forward Voltage (Note 2) $(i_{-} = 8 \text{ Amps} T_{-} = 1.25^{\circ}\text{C})$	V_	0.51	Volte

Maximum Instantaneous Forward Voltage (Note 2.) ($i_F = 8 \text{ Amps}, T_C = +25^{\circ}C$) ($i_F = 8 \text{ Amps}, T_C = +125^{\circ}C$)	V _F	0.51 0.41	Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, $T_C = +25^{\circ}C$) (Rated dc Voltage, $T_C = +100^{\circ}C$)	I _R	1.4 35	mA

1. Rating applies when surface mounted on the minimum pad size recommended. 2. Pulse Test: Pulse Width = $300 \ \mu$ s, Duty Cycle $\le 2\%$.

TYPICAL CHARACTERISTICS

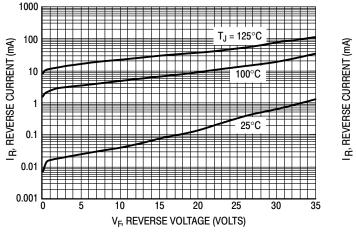
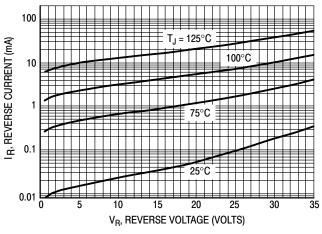
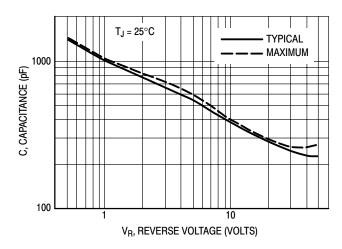
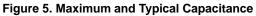
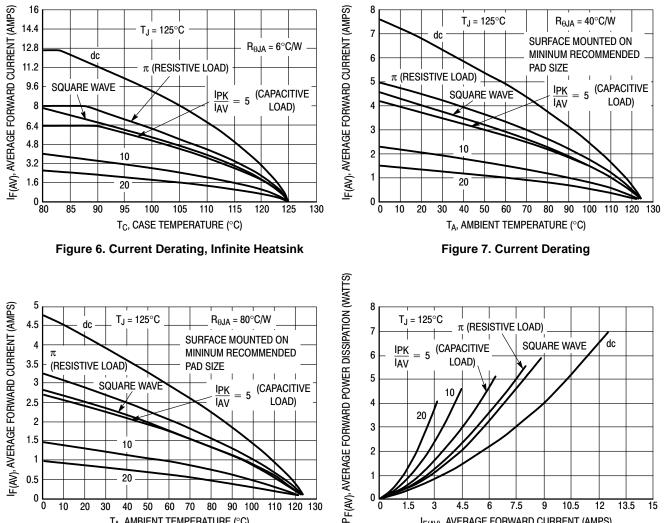


Figure 3. Maximum Reverse Current


Figure 4. Typical Reverse Current

MBRD835L

TYPICAL CHARACTERISTICS

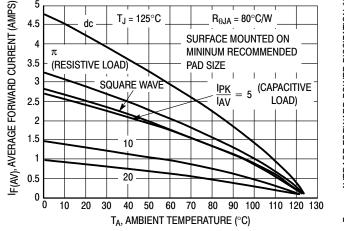


Figure 8. Current Derating, Free Air

http://onsemi.com 164

4

3

2

0

0

1.5 3 4.5

6 7.5

IF(AV), AVERAGE FORWARD CURRENT (AMPS)

Figure 9. Forward Power Dissipation

9 10.5 12 13.5 15

20

SWITCHMODE[™] Schottky Power Rectifier

DPAK Power Surface Mount Package

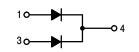
... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State of the art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies, free wheeling diode and polarity protection diodes.

- Highly Stable Oxide Passivated Junction
- Guardring for Stress Protection
- Matched Dual Die Construction -May be Paralleled for High Current Output
- High dv/dt Capability
- Short Heat Sink Tap Manufactured Not Sheared
- Very Low Forward Voltage Drop
- Epoxy Meets UL94, VO at 1/8"

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 75 units per plastic tube
- Available in 16 mm Tape and Reel, 2500 units per Reel, Add "T4" to Suffix part #
- Marking: B1035CL

MAXIMUM RATINGS


Please See the Table on the Following Page

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 10 AMPERES 35 VOLTS

CASE 369A PLASTIC

MARKING DIAGRAM

B1035CL = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRD1035CTL	DPAK	75 Units/Rail
MBRD1035CTLT4	DPAK	2500/Tape & Reel

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		V _{RRM} V _{RWM} V _R	35	Volts
Average Rectified Forward Current (At Rated V_R , $T_C = 115^{\circ}C$)	Per Leg Per Package	IO	5.0 10	Amps
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz, T_C = 115°C)	Per Leg	I _{FRM}	10	Amps
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, sing	Per Package gle phase, 60 Hz)	I _{FSM}	50	Amps
Storage / Operating Case Temperature		T _{stg,} T _c	-55 to +125	°C
Operating Junction Temperature		ТJ	-55 to +125	°C
Voltage Rate of Change (Rated V_R , $T_J = 25^{\circ}C$)		dv/dt	10,000	V/µs
HERMAL CHARACTERISTICS				
Thermal Resistance - Junction to Case	Per Leg	$R_{\theta JC}$	2.43	°C/W
Thermal Resistance - Junction to Ambient (Note 1.)	Per Leg	R _{θJA}	68	°C/W
ELECTRICAL CHARACTERISTICS				-
	Per Leg	VF	0.47 0.41 0.56 0.55	Volts
Maximum Instantaneous Reverse Current (Note 2.) see Figure 4 $(V_R = 35 V, T_J = 25^{\circ}C)$ $(V_R = 35 V, T_J = 100^{\circ}C)$ $(V_R = 17.5 V, T_J = 25^{\circ}C)$	Per Leg	I _R	2.0 30 0.20	mA

5.0

 $(V_R = 17.5 V, T_J = 25^{\circ}C)$ $(V_R = 17.5 V, T_J = 100^{\circ}C)$

1. Rating applies when using minimum pad size, FR4 PC Board 2. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2.0%.

TYPICAL CHARACTERISTICS

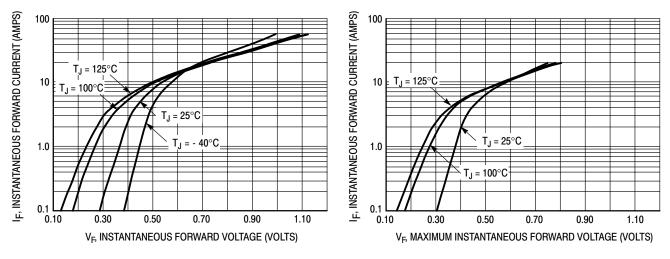


Figure 1. Typical Forward Voltage Per Leg

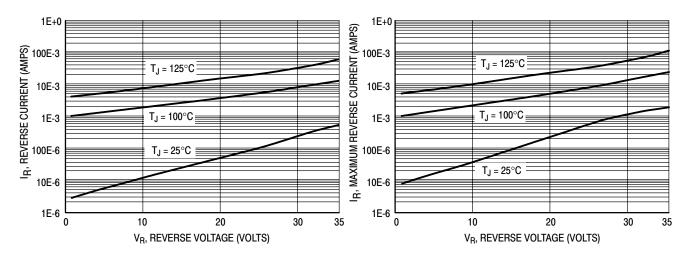
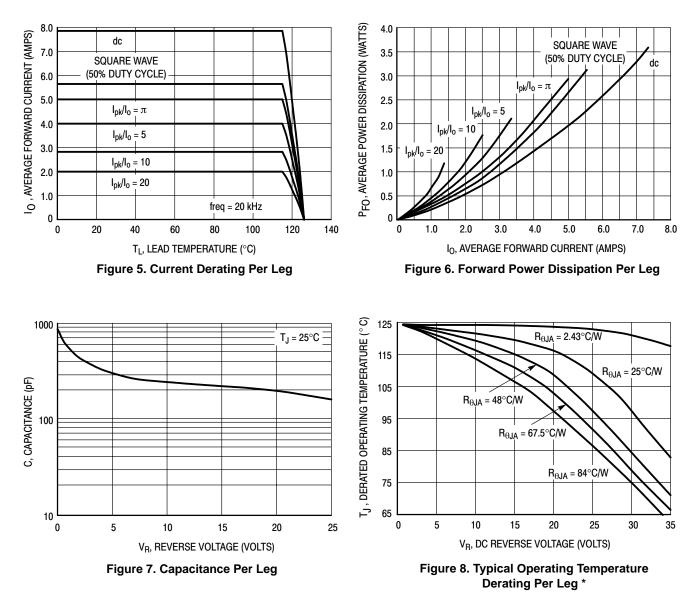



Figure 3. Typical Reverse Current Per Leg

Figure 4. Maximum Reverse Current Per Leg

* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where

r(t) = thermal impedance under given conditions,

Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

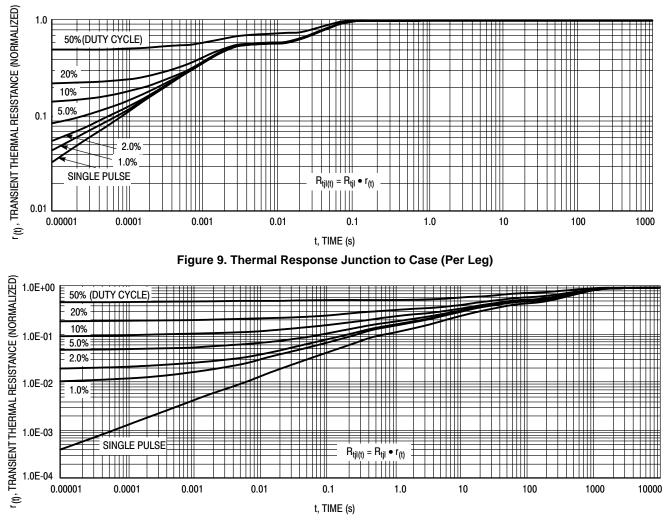


Figure 10. Thermal Response Junction to Ambient (Per Leg)

MBRB1045

Preferred Device

SWITCHMODE™ Power Rectifier

D²PAK Surface Mount Power Package

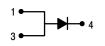
The D²PAK Power Rectifier employs the Schottky Barrier principle in a large metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for use in low voltage, high frequency switching power supplies, free wheeling diodes, and polarity protection diodes. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Epoxy Meets UL94, VO at 1/8"
- Short Heat Sink Tab Manufactured Not Sheared!
- Similar in Size to the Industry Standard TO-220 Package

Mechanical Characteristics

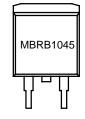
- Case: Epoxy, Molded
- Weight: 1.7 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Available in 24 mm Tape and Reel, 800 units per 13" reel by adding a "T4" suffix to the part number
- Marking: MBRB1045

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	45	Volts
Average Rectified Forward Current (Rated V _R) T _C = 135°C	I _{F(AV)}	10	Amps
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 135°C	I _{FRM}	20	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load condi- tions halfwave, single phase, 60 Hz)	I _{FSM}	150	Amps
Operating Junction and Storage Tem- perature Range	T _J , T _{stg}	- 65 to +150	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10000	V/µs

ON Semiconductor®

http://onsemi.com


SCHOTTKY BARRIER RECTIFIER 10 AMPERES 45 VOLTS

D²PAK CASE 418B PLASTIC

MARKING DIAGRAM

MBRB1045 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRB1045	D ² PAK	50 Units/Tube
MBRB1045T4	D ² PAK	800/Tape & Reel

Semiconductor Components Industries, LLC, 2002 April, 2002 - Rev. 2

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction to Case (Note 1.)	R _{θJC}	1.0	°C/W
— Junction to Ambient (Note 1.)	R _{θJA}	34	

ELECTRICAL CHARACTERISTICS

	V _F	0.57 0.72 0.84	Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, $TJ = 125^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	I _R	15 0.1	mA

1. When mounted using minimum recommended pad size on FR-4 board. 2. Pulse Test: Pulse Width = $300 \ \mu$ s, Duty Cycle $\leq 2.0\%$

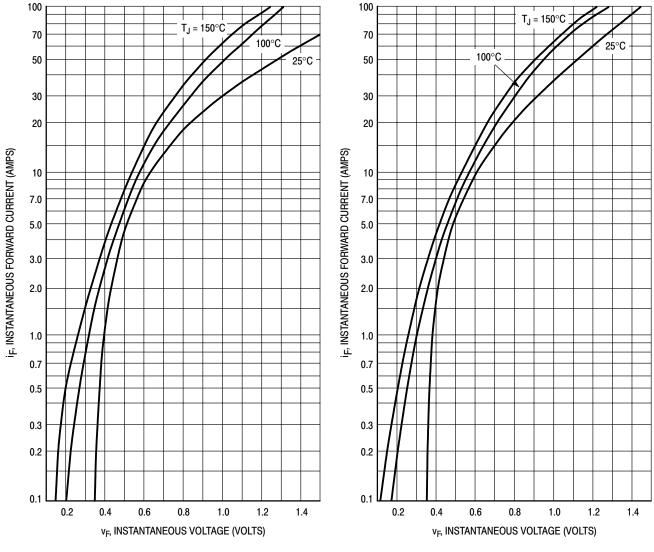
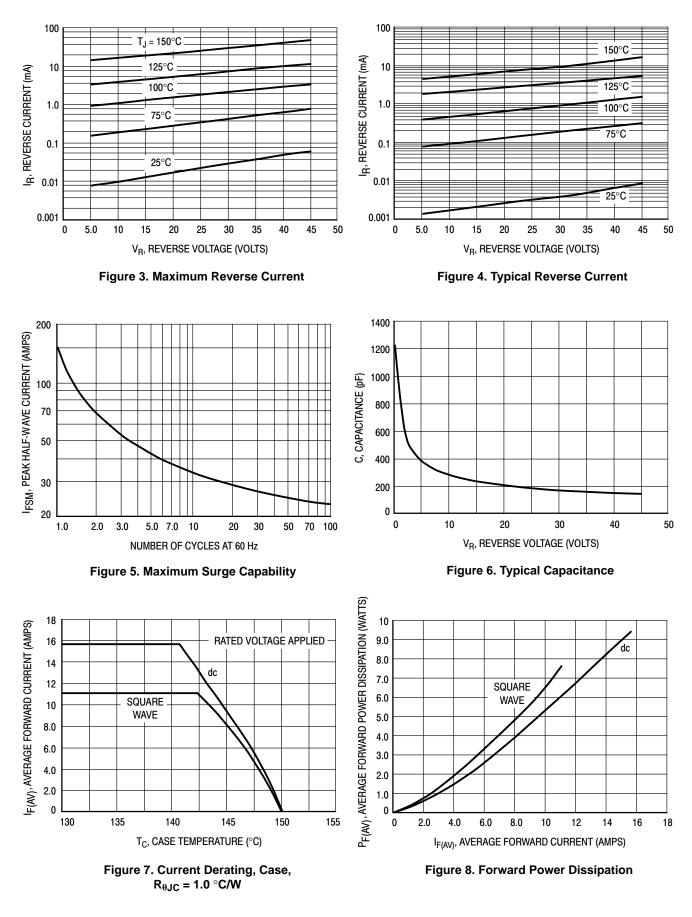



Figure 1. Maximum Forward Voltage

Figure 2. Typical Forward Voltage

MBRB1045

MBRB1545CT

Preferred Device

SWITCHMODE™ Power Rectifier

D²PAK Surface Mount Power Package

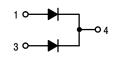
The D²PAK Power Rectifier employs the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Center-Tap Configuration
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Epoxy Meets UL94, VO at 1/8"
- Short Heat Sink Tab Manufactured Not Sheared!
- Similar in Size to the Industry Standard TO-220 Package

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.7 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Available in 24 mm Tape and Reel, 800 units per 13" reel by adding a "T4" suffix to the part number
- Marking: B1545T

MAXIMUM RATINGS (Per Leg)


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	45	V
Average Rectified Forward Current (Rated V_R , T_C = 105°C) Total Device	I _{F(AV)}	7.5 15	A
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz, T _C = 105°C)	I _{FRM}	15	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	A
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	1.0	A
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	-65 to +150	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/μs



ON Semiconductor®

http://onsemi.com

CASE 418B STYLE 3

MARKING DIAGRAM

B1545 = Device Code

ORDERING INFORMATION

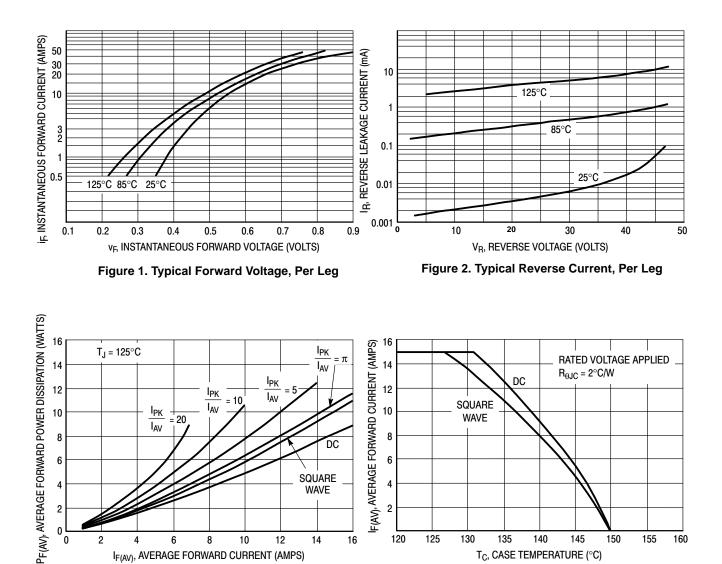
Device	Package	Shipping
MBRB1545CT	D ² PAK	50/Rail
MBRB1545CTT4	D ² PAK	800/Tape & Reel

MBRB1545CT

THERMAL CHARACTERISTICS (Per Leg)

Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction to Case	R _{θJC}	2.0	°C/W
— Junction to Ambient (Note 3)	R _{θJA}	50	

ELECTRICAL CHARACTERISTICS (Per Leg)


V _F		Volts
	0.57	
	0.72	
	0.84	
i _R		mA
	15	
	0.1	
-		i _R 0.57 0.72 0.84 15

When mounted using minimum recommended pad size on FR-4 board. 3.

4. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

IF(AV), AVERAGE FORWARD CURRENT (AMPS)

Figure 3. Typical Forward Power Dissipation

T_C, CASE TEMPERATURE (°C)

Figure 4. Current Derating, Case

MBRB2060CT

Preferred Device

SWITCHMODE™ Power Rectifier

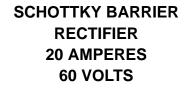
D²PAK Surface Mount Power Package

Employs the use of the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

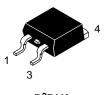
- Package Designed for Power Surface Mount Applications
- Center-Tap Configuration
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Epoxy Meets UL94, Vo at 1/8"
- Short Heat Sink Tab Manufactured Not Sheared!
- Similar in Size to Industry Standard TO-220 Package

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.7 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Available in 24 mm Tape and Reel, 800 units per 13" reel by adding a "T4" suffix to the part number
- Marking: B2060T


MAXIMUM RATINGS (Per Leg)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	60	V
Average Rectified Forward Current (Rated V _R , T _C = 110°C) Total Device	I _{F(AV)}	10 20	A
Peak Repetitive Forward Current (Rated V_R , Square Wave, 20 kHz, $T_C = 100^{\circ}C$)	I _{FRM}	20	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	A
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	0.5	A
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	-65 to +150	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/µs



ON Semiconductor®

http://onsemi.com

D²PAK CASE 418B STYLE 3

MARKING DIAGRAM

B2060T = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRB2060CT	D ² PAK	50/Rail
MBRB2060CTT4	D ² PAK	800/Tape & Reel

MBRB2060CT

THERMAL CHARACTERISTICS (Per Leg)

Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction to Case — Junction to Ambient (Note 1.)	$R_{ heta JC}$ $R_{ heta JA}$	2.0 50	°C/W

ELECTRICAL CHARACTERISTICS (Per Leg)

Maximum Instantaneous Forward Voltage (Note 2.) ($i_F = 20 \text{ Amps}, T_J = 125^{\circ}\text{C}$) ($i_F = 20 \text{ Amps}, T_J = 25^{\circ}\text{C}$)	۷F	0.85 0.95	Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, $T_J = 125^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	i _R	150 0.15	mA

1. When mounted using minimum recommended pad size on FR-4 board.

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

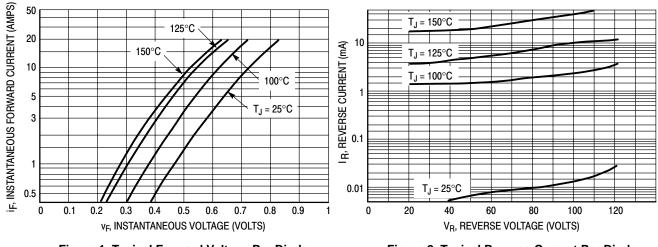
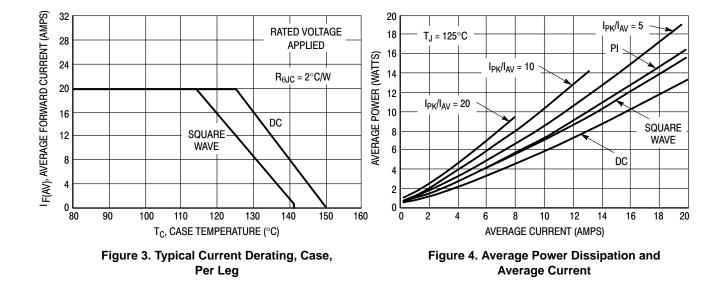



Figure 1. Typical Forward Voltage Per Diode

Figure 2. Typical Reverse Current Per Diode

MBRB20100CT

Preferred Device

SWITCHMODE™ Power Rectifier

D²PAK Surface Mount Power Package

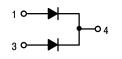
The D²PAK Power Rectifier employs the use of the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

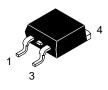
- Package Designed for Power Surface Mount Applications
- Center-Tap Configuration
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Epoxy Meets UL94, Vo at 1/8"
- Short Heat Sink Tab Manufactured Not Sheared!
- Similar in Size to Industry Standard TO-220 Package

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.7 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Available in 24 mm Tape and Reel, 800 units per 13" reel by adding a "T4" suffix to the part number
- Marking: B20100

MAXIMUM RATINGS (Per Leg)


Bating Symbol Value II				
Rating	Symbol	Value	Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	100	V	
Average Rectified Forward Current (Rated V_R , T_C = 110°C) Total Device	I _{F(AV)}	10 20	A	
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz, T _C = 100°C)	I _{FRM}	20	A	
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	A	
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	0.5	A	
Storage Temperature Range	T _{stg}	-65 to +175	°C	
Operating Junction Temperature	TJ	-65 to +150	°C	
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/μs	



ON Semiconductor®

http://onsemi.com

D²PAK CASE 418B STYLE 3

MARKING DIAGRAM

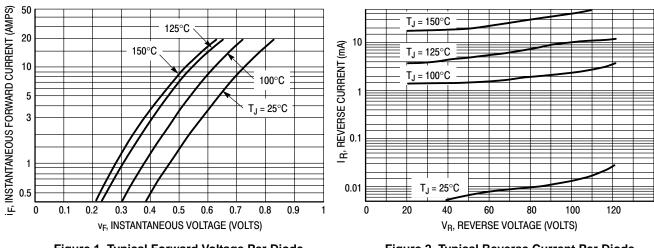
B20100 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRB20100CT	D ² PAK	50/Rail
MBRB20100CTT4	D ² PAK	800/Tape & Reel

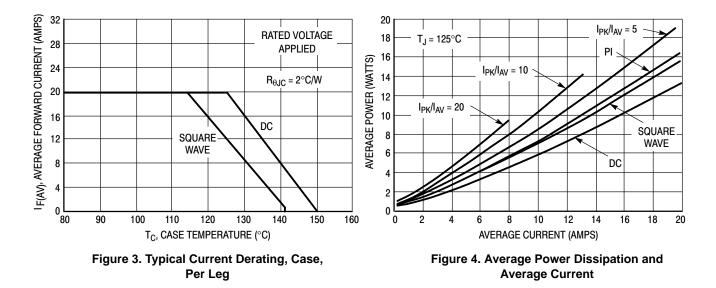
MBRB20100CT

THERMAL CHARACTERISTICS (Per Leg)


Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction to Case — Junction to Ambient (Note 1.)	$R_{ heta JC}$ $R_{ heta JA}$	2.0 50	°C/W

ELECTRICAL CHARACTERISTICS (Per Leg)

Maximum Instantaneous Forward Voltage (Note 2.)	VF		Volts
$(i_F = 10 \text{ Amp}, T_C = 125^{\circ}C)$ $(i_F = 10 \text{ Amp}, T_C = 25^{\circ}C)$ $(i_F = 20 \text{ Amp}, T_C = 125^{\circ}C)$ $(i_F = 20 \text{ Amp}, T_C = 25^{\circ}C)$		0.75 0.85 0.85 0.95	
$\label{eq:maximum lnstantaneous Reverse Current (Note 2.) \\ (Rated dc Voltage, T_J = 125^{\circ}C) \\ (Rated dc Voltage, T_J = 25^{\circ}C) \\ \end{array}$	i _R	6.0 0.1	mA


1. When mounted using minimum recommended pad size on FR-4 board.

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MBRB20200CT

Preferred Device

SWITCHMODE™ Power Rectifier

Dual Schottky Rectifier

... using Schottky Barrier technology with a platinum barrier metal. This state-of-the-art device is designed for use in high frequency switching power supplies and converters with up to 48 volt outputs. They block up to 200 volts and offer improved Schottky performance at frequencies from 250 kHz to 5.0 MHz.

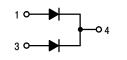
• 200 Volt Blocking Voltage

- Low Forward Voltage Drop
- Guardring for Stress Protection and High dv/dt Capability (10,000 V/µs)
- Dual Diode Construction Terminals 1 and 3 Must be Connected for Parallel Operation at Full Rating

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.7 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Available in 24 mm Tape and Reel, 800 units per 13" reel by adding a "T4" suffix to the part number
- Marking: B20200

MAXIMUM RATINGS (Per Leg)


Rating	Symbol	Value	Unit		
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	V		
Average Rectified Forward Current (At Rated V _R , T _C = 134°C) Per Device Per Leg	I _{F(AV)}	10 20	A		
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz, T _C = +137°C) Per Leg	I _{FRM}	20	A		
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	A		
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	1.0	A		
Storage Temperature Range	T _{stg}	-65 to +175	°C		
Operating Junction Temperature	Т _Ј	-65 to +150	°C		
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/μs		



ON Semiconductor®

http://onsemi.com

CASE 418B STYLE 3

MARKING DIAGRAM

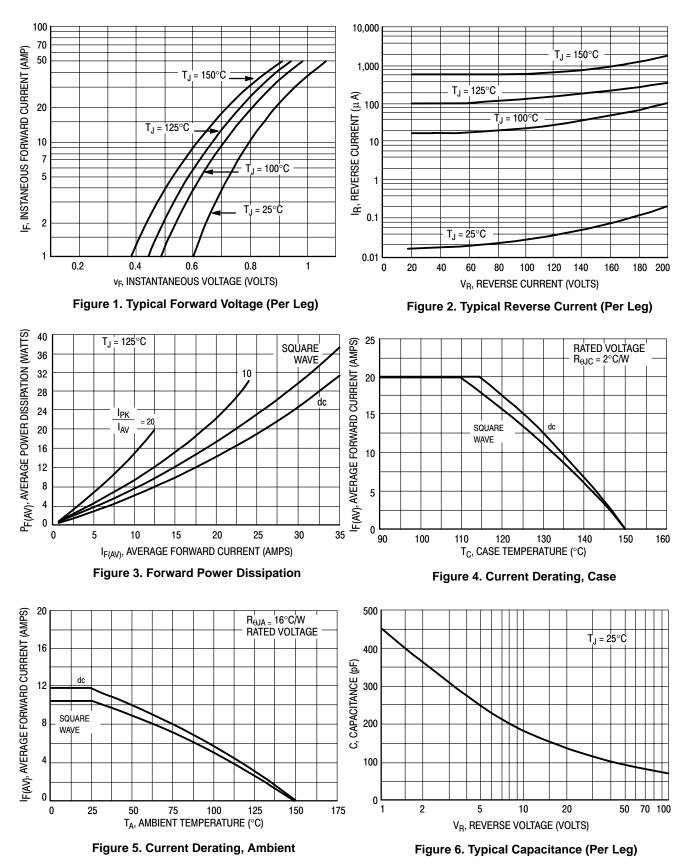
B20200 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRB20200CT	D ² PAK	50/Rail
MBRB20200CTT4	D ² PAK	800/Tape & Reel

MBRB20200CT

THERMAL CHARACTERISTICS (Per Leg)


Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction to Case	R_{\thetaJC}	2.0	°C/W

ELECTRICAL CHARACTERISTICS (Per Leg)

Maximum Instantaneous Forward Voltage (Note 1.)	V _F		Volts
(I _F = 10 Amps, T _C = 25°C)		0.9	
(I _F = 10 Amps, T _C = 125°C)		0.8	
$(I_F = 20 \text{ Amps}, T_C = 25^{\circ}C)$		1.0	
$(I_F = 20 \text{ Amps}, T_C = 125^{\circ}C)$		0.9	
Maximum Instantaneous Reverse Current (Note 1.)	I _R		mA
(Rated dc Voltage, $T_C = 25^{\circ}C$)		1.0	
(Rated dc Voltage, $T_C = 125^{\circ}C$)		50	
DYNAMIC CHARACTERISTICS (Per Leg)			
Capacitance (V_R = -5.0 V, T_C = 25°C, Frequency = 1.0 MHz)	CT	500	pF

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MBRB20200CT

MBRB2515L

Preferred Device

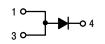
SWITCHMODE™ Power Rectifier OR'ing Function Diode

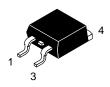
D²PAK Surface Mount Power Package

The D²PAK Power Rectifier employs the Schottky Barrier principle in a large metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for use in low voltage, high frequency switching power supplies, free wheeling diodes, and polarity protection diodes. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Low Forward Voltage
- 100°C Operating Junction Temperature
- Epoxy Meets UL94, VO at 1/8"
- Short Heat Sink Tab Manufactured Not Sheared!
- Similar in Size to the Industry Standard TO-220 Package
- **Mechanical Characteristics**
- Case: Epoxy, Molded
- Weight: 1.7 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Available in 24 mm Tape and Reel, 800 units per 13" reel by adding a "T4" suffix to the part number
- Marking: B2515L

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	15	V
Average Rectified Forward Current (Rated V_R , T_C = 90°C)	I _{F(AV)}	25	A
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz, T _C = 100°C)	I _{FRM}	30	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	A
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ	100	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/µs



ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 25 AMPERES 15 VOLTS

D²PAK CASE 418B STYLE 3

MARKING DIAGRAM

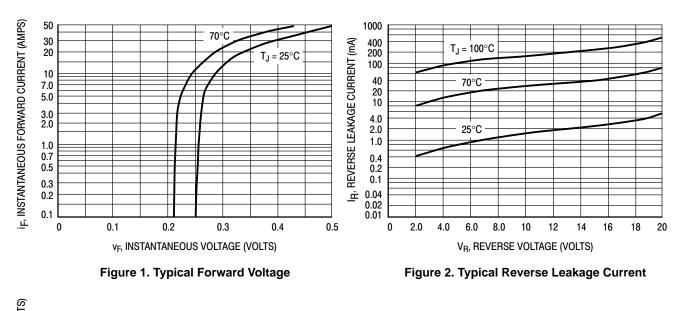
B2515L = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRB2515L	D ² PAK	50/Rail
MBRB2515LT4	D ² PAK	800/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction to Case	$R_{ heta JC}$	1.0	°C/W
— Junction to Ambient (Note 1.)	$R_{ heta JA}$	50	

ELECTRICAL CHARACTERISTICS

	v _F	0.28 0.42 0.45	Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, $T_J = 70^{\circ}$ C) (Rated dc Voltage, $T_J = 25^{\circ}$ C)	۱ _R	200 15	mA

1. When mounted using minimum recommended pad size on FR-4 board.

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

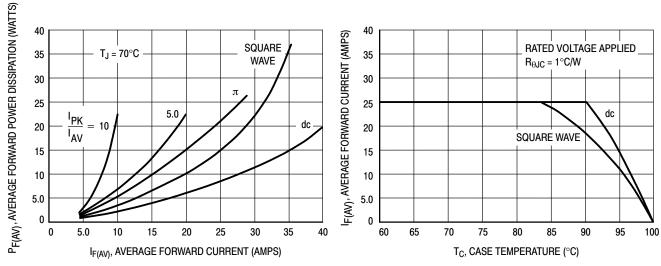


Figure 3. Typical Forward Power Dissipation

MBRB2535CTL

Preferred Device

SWITCHMODE™ Power Rectifier

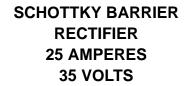
D²PAK Surface Mount Power Package

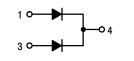
The D²PAK Power Rectifier employs the Schottky Barrier principle in a large metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for use in low voltage, high frequency switching power supplies, free wheeling diodes, and polarity protection diodes. These state-of-the-art devices have the following features:

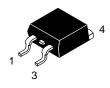
- Center-Tap Configuration
- Guardring for Stress Protection
- Low Forward Voltage
- 125°C Operating Junction Temperature
- Epoxy Meets UL94, VO at 1/8"
- Short Heat Sink Tab Manufactured Not Sheared!
- Similar in Size to the Industry Standard TO-220 Package

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.7 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Available in 24 mm Tape and Reel, 800 units per 13" reel by adding a "T4" suffix to the part number
- Marking: B2535L


MAXIMUM RATINGS


Please See the Table on the Following Page



ON Semiconductor®

http://onsemi.com

D²PAK CASE 418B STYLE 3

MARKING DIAGRAM

B2535L = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRB2535CTL	D ² PAK	50/Rail
MBRB2535CTLT4	D ² PAK	800/Tape & Reel

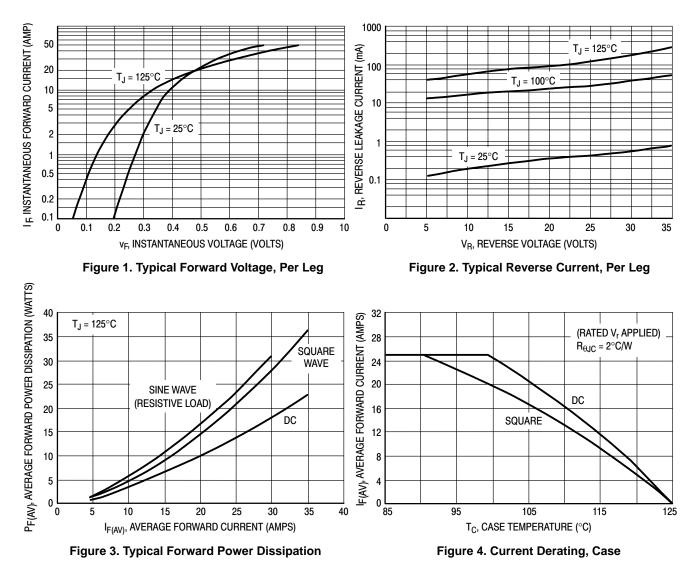
Preferred devices are recommended choices for future use and best overall value.

MBRB2535CTL

MAXIMUM RATINGS (Per Leg)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	35	V
Average Rectified Forward Current (Rated V_R , T_C = 110°C)	I _{F(AV)}	12.5	A
Peak Repetitive Forward Current (Rated V_R , Square Wave, 20 kHz, $T_C = 90^{\circ}C$)	I _{FRM}	25	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	IFSM	150	A
Peak Repetitive Reverse Surge Current (2.0 µs, 1.0 kHz)	I _{RRM}	1.0	А
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ	-65 to +125	°C
Voltage Rate of Change (Rated V _R)	dv/dt	10,000	V/μs

THERMAL CHARACTERISTICS (Per Leg)


Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction to Case	R _{θJC}	2.0	°C/W
— Junction to Ambient (Note 1.)	R _{θJA}	50	

ELECTRICAL CHARACTERISTICS (Per Leg)

Maximum Instantaneous Forward Voltage (Note 2.)	V _F		Volts
(i _F = 25 Amps, T _J = 25°C)		0.55	
(i _F = 12.5 Amps, T _J = 125°C)		0.41	
$(i_F = 12.5 \text{ Amps}, T_J = 25^{\circ}\text{C})$		0.47	
Maximum Instantaneous Reverse Current (Note 2.)	I _R		mA
(Rated dc Voltage, $T_J = 125^{\circ}C$)		500	
(Rated dc Voltage, $T_J = 25^{\circ}C$)		10	

1. When mounted using minimum recommended pad size on FR-4 board. 2. Pulse Test: Pulse Width = $300 \ \mu$ s, Duty Cycle $\leq 2.0\%$.

MBRB2535CTL

MBRB2545CT

Preferred Device

SWITCHMODE™ Power Rectifier

D²PAK Surface Mount Power Package

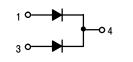
The D²PAK Power Rectifier employs the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

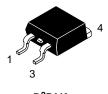
- Center-Tap Configuration
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Epoxy Meets UL94, VO at 1/8"
- Short Heat Sink Tab Manufactured Not Sheared!
- Similar in Size to the Industry Standard TO-220 Package

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.7 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Available in 24 mm Tape and Reel, 800 units per 13" reel by adding a "T4" suffix to the part number
- Marking: B2545T

MAXIMUM RATINGS (Per Leg)


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	45	V
Average Rectified Forward Current (Rated V_R , T_C = 130°C) Total Device	I _{F(AV)}	15 30	A
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz, T _C = 130°C)	I _{FRM}	30	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	A
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	1.0	A
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	-65 to +150	°C
Voltage Rate of Change (Rated V _R)	dv/dt	10,000	V/μs



ON Semiconductor®

http://onsemi.com

D²PAK CASE 418B STYLE 3

MARKING DIAGRAM

B2545T = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRB2545CT	D ² PAK	50/Rail
MBRB2545CTT4	D ² PAK	800/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

MBRB2545CT

THERMAL CHARACTERISTICS (Per Leg)

Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction to Case — Junction to Ambient (Note 1.)	$R_{ extsf{ heta}JC}$ $R_{ hetaJA}$	1.5 50	°C/W

ELECTRICAL CHARACTERISTICS (Per Leg)

Maximum Instantaneous Forward Voltage (Note 2.) ($i_F = 30 \text{ Amps}, T_J = 125^{\circ}C$) ($i_F = 30 \text{ Amps}, T_J = 25^{\circ}C$)	۷F	0.73 0.82	Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, $T_J = 125^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)		40 0.2	mA

1. When mounted using minimum recommended pad size on FR-4 board.

2. Pulse Test: Pulse Width = $300 \ \mu$ s, Duty Cycle $\leq 2.0\%$.

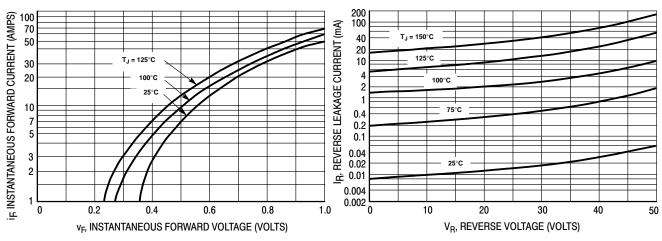


Figure 1. Typical Forward Voltage, Per Leg

Figure 2. Typical Reverse Current, Per Leg

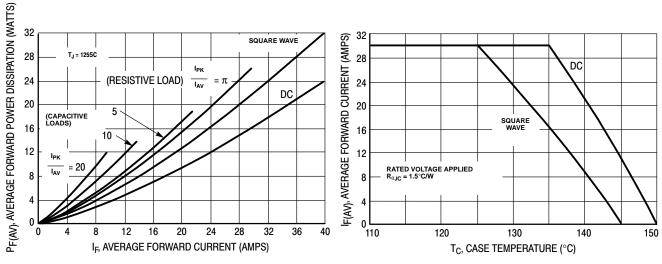


Figure 4. Current Derating, Case

Preferred Device

SWITCHMODE™ Power Rectifier

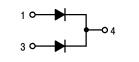
Using the Schottky Barrier principle with a proprietary barrier metal. These state-of-the-art devices have the following features:

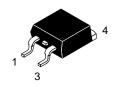
- Guardring for Stress Protection
- Maximum Die Size
- 150°C Operating Junction Temperature
- Short Heat Sink Tab Manufactured Not Sheared

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.7 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 Units per Plastic Tube
- Available in 24 mm Tape and Reel, 800 Units per 13" Reel by Adding a "T4" Suffix to the Part Number
- Marking: B3030

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V _{RRM}	30	V
Working Peak Reverse Voltage	VRRM V _{RWM}	30	v
DC Blocking Voltage	VR		
Average Rectified Forward Current (At Rated V _R , T _C = 134°C)	I _{F(AV)}		A
Per Device		30	
Per Leg		15	
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz, T _C = +137°C) Per Leg	I _{FRM}	30	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions, Halfwave, Single Phase, 60 Hz)	I _{FSM}	200	A
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	2.0	A
Storage Temperature Range	T _{stg}	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +150	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/µs
Reverse Energy (Unclamped Inductive Surge) (Inductance = 3 mH, T _C = 25°C)	W	100	mJ



ON Semiconductor®

http://onsemi.com

D²PAK CASE 418B STYLE 3

MARKING DIAGRAM

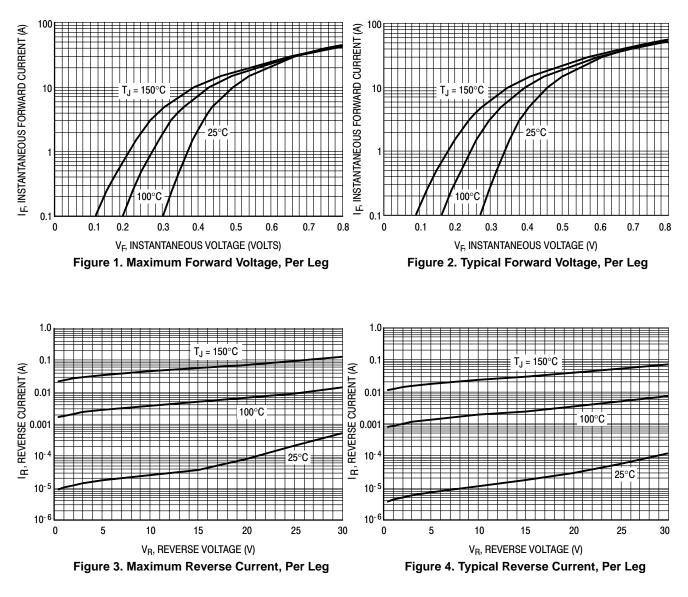
B3030 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRB3030CT	D ² PAK	50/Rail
MBRB3030CTT4	D ² PAK	800/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS (Per Leg)


Characteristic	Symbol	Value	Unit
Thermal Resistance — Junction to Case — Junction to Ambient (Note 1.)	$R_{ heta JC} \ R_{ heta JA}$	1.0 50	°C/W

ELECTRICAL CHARACTERISTICS (Per Leg)

· _ • •			
Maximum Instantaneous Forward Voltage (Note 2.), Per Leg	V _F		Volts
(I _F = 15 Amps, T _C = +25°C)		0.54	
(I _F = 15 Amps, T _C = +150°C)		0.47	
$(I_{F} = 30 \text{ Amps}, T_{C} = +25^{\circ}\text{C})$		0.67	
(I _F = 30 Amps, T _C = +150°C)		0.66	
Maximum Instantaneous Reverse Current (Note 2.), Per Leg	I _R		mA
(Rated dc Voltage, $T_C = +25^{\circ}C$)		0.6	
(Reverse Voltage = 10 V, T _C = +150°C)		46	
(Rated dc Voltage, $T_C = +150^{\circ}C$)		145	

1. When mounted using minimum recommended pad size on FR-4 board. 2. Pulse Test: Pulse Width = $300 \ \mu$ s, Duty Cycle $\leq 2.0\%$.

ELECTRICAL CHARACTERISTICS

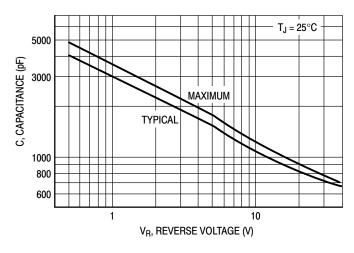
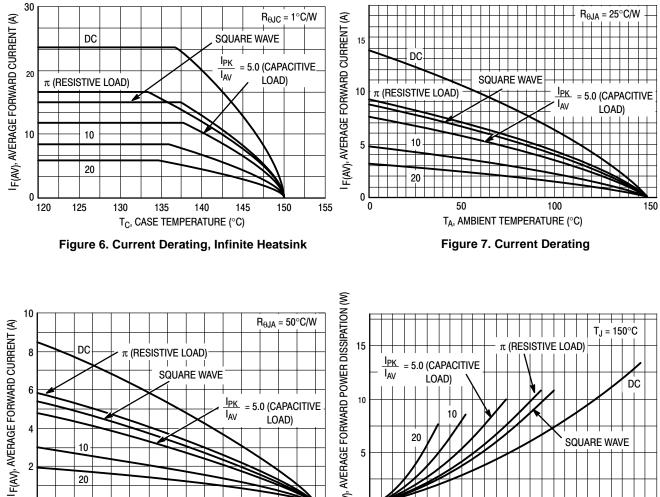
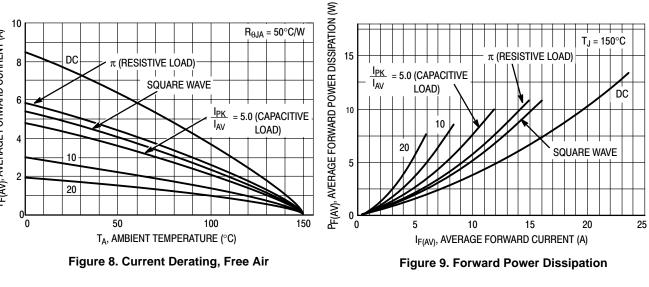




Figure 5. Capacitance

TYPICAL CHARACTERISTICS

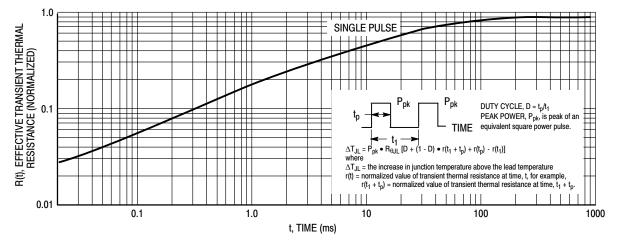


Figure 10. Thermal Response

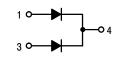
SWITCHMODE™ Power Rectifier

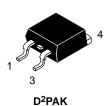
... using the Schottky Barrier principle with a proprietary barrier metal. These state-of-the-art devices have the following features:

Features:

- Dual Diode Construction -May be Paralleled for Higher Current Output
- Guardring for Stress Protection
- Low Forward Voltage Drop
- 125°C Operating Junction Temperature
- Maximum Die Size
- Short Heat Sink Tab Manufactured Not Sheared!

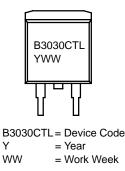
MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	V
Average Rectified Forward Current (At Rated V_R , T_C = 115°C) Per Device	Ι _Ο	15 30	A
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz, T _C = 115°C)	I _{FRM}	30	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	300	A
Peak Repetitive Reverse Surge Current (1.0 μs, 1.0 kHz)	I _{RRM}	2.0	A
Storage Temperature Range	T _{stg}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +125	°C
Voltage Rate of Change (Rated V_R , $T_J = 25^{\circ}C$)	dV/dt	10,000	V/µs
Reverse Energy, Unclamped Inductive Surge $(T_J = 25^{\circ}C, L = 3.0 \text{ mH})$	E _{AS}	224.5	mJ



ON Semiconductor®

http://onsemi.com


SCHOTTKY BARRIER RECTIFIER 30 AMPERES 30 VOLTS

CASE 418B PLASTIC

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
MBRB3030CTL	D ² PAK	50/Rail

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Ambient (Note 1.)	R_{\thetaJA}	50	°C/W
Thermal Resistance, Junction to Case	$R_{ ext{ heta}JC}$	1.0	°C/W

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 2.) $(I_F = 15 \text{ A}, T_J = 25^{\circ}\text{C})$ $(I_F = 30 \text{ A}, T_J = 25^{\circ}\text{C})$	V _F	0.44 0.51	V
Maximum Instantaneous Reverse Current (Note 2.)	I _R		mA
(Rated V_R , $T_J = 25^{\circ}C$)		2.0	
(Rated V _R , T _J = 125°C)		195	

1. Mounted using minimum recommended pad size on FR-4 board.

2. Pulse Test: Pulse Width = 250 μ s, Duty Cycle \leq 2.0%.

All device data is "Per Leg" except where noted.

Figure 1. Typical Forward Voltage

Figure 2. Maximum Forward Voltage

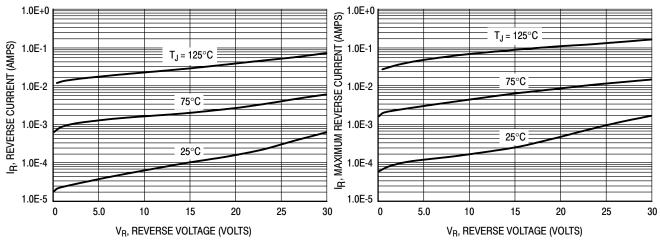


Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

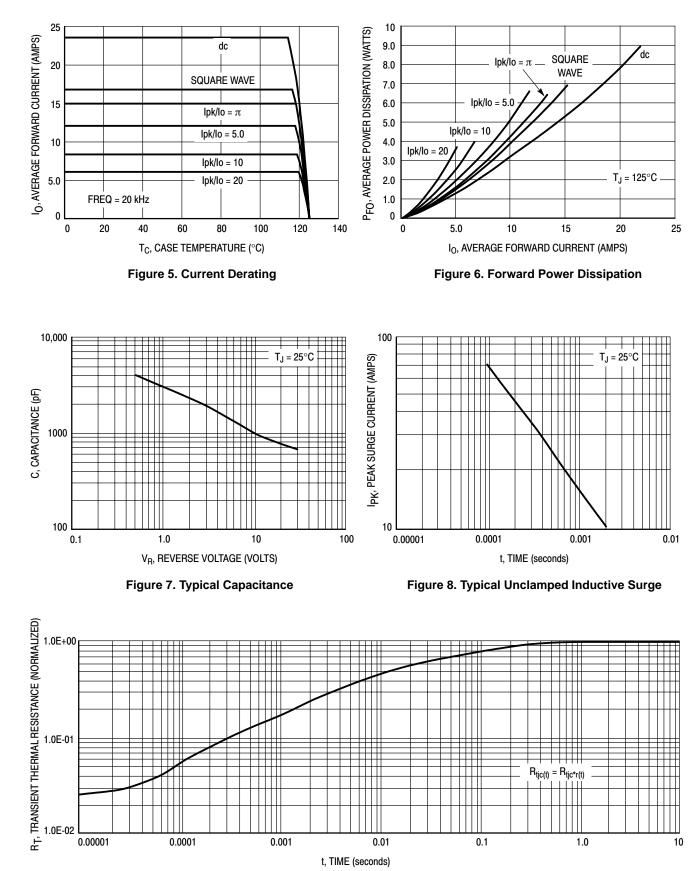


Figure 9. Typical Thermal Response

Modeling Reverse Energy Characteristics of Power Rectifiers

Prepared by: David Shumate & Larry Walker ON Semiconductor Products Sector

ABSTRACT

Power semiconductor rectifiers are used in a variety of applications where the reverse energy requirements often vary dramatically based on the operating conditions of the application circuit. A characterization method was devised using the Unclamped Inductive Surge (UIS) test technique. By testing at only a few different operating conditions (i.e. different inductor sizes) a safe operating range can be established for a device. A relationship between peak avalanche current and inductor discharge time was established. Using this relationship and circuit parameters, the part applicability can be determined. This technique offers a power supply designer the total operating conditions for a device as opposed to the present single-data-point approach.

INTRODUCTION

In today's modern power supplies, converters and other switching circuitry, large voltage spikes due to parasitic inductance can propagate throughout the circuit, resulting in catastrophic device failures. Concurrent with this, in an effort to provide low-loss power rectifiers, i.e., devices with lower forward voltage drops, Schottky technology is being applied to devices used in this switching power circuitry. This technology lends itself to lower reverse breakdown voltages. This combination of high voltage spikes and low reverse breakdown voltage devices can lead to reverse energy destruction of power rectifiers in their applications. This phenomena, however, is not limited to just Schottky technology.

In order to meet the challenges of these situations, power semiconductor manufacturers attempt to characterize their devices with respect to reverse energy robustness. The typical reverse energy specification, if provided at all, is usually given as energy-to-failure (mJ) with a particular inductor specified for the UIS test circuit. Sometimes the peak reverse test current is also specified. Practically all reverse energy characterizations are performed using the UIS test circuit shown in Figure 10. Typical UIS voltage and current waveforms are shown in Figure 11.

In order to provide the designer with a more extensive characterization than the above mentioned one-point approach, a more comprehensive method for characterizing these devices was developed. A designer can use the given information to determine the appropriateness and safe operating area (SOA) of the selected device.

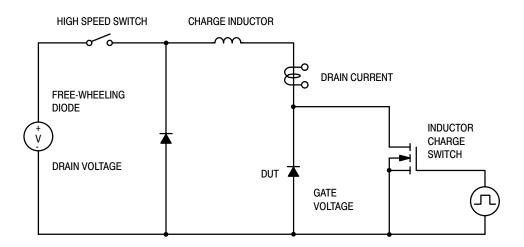
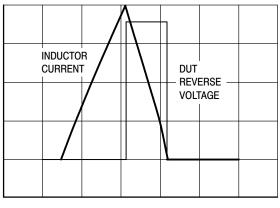



Figure 10. Simplified UIS Test Circuit

Suggested Method of Characterization

TIME (s)

Figure 11. Typical Voltage and Current UIS Waveforms

Utilizing the UIS test circuit in Figure 10, devices are tested to failure using inductors ranging in value from 0.01 to 159 mH. The reverse voltage and current waveforms are acquired to determine the exact energy seen by the device and the inductive current decay time. At least 4 distinct inductors and 5 to 10 devices per inductor are used to generate the characteristic current versus time relationship. This relationship when coupled with the application circuit conditions, defines the SOA of the device uniquely for this application.

Example Application

The device used for this example was an MBR3035CT, which is a 30 A (15 A per side) forward current, 35 V reverse breakdown voltage rectifier. All parts were tested to destruction at 25°C. The inductors used for the characterization were 10, 3.0, 1.0 and 0.3 mH. The data recorded from the testing were peak reverse current (Ip), peak reverse breakdown voltage (BVR), maximum withstand energy, inductance and inductor discharge time (see Table 1). A plot of the Peak Reverse Current versus Time at device destruction, as shown in Figure 12, was generated. The area under the curve is the region of lower reverse energy or lower stress on the device. This area is known as the safe operating area or SOA.

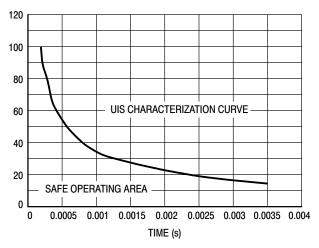


Figure 12. Peak Reverse Current versus Time for DUT

PART NO.	I _P (A)	B _{VR} (V)	ENERGY (mJ)	L (mH)	TIME (μs)
1	46.6	65.2	998.3	1	715
2	41.7	63.4	870.2	1	657
3	46.0	66.0	1038.9	1	697
4	42.7	64.8	904.2	1	659
5	44.9	64.8	997.3	1	693
6	44.1	64.1	865.0	1	687
7	26.5	63.1	1022.6	3	1261
8	26.4	62.8	1024.9	3	1262
9	24.4	62.2	872.0	3	1178
10	27.6	62.9	1091.0	3	1316
11	27.7	63.2	1102.4	3	1314
12	17.9	62.6	1428.6	10	2851
13	18.9	62.1	1547.4	10	3038
14	18.8	60.7	1521.1	10	3092
15	19.0	62.6	1566.2	10	3037
16	74.2	69.1	768.4	0.3	322
17	77.3	69.6	815.4	0.3	333
18	75.2	68.9	791.7	0.3	328
19	77.3	69.6	842.6	0.3	333
20	73.8	69.1	752.4	0.3	321
21	75.6	69.2	823.2	0.3	328
22	74.7	68.6	747.5	0.3	327
23	78.4	70.3	834.0	0.3	335
24	70.5	66.6	678.4	0.3	317
25	78.3	69.4	817.3	0.3	339

Table 1. UIS Test Data

The procedure to determine if a rectifier is appropriate, from a reverse energy standpoint, to be used in the application circuit is as follows:

- a. Obtain "Peak Reverse Current versus Time" curve from data book.
- b. Determine steady state operating voltage (OV) of circuit.
- c. Determine parasitic inductance (L) of circuit section of interest.
- d. Obtain rated breakdown voltage (BVR) of rectifier from data book.
- e. From the following relationships,

$$V = L \cdot \frac{d}{dt}i(t) \qquad \qquad I = \frac{(BVR - OV) \cdot t}{L}$$

a "designer" l versus t curve is plotted alongside the device characteristic plot.

f. The point where the two curves intersect is the current level where the devices will start to fail. A peak inductor current below this intersection should be chosen for safe operating. As an example, the values were chosen as $L = 200 \,\mu\text{H}$, $OV = 12 \, V$ and $BVR = 35 \, V$.

Figure 13 illustrates the example. Note the UIS characterization curve, the parasitic inductor current curve and the safe operating region as indicated.

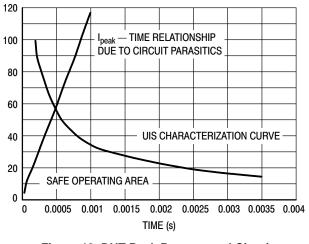


Figure 13. DUT Peak Reverse and Circuit Parasitic Inductance Current versus Time

SUMMARY

Traditionally, power rectifier users have been supplied with single-data-point reverse-energy characteristics by the supplier's device data sheet; however, as has been shown here and in previous work, the reverse withstand energy can vary significantly depending on the application. What was done in this work was to create a characterization scheme by which the designer can overlay or map their particular requirements onto the part capability and determine quite accurately if the chosen device is applicable. This characterization technique is very robust due to its statistical approach, and with proper guardbanding (6σ) can be used to give worst-case device performance for the entire product line. A "typical" characteristic curve is probably the most applicable for designers allowing them to design in their own margins.

References

- Borras, R., Aliosi, P., Shumate, D., 1993, "Avalanche Capability of Today's Power Semiconductors, "Proceedings, European Power Electronic Conference," 1993, Brighton, England
- Pshaenich, A., 1985, "Characterizing Overvoltage Transient Suppressors," <u>Powerconversion</u> <u>International, June/July</u>

Preferred Device

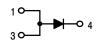
SWITCHMODE™ Power Rectifier

Using the Schottky Barrier principle with a proprietary barrier metal. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Maximum Die Size
- 150°C Operating Junction Temperature
- Short Heat Sink Tab Manufactured Not Sheared

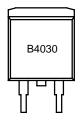
Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.7 Grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads Readily Solderable
- Shipped 50 Units per Plastic Tube
- Available in 24 mm Tape and Reel, 800 Units per 13" Reel by Adding a "T4" Suffix to the Part Number
- Marking: B4030


		1	1
Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	V
Average Rectified Forward Current (At Rated V_R) T_C = +115°C (Note 1.)	I _{F(AV)}	40	A
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz) T _C = +112°C	I _{FRM}	80	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	300	A
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	2.0	A
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature Range	ТJ	-65 to +150	°C
Voltage Rate of Change (Rated V _R)	dv/dt	10,000	V/µs
Reverse Energy (Unclamped Inductive Surge) $(T_C = 25^{\circ}C, L = 3.0 \text{ mH})$	W	600	mJ

ON Semiconductor®

http://onsemi.com


SCHOTTKY BARRIER RECTIFIER 40 AMPERES 30 VOLTS

STYLE 3

MARKING DIAGRAM

B4030 = Device Code

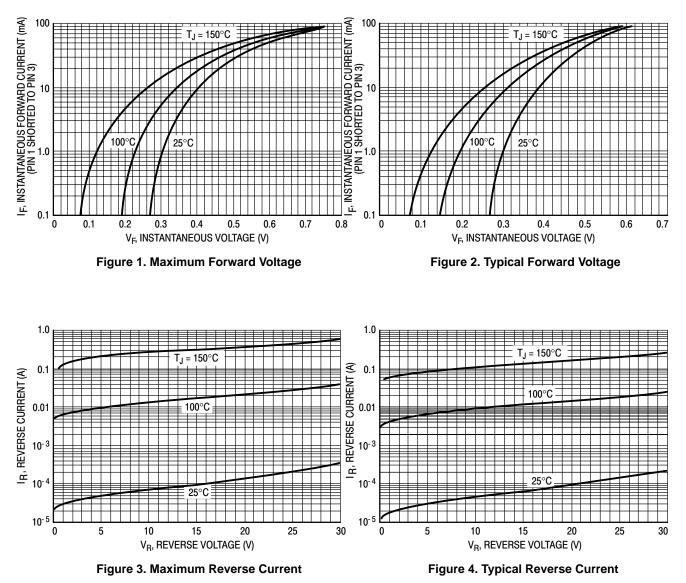
ORDERING INFORMATION

Device	Package	Shipping
MBRB4030	D ² PAK	50/Rail
MBRB4030T4	D ² PAK	800/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

1. Rating applies when pins 1 and 3 are connected.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Value	Unit
Thermal Resistance - Junction to Case	$R_{ extsf{ heta}JC}$	1.0	°C/W
Thermal Resistance - Junction to Ambient (Note 3.)	$R_{ hetaJA}$	50	°C/W

ELECTRICAL CHARACTERISTICS

	VF	0.46 0.34 0.55 0.45	V
Maximum Instantaneous Reverse Current (Note 4.), per Device (Rated DC Voltage, $T_C = +25^{\circ}C$) (Rated DC Voltage, $T_C = +125^{\circ}C$)	۱ _R	0.35 150	mA

Rating applies when pins 1 and 3 are connected.
 Rating applies when surface mounted on the miniumum pad size recommended.
 Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%

ELECTRICAL CHARACTERISTICS

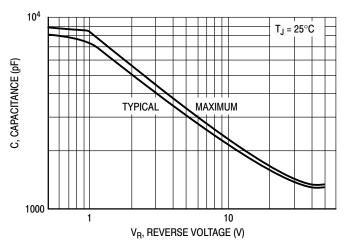


Figure 5. Maximum and Typical Capacitance

ELECTRICAL CHARACTERISTICS

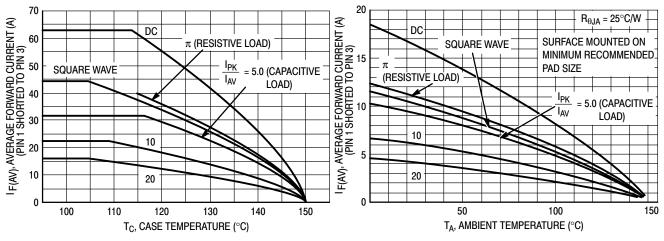
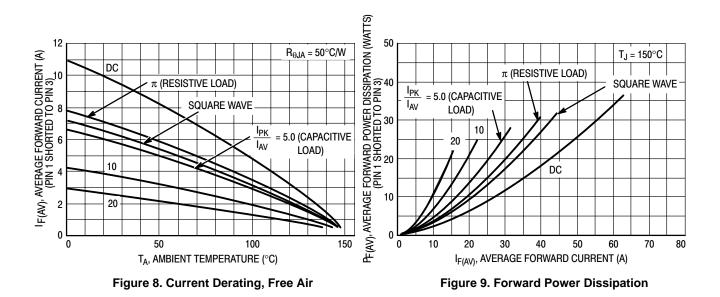



Figure 6. Current Derating, Infinite Heatsink

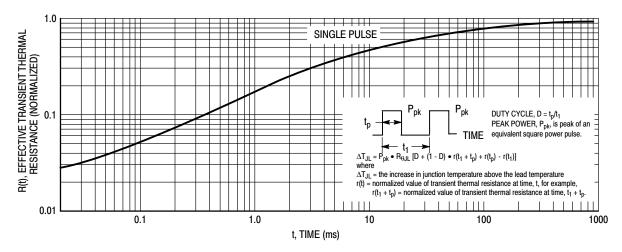


Figure 10. Thermal Response

1N5817, 1N5818, 1N5819

1N5817 and 1N5819 are Preferred Devices

Axial Lead Rectifiers

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features chrome barrier metal, epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Extremely Low V_F
- Low Stored Charge, Majority Carrier Conduction
- Low Power Loss/High Efficiency

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 1000 per bag.
- Available Tape and Reeled, 5000 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode Indicated by Polarity Band
- Marking: 1N5817, 1N5818, 1N5819

MAXIMUM RATINGS

Please See the Table on the Following Page

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIERS 1.0 AMPERE 20, 30 and 40 VOLTS

1N581x = Device Codex = 7, 8 or 9

ORDERING INFORMATION

Device	Package	Shipping
1N5817	Axial Lead	1000 Units/Bag
1N5817RL	Axial Lead	5000/Tape & Reel
1N5818	Axial Lead	1000 Units/Bag
1N5818RL	Axial Lead	5000/Tape & Reel
1N5819	Axial Lead	1000 Units/Bag
1N5819RL	Axial Lead	5000/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

1N5817, 1N5818, 1N5819

MAXIMUM RATINGS

Rating	Symbol	1N5817	1N5818	1N5819	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	30	40	V
Non-Repetitive Peak Reverse Voltage	V _{RSM}	24	36	48	V
RMS Reverse Voltage	V _{R(RMS)}	14	21	28	V
Average Rectified Forward Current (Note 1.) $(V_{R(equiv)} \le 0.2 V_{R}(dc), T_{L} = 90^{\circ}C,$ $R_{\theta JA} = 80^{\circ}C/W, P.C.$ Board Mounting, see Note 4., $T_{A} = 55^{\circ}C$)	Ι _Ο		1.0		A
Ambient Temperature (Rated V _R (dc), P _{F(AV)} = 0, R _{θJA} = 80°C/W)	T _A	85	80	75	°C
Non-Repetitive Peak Surge Current I_F (Surge applied at rated load conditions, half-wave, single phase 60 Hz, $T_L = 70^{\circ}$ C)		25	(for one cy	cle)	A
Operating and Storage Junction Temperature Range (Reverse Voltage applied)	T _J , T _{stg}	-	-65 to +12	5	°C
Peak Operating Junction Temperature (Forward Current applied)	T _{J(pk)}		150		°C

THERMAL CHARACTERISTICS (Note 1.)

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Ambient	$R_{ extsf{ heta}JA}$	80	°C/W

ELECTRICAL CHARACTERISTICS ($T_L = 25^{\circ}C$ unless otherwise noted) (Note 1.)

Characteristic		Symbol	1N5817	1N5818	1N5819	Unit
Maximum Instantaneous Forward Voltage (Note 2.)	(i _F = 0.1 A) (i _F = 1.0 A) (i _F = 3.0 A)	۷F	0.32 0.45 0.75	0.33 0.55 0.875	0.34 0.6 0.9	~
Maximum Instantaneous Reverse Current @ Rated dc Volta	age (Note 2.) (T _L = 25°C) (T _L = 100°C)	I _R	1.0 10	1.0 10	1.0 10	mA

1. Lead Temperature reference is cathode lead 1/32" from case.

2. Pulse Test: Pulse Width = $300 \ \mu$ s, Duty Cycle = 2.0%.

NOTE 3. — DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.1 V_{RWM} . Proper derating may be accomplished by use of equation (1).

$$\begin{array}{l} T_{A(max)} = T_{J(max)} - R_{\theta JA} P_{F(AV)} - R_{\theta JA} P_{R(AV)} \qquad (1) \\ \mbox{where } T_{A(max)} = \mbox{Maximum allowable ambient temperature} \\ T_{J(max)} = \mbox{Maximum allowable junction temperature} \\ (125^{\circ}C \mbox{ or the temperature at which thermal} \\ runaway occurs, whichever is lowest) \\ P_{F(AV)} = \mbox{Average forward power dissipation} \\ P_{R(AV)} = \mbox{Average reverse power dissipation} \\ R_{\theta,JA} = \mbox{Junction-to-ambient thermal resistance} \end{array}$$

Figures 1, 2, and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2).

$$T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$$
(2)

Substituting equation (2) into equation (1) yields:

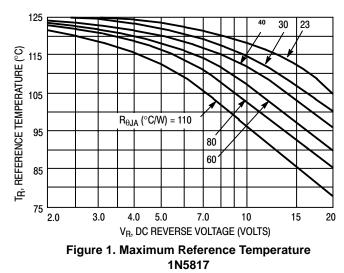
T,

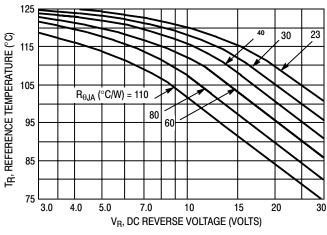
$$M_{(max)} = T_R - R_{\theta JA} P_{F(AV)}$$
(3)

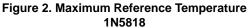
Inspection of equations (2) and (3) reveals that T_R is the ambient temperature at which thermal runaway occurs or where $T_J = 125^{\circ}$ C, when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2, and 3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2, and 3 is based upon dc conditions. For use in common rectifier circuits, Table 1 indicates suggested factors for an equivalent dc voltage to use for conservative design, that is:

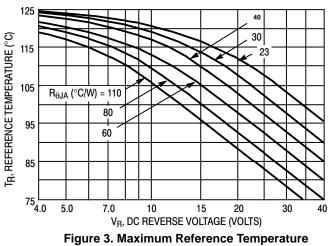
$$V_{R(equiv)} = V_{in(PK)} \times F$$
 (4)

The factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.


EXAMPLE: Find $T_{A(max)}$ for 1N5818 operated in a 12-volt dc supply using a bridge circuit with capacitive filter such that $I_{DC} = 0.4 \text{ A} (I_{F(AV)} = 0.5 \text{ A}), I_{(FM)}/I_{(AV)} = 10$, Input Voltage = 10 V_(rms), R_{0JA} = 80°C/W.


Step 3. Find $P_{F(AV)}$ from Figure 4. **Read $P_{F(AV)} = 0.5$ W


$$\mathbb{D} \frac{I_{(FM)}}{I_{(AV)}} = 10 \text{ and } IF(AV) = 0.5 \text{ A.}$$


Step 4. Find $T_{A(max)}$ from equation (3). $T_{A(max)} = 109 - (80) (0.5) = 69^{\circ}C.$

**Values given are for the 1N5818. Power is slightly lower for the 1N5817 because of its lower forward voltage, and higher for the 1N5819.

1N5819

Circuit	Half Wave		Full Wave, Bridge		Full Wave, Ce	nter Tapped*†
Load	Resistive	Capacitive*	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.5	1.3	0.5	0.65	1.0	1.3
Square Wave	0.75	1.5	0.75	0.75	1.5	1.5

Table 1. Values for Factor F

*Note that $V_{R(PK)} \approx 2.0 V_{in(PK)}$. † Use line to center tap voltage for V_{in}

http://onsemi.com 205

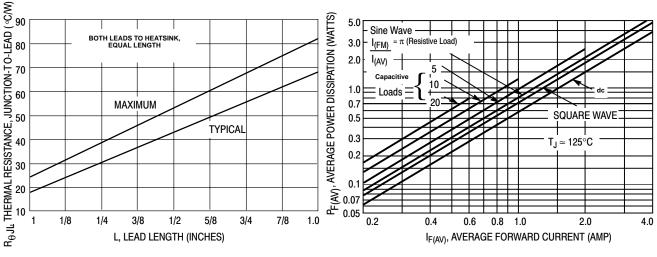
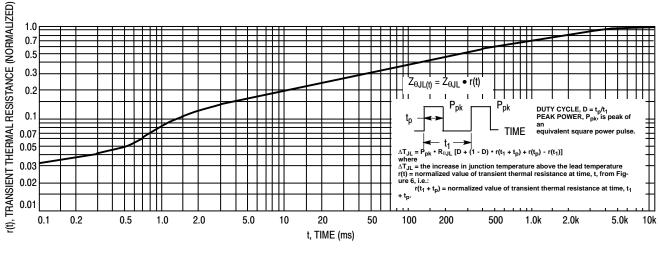
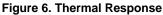
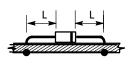
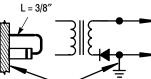




Figure 5. Forward Power Dissipation 1N5817-19

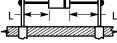
NOTE 4. — MOUNTING DATA


Data shown for thermal resistance junction-to-ambient $(R_{\theta JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering, or in case the tie point temperature cannot be measured.


TYPICAL VALUES FOR $R_{\theta JA}$ IN STILL AIR

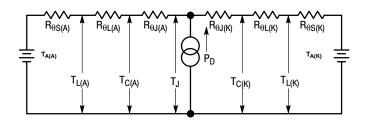
Mounting					
Method	1/8	1/4	1/2	3/4	R _{θJA}
1	52	65	72	85	°C/W
2	67	80	87	100	°C/W
3		50			

Mounting Method 1 P.C. Board with

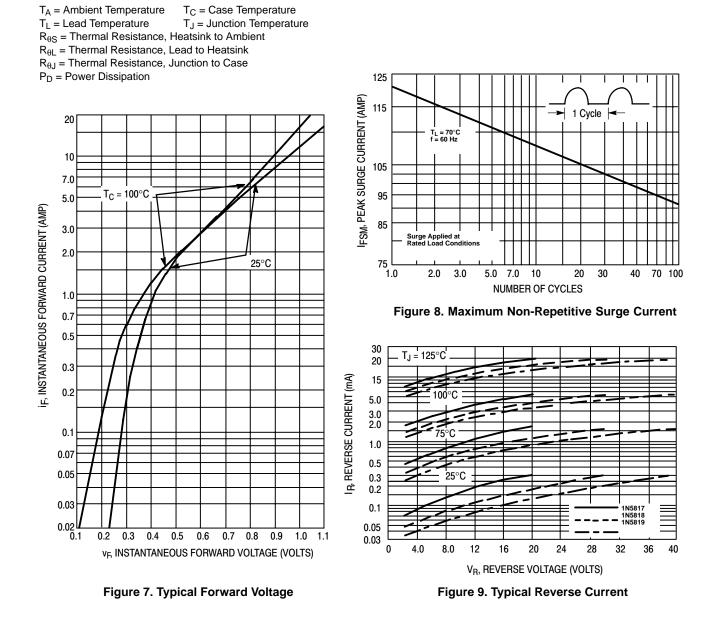

P.C. Board with 1-1/2 " x 1-1/2" copper surface.

BOARD GROUND PLANE

VECTOR PIN MOUNTING


Mounting Method 2

P.C. Board with 1-1/2 " x 1-1/2" copper surface.


Mounting Method 3

1N5817, 1N5818, 1N5819

NOTE 5. — THERMAL CIRCUIT MODEL (For heat conduction through the leads)

Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heatsink. Terms in the model signify: (Subscripts A and K refer to anode and cathode sides, respectively.) Values for thermal resistance components are: $R_{\theta L} = 100^{\circ}$ C/W/in typically and 120°C/W/in maximum $R_{\theta J} = 36^{\circ}$ C/W typically and 46°C/W maximum.

NOTE 6. — HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 10.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss: it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

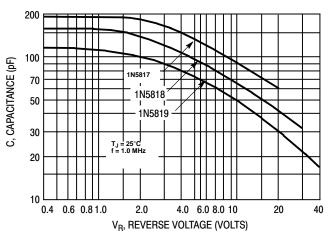


Figure 10. Typical Capacitance

MBR150, MBR160

MBR160 is a Preferred Device

Axial Lead Rectifiers

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Low Reverse Current
- Low Stored Charge, Majority Carrier Conduction
- Low Power Loss/High Efficiency
- Highly Stable Oxide Passivated Junction
- Mechanical Characteristics:
- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 1000 per bag
- Available Tape and Reeled, 5000 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode Indicated by Polarity Band
- Marking: B150, B160

MAXIMUM RATINGS

Please See the Table on the Following Page

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIERS 1.0 AMPERE 50, 60 VOLTS

= 5 or 6

х

ORDERING INFORMATION

Device	Package Shipping	
MBR150	Axial Lead	1000 Units/Bag
MBR150RL	Axial Lead	5000/Tape & Reel
MBR160	Axial Lead	1000 Units/Bag
MBR160RL	Axial Lead	5000/Tape & Reel

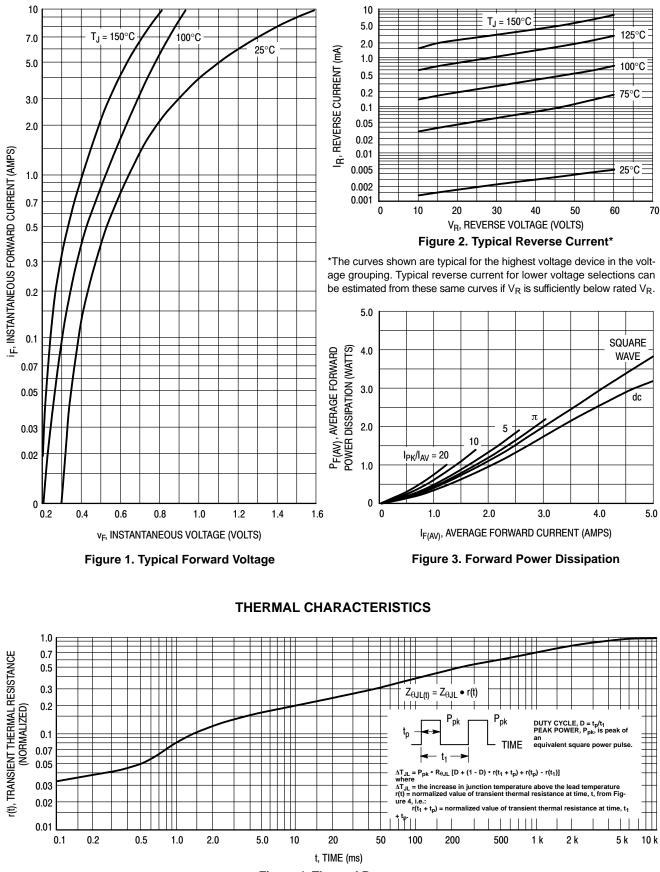
Preferred devices are recommended choices for future use and best overall value.

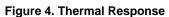
MBR150, MBR160

MAXIMUM RATINGS

Rating	Symbol	MBR150	MBR160	Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	60	Volts	
RMS Reverse Voltage	V _{R(RMS)}	35	42	Volts	
Average Rectified Forward Current (Note 1.) $(V_{R(equiv)} \le 0.2 V_{R}(dc), T_{L} = 90^{\circ}C, R_{\theta JA} = 80^{\circ}C/W, P.C.$ Board Mounting, see Note 3., $T_{A} = 55^{\circ}C$)	IO	1	1.0		
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz, $T_L = 70^{\circ}C$)	I _{FSM}	I _{FSM} 25 (for one cycle)			
Operating and Storage Junction Temperature Range (Reverse Voltage Applied)	T _J , T _{stg}	- 65 te	o +150	°C	
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	1:	50	°C	

THERMAL CHARACTERISTICS (Notes 3. and 4.)


Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Ambient	R_{\thetaJA}	80	°C/W


ELECTRICAL CHARACTERISTICS ($T_L = 25^{\circ}C$ unless otherwise noted) (Note 1.)

Characteristic	Symbol	Мах	Unit
$\label{eq:constant} \begin{array}{l} \mbox{Maximum Instantaneous Forward Voltage (Note 2.)} \\ (i_F = 0.1 \mbox{ A}) \\ (i_F = 1.0 \mbox{ A}) \\ (i_F = 3.0 \mbox{ A}) \end{array}$	VF	0.550 0.750 1.000	Volt
Maximum Instantaneous Reverse Current @ Rated dc Voltage (Note 2.) $(T_L = 25^{\circ}C)$ $(T_L = 100^{\circ}C)$	i _R	0.5 5.0	mA

1. Lead Temperature reference is cathode lead 1/32'' from case.2. Pulse Test: Pulse Width = 300 µs, Duty Cycle $\leq 2.0\%$.

MBR150, MBR160

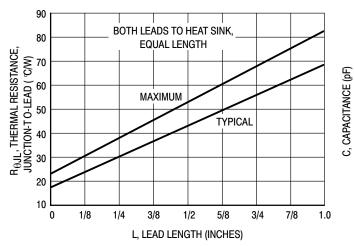
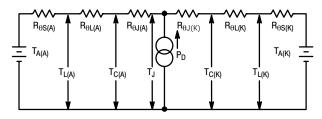


Figure 5. Steady-State Thermal Resistance


NOTE 3. — MOUNTING DATA:

Data shown for thermal resistance junction-to-ambient $(R_{\theta JA})$ for the mounting shown is to be used as a typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

Typical Values for $R_{\theta JA}$ in Still Air

Mounting	Lead Length, L (in)				в
Method	1/8	1/4	1/2	3/4	$R_{\theta JA}$
1	52	65	72	85	°C/W
2	67	80	87	100	°C/W
3	—		50		°C/W

NOTE 4. — **THERMAL CIRCUIT MODEL:** (For heat conduction through the leads)

Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink. Terms in the model signify:

 $\begin{array}{ll} T_A = Ambient \mbox{ Temperature } & T_C = Case \mbox{ Temperature } \\ T_L = Lead \mbox{ Temperature } & T_J = \mbox{ Junction Temperature } \\ R_{\theta S} = \mbox{ Thermal Resistance, Heat Sink to Ambient } \\ R_{\theta L} = \mbox{ Thermal Resistance, Lead to Heat Sink } \\ R_{\theta J} = \mbox{ Thermal Resistance, Junction to Case } \\ P_D = \mbox{ Power Dissipation } \end{array}$

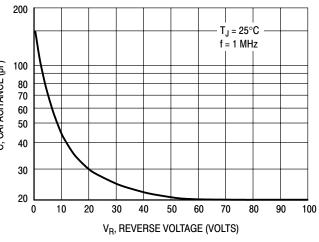
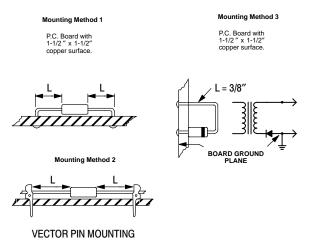



Figure 6. Typical Capacitance

(Subscripts A and K refer to anode and cathode sides, respectively.) Values for thermal resistance components are: $R_{\theta L} = 100^{\circ}C/W/in$ typically and $120^{\circ}C/W/in$ maximum. $R_{\theta J} = 36^{\circ}C/W$ typically and $46^{\circ}C/W$ maximum.

NOTE 5. — HIGH FREQUENCY OPERATION:

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 6.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss: it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

MBR1100

Preferred Device

Axial Lead Rectifier

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

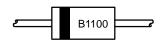
- Low Reverse Current
- Low Stored Charge, Majority Carrier Conduction
- Low Power Loss/High Efficiency
- Highly Stable Oxide Passivated Junction
- Guard-Ring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- High Surge Capacity

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16" from case
- Shipped in plastic bags, 1000 per bag
- Available Tape and Reeled, 5000 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode Indicated by Polarity Band
- Marking: B1100

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	100	V
$ \begin{array}{l} \mbox{Average Rectified Forward Current} \\ (V_{R(equiv)} \leq 0.2 \ V_{R}(dc), \ R_{\theta JA} = \\ 50^{\circ}C/W, \ P.C. \ Board Mounting, \ see \\ Note \ 1., \ T_{A} = 120^{\circ}C) \end{array} $	lo	1.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	50	A
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10	V/ns


ON Semiconductor[®]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 1.0 AMPERE 100 VOLTS

MARKING DIAGRAM

B1100 = Device Code

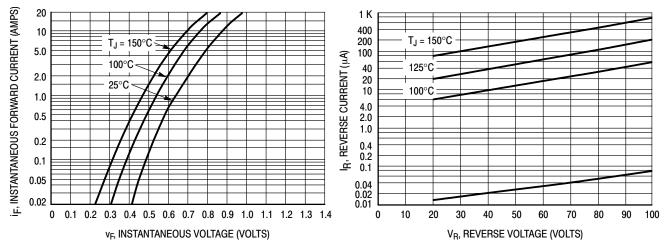
ORDERING INFORMATION

Device	Packa	age Shipping
MBR1100	Axial L	ead 1000 Units/Bag
MBR1100F	RL Axial L	ead 5000/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

© Semiconductor Components Industries, LLC, 2002 August, 2002 - Rev. 3

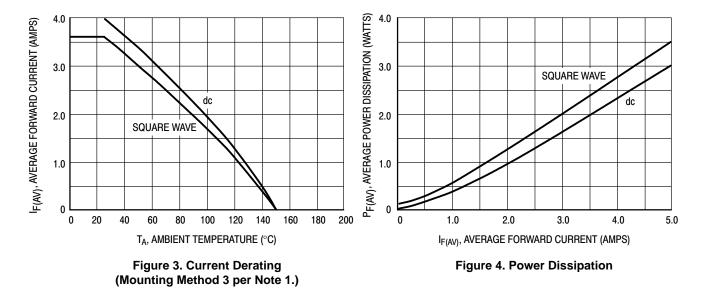
MBR1100


THERMAL CHARACTERISTICS (See Note 2.)

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Ambient	R_{\thetaJA}	See Note 1.	°C/W

ELECTRICAL CHARACTERISTICS ($T_L = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Мах	Unit
Maximum Instantaneous Forward Voltage * ($i_F = 1 \text{ A}, T_L = 25^{\circ}\text{C}$) ($i_F = 1 \text{ A}, T_L = 100^{\circ}\text{C}$)	V _F	0.79 0.69	Volt
Maximum Instantaneous Reverse Current @ Rated dc Voltage * $(T_L = 25^{\circ}C)$ $(T_L = 100^{\circ}C)$	i _R	0.5 5.0	mA


* Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.

[†] The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if V_R is sufficiently below rated V_R .

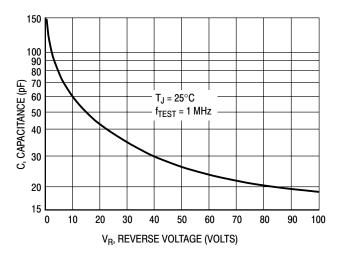
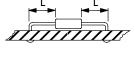
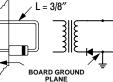


Figure 5. Typical Capacitance

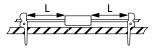
NOTE 1. — MOUNTING DATA:

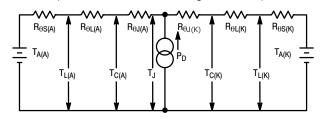
Data shown for thermal resistance junction-to-ambient $(R_{\theta JA})$ for the mounting shown is to be used as a typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.


Typical Values for $\textbf{R}_{\theta \textbf{J}\textbf{A}}$ in Still Air


Mounting	Lead Length, L (in)				Р
Method	1/8	1/4	1/2	3/4	$R_{\theta JA}$
1	52	65	72	85	°C/W
2	67	80	87	100	°C/W
3	_		50		°C/W

Mounting Method 1


P.C. Board with 1-1/2 " x 1-1/2" copper surface.



Mounting Method 2

VECTOR PIN MOUNTING

NOTE 2. — THERMAL CIRCUIT MODEL: (For heat conduction through the leads)

Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink. Terms in the model signify:

 $\begin{array}{ll} T_A = Ambient \mbox{ Temperature } & T_C = Case \mbox{ Temperature } \\ T_L = Lead \mbox{ Temperature } & T_J = Junction \mbox{ Temperature } \\ R_{\theta S} = Thermal \mbox{ Resistance, Heat Sink to Ambient } \\ R_{\theta L} = Thermal \mbox{ Resistance, Lead to Heat Sink } \\ R_{\theta J} = Thermal \mbox{ Resistance, Junction to Case } \\ P_D = Power \mbox{ Dissipation } \end{array}$

(Subscripts A and K refer to anode and cathode sides, respectively.) Values for thermal resistance components are: $R_{\theta L} = 100^{\circ}C/W/in$ typically and 120°C/W/in maximum. $R_{\theta J} = 36^{\circ}C/W$ typically and 46°C/W maximum.

NOTE 3. — HIGH FREQUENCY OPERATION:

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 5)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss: it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

Axial Lead Rectifier

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Extremely Low V_f
- Low Power Loss/High Efficiency
- Highly Stable Oxide Passivated Junction
- Low Stored Charge, Majority Carrier Conduction
- Mechanical Characteristics:
- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 1000 per bag
- Available Tape and Reeled, 5000 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode indicated by Polarity Band
- ESD Ratings: Machine Model = A

Human Body Model = 2

• Marking: MBR3060

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _r	60	V
Average Rectified Forward Current $T_L = 125^{\circ}C (R_{\theta,JL} = 13^{\circ}C/W,$ P.C. Board Mounting)	Ι _ο	3.0	A
Non-Repetitive Peak Surge Current	I _{FSM}	125	A
Operating and Storage Junction Temperature Range (Reverse Voltage Applied)	T _J , T _{stg}	-65 to +150	°C
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	150	°C

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 3.0 AMPERES 60 VOLTS

MARKING DIAGRAM

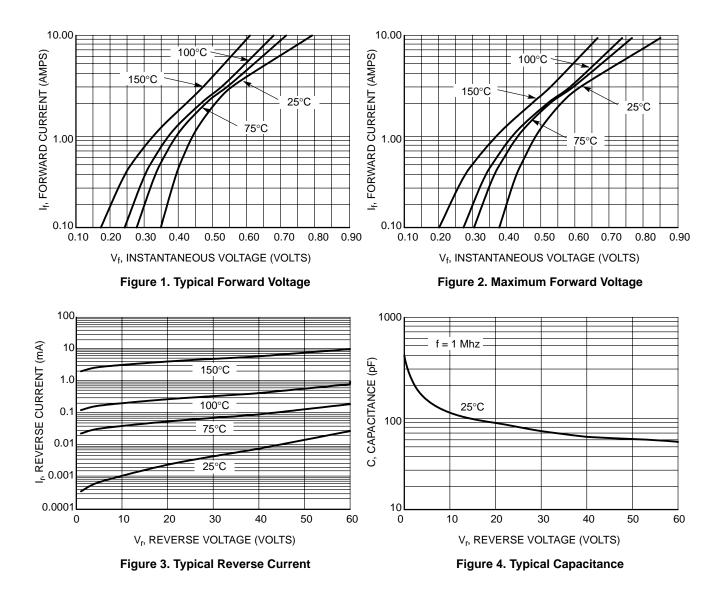
MBR3060 = Device Code

ORDERING INFORMATION

Device)	Package	Shipping
MBR3060	R3060 Axial Lead		1000 Units/Bag
MBR3060	٦L	Axial Lead	5000/Tape & Reel

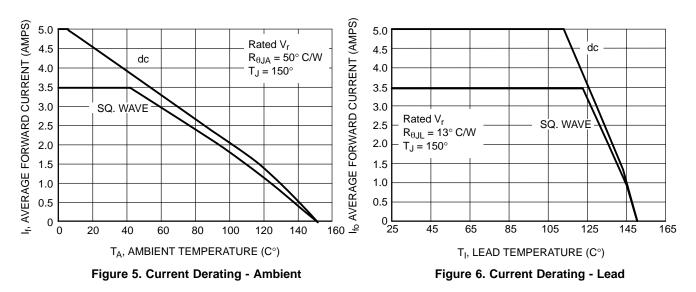
© Semiconductor Components Industries, LLC, 2002 January, 2002 - Rev. 0

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Lead (Note 1, see Note 3, Mounting Method 3)	$R_{\theta JL}$	13	°C/W
Thermal Resistance, Junction-to-Ambient (see Note 3, Mounting Method 3)	R_{\thetaJA}	50	°C/W

ELECTRICAL CHARACTERISTICS ($T_L = 25^{\circ}C$ unless otherwise noted) (Note 1)

Characteristic	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (Note 2) ($I_f = 3.0 \text{ Amp}$), $T_L = 25^{\circ}\text{C}$ ($I_f = 3.0 \text{ Amp}$), $T_L = 100^{\circ}\text{C}$	V _f	0.62 0.59	V
Maximum Instantaneous Reverse Current (Note 2) $(V_r = 60 \text{ V}), T_L = 25^{\circ}\text{C}$ $(V_r = 60 \text{ V}), T_L = 100^{\circ}\text{C}$	l _r	150 10	μA mA


1. Lead Temperature reference is cathode lead at printed wiring board.

2. Pulse Test: Pulse Width = $300 \mu s$, Duty Cycle = 2.0%.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

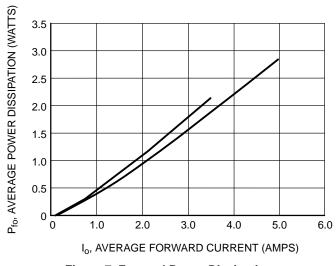
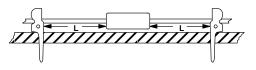


Figure 7. Forward Power Dissipation

NOTE 3 — MOUNTING DATA

Data shown for thermal resistance junction-to-ambient ($R_{\theta JA}$) and thermal resistance junction-to-lead ($R_{\theta JL}$) for the mountings shown is to be used as typical guideline values for preliminary engineering, or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR $R_{\theta JA}$ IN STILL AIR

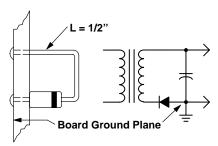

Mounting	ounting Lead Length, L (in)						
Method	1/8	1/4	1/2	3/4	$R_{\theta JA}$		
1	52	65	72	85	°C/W		
2	67	80	87	100	°C/W		
3		50					

TYPICAL VALUES FOR $\textbf{R}_{\theta \textbf{JL}}$ IN STILL AIR

Mounting	Lead			
Method	1/8	1/4	1/2	$R_{\theta JA}$
1	15	23	37	°C/W
2	30	38	52	°C/W
3		13		°C/W

Mounting Method 2

Vector Push-In Terminals T-28



Mounting Method 1

P.C. Board with 1-1/2 $^{\prime\prime}$ X 1-1/2 $^{\prime\prime}$ copper surface.

Mounting Method 3

P.C. Board with 1-1/2 " X 1-1/2" copper surface.

1N5820, 1N5821, 1N5822

1N5820 and 1N5822 are Preferred Devices

Axial Lead Rectifiers

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features chrome barrier metal, epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

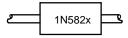
- Extremely Low V_F
- Low Power Loss/High Efficiency
- Low Stored Charge, Majority Carrier Conduction

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.1 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 500 per bag
- Available Tape and Reeled, 1500 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode indicated by Polarity Band
- Marking: 1N5820, 1N5821, 1N5822

MAXIMUM RATINGS

Please See the Table on the Following Page


ON Semiconductor"

http://onsemi.com

SCHOTTKY BARRIER RECTIFIERS 3.0 AMPERES 20, 30, 40 VOLTS

MARKING DIAGRAM

1N582x = Device Codex = 0, 1 or 2

ORDERING INFORMATION

Device	Package	Shipping
1N5820	Axial Lead	500 Units/Bag
1N5820RL	Axial Lead	1500/Tape & Reel
1N5821	Axial Lead	500 Units/Bag
1N5821RL	Axial Lead	1500/Tape & Reel
1N5822	Axial Lead	500 Units/Bag
1N5822RL	Axial Lead	1500/Tape & Reel

1N5820, 1N5821, 1N5822

MAXIMUM RATINGS

Rating	Symbol	1N5820	1N5821	1N5822	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	30	40	V
Non-Repetitive Peak Reverse Voltage	V _{RSM}	24	36	48	V
RMS Reverse Voltage	V _{R(RMS)}	14	21	28	V
Average Rectified Forward Current (Note 1) $V_{R(equiv)} \le 0.2 V_{R(dc)}, T_{L} = 95^{\circ}C$ $(R_{\theta JA} = 28^{\circ}C/W, P.C.$ Board Mounting, see Note 5)	lo		3.0		A
$ \begin{array}{l} \mbox{Ambient Temperature} \\ \mbox{Rated } V_{R(dc)}, \mbox{P}_{F(AV)} = 0 \\ \mbox{R}_{\theta JA} = 28^{\circ} \mbox{C/W} \end{array} $	T _A	90	85	80	°C
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, half wave, single phase 60 Hz, $T_L = 75^{\circ}C$)	I _{FSM}	 80) (for one cyc	le) ── ►	A
Operating and Storage Junction Temperature Range (Reverse Voltage applied)	T _J , T _{stg}		65 to +12	5>	°C
Peak Operating Junction Temperature (Forward Current applied)	T _{J(pk)}	<	<u> </u>		°C

*THERMAL CHARACTERISTICS (Note 5)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	R_{\thetaJA}	28	°C/W

*ELECTRICAL CHARACTERISTICS (T_L = 25° C unless otherwise noted) (Note 1)

Characteristic	Symbol	1N5820	1N5821	1N5822	Unit
	VF	0.370 0.475 0.850	0.380 0.500 0.900	0.390 0.525 0.950	V
Maximum Instantaneous Reverse Current @ Rated dc Voltage (Note 2) $T_L = 25^{\circ}C$ $T_L = 100^{\circ}C$	i _R	2.0 20	2.0 20	2.0 20	mA

1. Lead Temperature reference is cathode lead 1/32'' from case. 2. Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%. *Indicates JEDEC Registered Data for 1N5820-22.

NOTE 3 — DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above 0.1 V_{RWM} . Proper derating may be accomplished by use of equation (1).

$$\begin{split} T_{A(max)} &= T_{J(max)} - R_{\theta JA} P_{F(AV)} - R_{\theta JA} P_{R(AV)}(1) \\ \text{where } T_{A(max)} &= \text{Maximum allowable ambient temperature} \\ T_{J(max)} &= \text{Maximum allowable junction temperature} \\ & (125^{\circ}\text{C or the temperature at which thermal} \\ & \text{runaway occurs, whichever is lowest}) \\ P_{F(AV)} &= \text{Average forward power dissipation} \\ P_{R(AV)} &= \text{Average reverse power dissipation} \\ R_{\theta JA} &= \text{Junction-to-ambient thermal resistance} \end{split}$$

Figures 1, 2, and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2).

 $T_{R} = T_{J(max)} - R_{\theta JA} P_{R(AV)}$ (2)

Substituting equation (2) into equation (1) yields:

$$T_{A(max)} = T_{R} - R_{\theta JA} P_{F(AV)}$$
(3)

Inspection of equations (2) and (3) reveals that T_R is the ambient temperature at which thermal runaway occurs or where $T_J = 125^{\circ}$ C, when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2, and 3 as a difference in the rate of change of the slope in the vicinity of 115°C. The data of Figures 1, 2, and 3 is based upon dc conditions. For

Table	1.	Values	for	Factor	F
IUNIC	•••	Turuco		1 40101	

use in common rectifier circuits, Table 1 indicates suggested factors for an equivalent dc voltage to use for conservative design, that is:

$$V_{R(equiv)} = V_{(FM)} \times F \tag{4}$$

The factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.

EXAMPLE: Find $T_{A(max)}$ for 1N5821 operated in a 12-volt dc supply using a bridge circuit with capacitive filter such that $I_{DC} = 2.0 \text{ A} (I_{F(AV)} = 1.0 \text{ A}), I_{(FM)}/I_{(AV)} = 10$, Input Voltage = 10 V_(rms), $R_{\theta JA} = 40^{\circ}$ C/W.

Step 1. Find $V_{R(equiv)}$. Read F = 0.65 from Table 1,

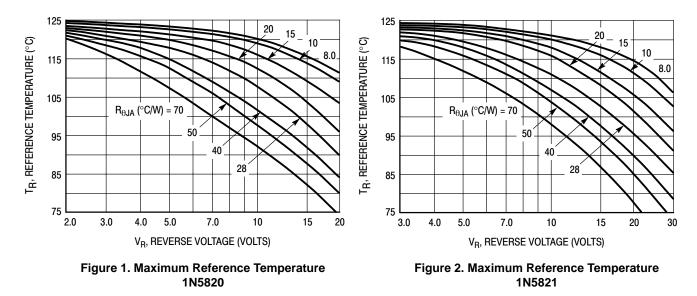
 \therefore V_{R(equiv)} = (1.41) (10) (0.65) = 9.2 V.

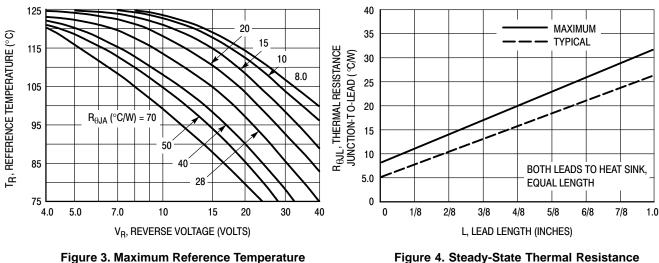
Step 2. Find T_R from Figure 2. Read $T_R = 108^{\circ}C$

@ $V_R = 9.2$ V and $R_{\theta JA} = 40^{\circ}$ C/W.

Step 3. Find $P_{F(AV)}$ from Figure 6. **Read $P_{F(AV)} = 0.85$ W

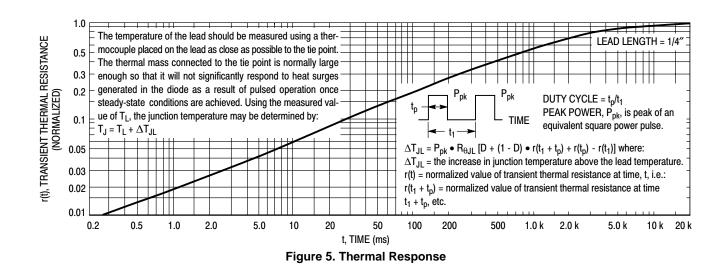
$$@\frac{I(FM)}{I(AV)} = 10 \text{ and } I_{F(AV)} = 1.0 \text{ A.}$$


Step 4. Find $T_{A(max)}$ from equation (3).


 $T_{A(max)} = 108 - (0.85) (40) = 74^{\circ}C.$

**Values given are for the 1N5821. Power is slightly lower for the 1N5820 because of its lower forward voltage, and higher for the 1N5822. Variations will be similar for the MBR-prefix devices, using $P_{F(AV)}$ from Figure 6.

Circuit	Half Wave		Full Wave, Bridge		Full V Center T	,
Load	Resistive	Capacitive*	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.5	1.3	0.5	0.65	1.0	1.3
Square Wave	0.75	1.5	0.75	0.75	1.5	1.5


*Note that $V_{R(PK)}\approx$ 2.0 $V_{in(PK)}.$ †Use line to center tap voltage for $V_{in}.$

1N5822

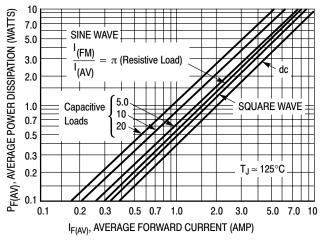
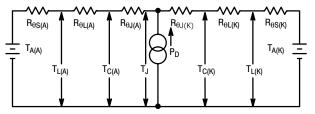



Figure 6. Forward Power Dissipation 1N5820-22

NOTE 4 - APPROXIMATE THERMAL CIRCUIT MODEL

Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heat sink. Terms in the model signify:

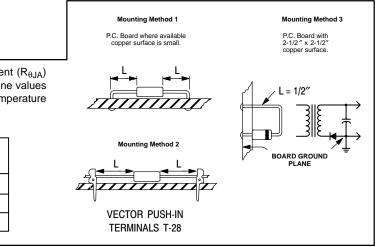
 T_A = Ambient Temperature T_C = Case Temperature

 T_L = Lead Temperature T_J = Junction Temperature

- $R_{\theta S}$ = Thermal Resistance, Heat Sink to Ambient
- $R_{\theta L}$ = Thermal Resistance, Lead to Heat Sink

 $R_{\theta J}=$ Thermal Resistance, Junction to Case

 P_D = Total Power Dissipation = $P_F + P_R$


P_F = Forward Power Dissipation

 P_R = Reverse Power Dissipation

(Subscripts (A) and (K) refer to anode and cathode sides, respectively.) Values for thermal resistance components are:

$$\begin{split} R_{\theta L} &= 42^{\circ}C/W/\text{in typically and } 48^{\circ}C/W/\text{in maximum} \\ R_{\theta J} &= 10^{\circ}C/W \text{ typically and } 16^{\circ}C/W \text{ maximum} \\ \text{The maximum lead temperature may be found as follows:} \\ T_L &= T_{J(max)} - \Delta T_{JL} \end{split}$$

where $\Delta T_{JL} \approx R_{\theta JL} \cdot P_D$

NOTE 5 — MOUNTING DATA

Data shown for thermal resistance junction-to-ambient ($R_{\theta,JA}$) for the mountings shown is to be used as typical guideline values for preliminary engineering, or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR $R_{\theta JA}$ IN STILL AIR

Mounting	Lead Length, L (in)				
Method	1/8	1/4	1/2	3/4	$R_{\theta JA}$
1	50	51	53	55	°C/W
2	58	59	61	63	°C/W
3	28			°C/W	

1N5820, 1N5821, 1N5822

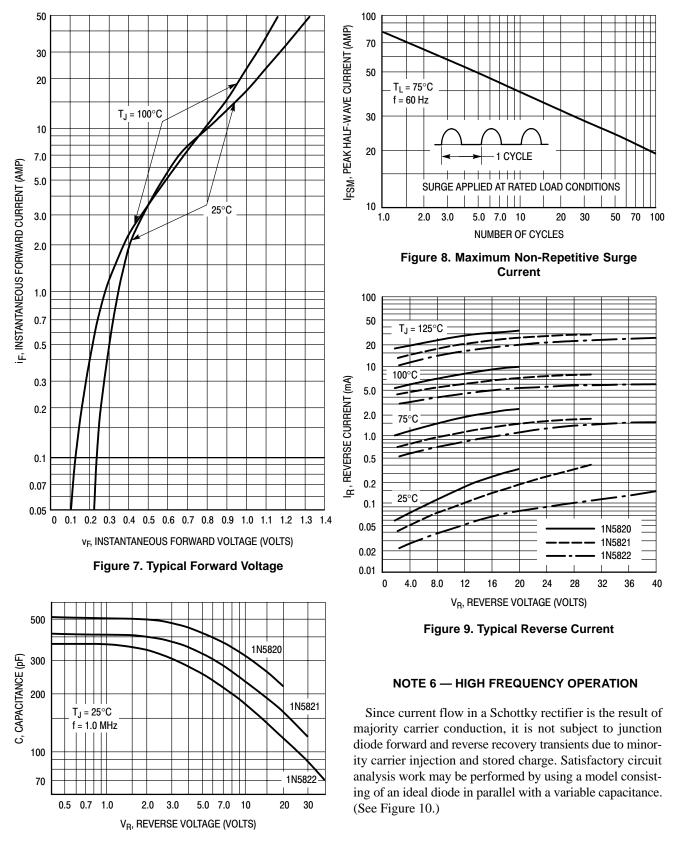


Figure 10. Typical Capacitance

Preferred Device

Axial Lead Rectifier

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Extremely Low V_F
- Low Power Loss/High Efficiency
- Highly Stable Oxide Passivated Junction
- Low Stored Charge, Majority Carrier Conduction

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.1 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 500 per bag
- Available Tape and Reeled, 1500 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode indicated by Polarity Band
- Marking: B340

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	40	V
Average Rectified Forward Current $T_A = 65^{\circ}C (R_{\theta,JA} = 28^{\circ}C/W,$ P.C. Board Mounting)	Ι _Ο	3.0	A
Non-Repetitive Peak Surge Current (Note 1) (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz, T _L = 75°C)	I _{FSM}	80	A
Operating and Storage Junction Temperature Range (Reverse Voltage Applied)	T _J , T _{stg}	-65 to +150	°C
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	150	°C

1. Lead Temperature reference is cathode lead 1/32" from case.

ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 3.0 AMPERES 40 VOLTS

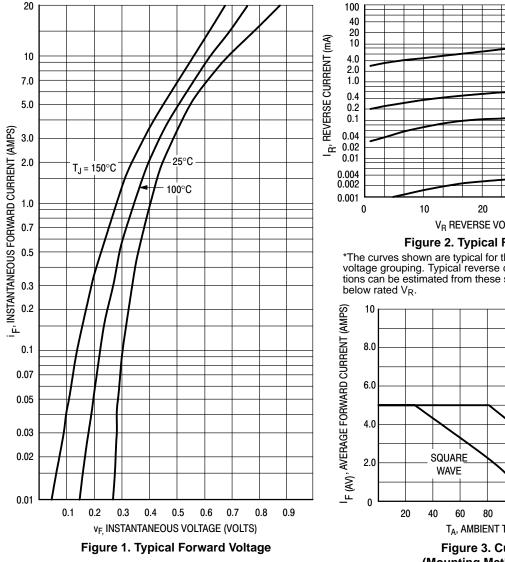
MARKING DIAGRAM

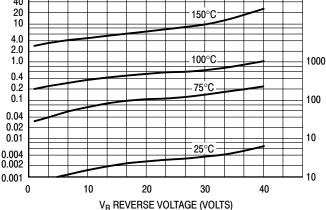
B340 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBR340	Axial Lead	500 Units/Bag
MBR340RL	Axial Lead	1500/Tape & Reel

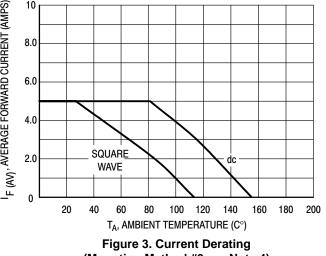
THERMAL CHARACTERISTICS

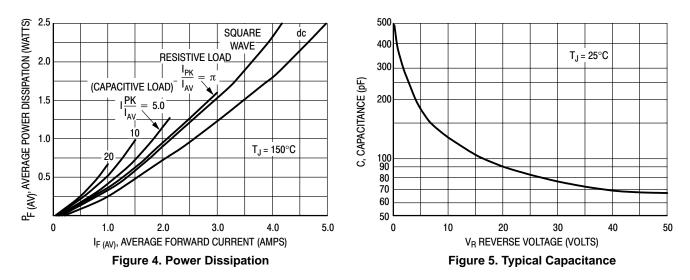

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Ambient (see Note 4, Mounting Method 3)	R_{\thetaJA}	28	°C/W


ELECTRICAL CHARACTERISTICS (T_L = 25°C unless otherwise noted) (Note 2)

Characteristic	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (Note 3) ($i_F = 1.0 \text{ Amp}$) ($i_F = 3.0 \text{ Amp}$) ($i_F = 9.4 \text{ Amp}$)	VF	0.500 0.600 0.850	V
Maximum Instantaneous Reverse Current @ Rated dc Voltage (Note 3) $T_L = 25^{\circ}C$ $T_L = 100^{\circ}C$	İR	0.60 20	mA

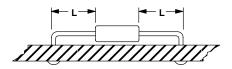
2. Lead Temperature reference is cathode lead 1/32" from case.


3. Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%.



*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if V_R is sufficiently

NOTE 4 — MOUNTING DATA

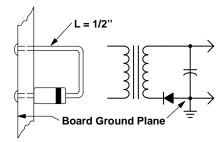

Data shown for thermal resistance junction-to-ambient $(R_{\theta JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering, or in case the tie point temperature cannot be measured.

TYPICAL	VALUES FOR	Rous IN	STILL AIR
TITIOAL	WALCES I ON	IN UJA IN	

Mounting	Le				
Method	1/8	1/4	1/2	3/4	$R_{\theta JA}$
1	50	51	53	55	°C/W
2	58	59	61	63	°C/W
3	28			°C/W	

Mounting Method 1

P.C. Board where available copper surface is small.



Mounting Method 2

Vector Push-In Terminals T-28

Mounting Method 3

P.C. Board with 2-1/2 " X 2-1/2" copper surface.

MBR350, MBR360

MBR360 is a Preferred Device

Axial Lead Rectifiers

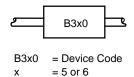
... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Extremely Low v_F
- Low Power Loss/High Efficiency
- Highly Stable Oxide Passivated Junction
- Low Stored Charge, Majority Carrier Conduction
- Mechanical Characteristics:
- Case: Epoxy, Molded
- Weight: 1.1 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 500 per bag
- Available Tape and Reeled, 1500 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode indicated by Polarity Band
- Marking: B350, B360

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage MBR350 MBR360	V _{RRM} V _{RWM} V _R	50 60	V
Average Rectified Forward Current $T_A = 65^{\circ}C (R_{\theta,JA} = 28^{\circ}C/W,$ P.C. Board Mounting)	Ι _Ο	3.0	A
Non-Repetitive Peak Surge Current (Note 1) (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz, T _L = 75°C)	I _{FSM}	80	A
Operating and Storage Junction Temperature Range (Reverse Voltage Applied)	T _J , T _{stg}	-65 to +150	°C
Peak Operating Junction Temperature (Forward Current Applied)	T _{J(pk)}	150	°C

1. Lead Temperature reference is cathode lead 1/32" from case.


ON Semiconductor"

http://onsemi.com

SCHOTTKY BARRIER RECTIFIERS 3.0 AMPERES 50, 60 VOLTS

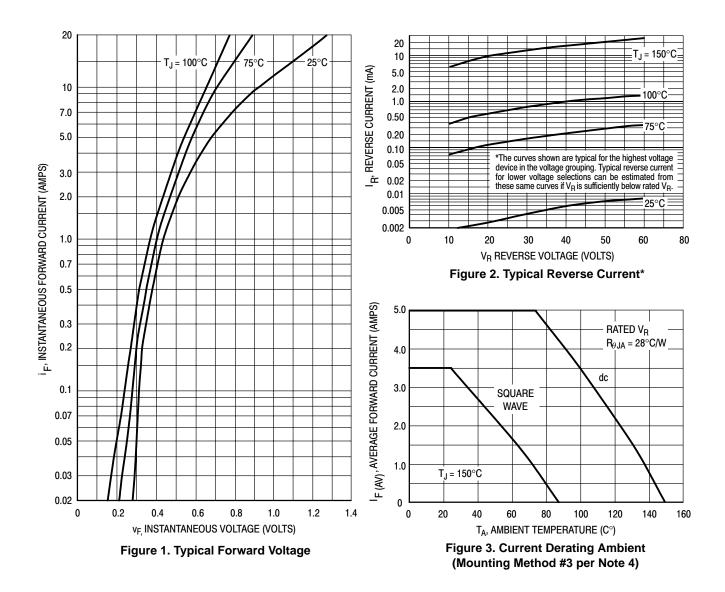
MARKING DIAGRAM

ORDERING INFORMATION

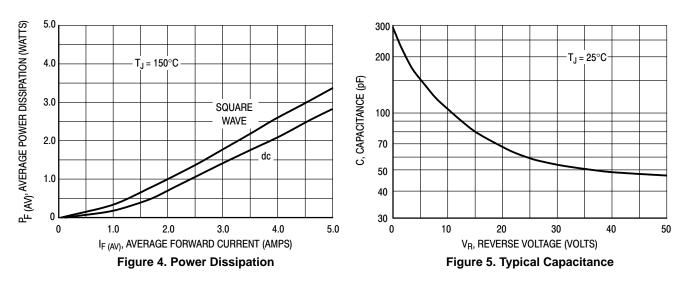
Device	Package	Shipping
MBR350	Axial Lead	500 Units/Bag
MBR350RL	Axial Lead	1500/Tape & Reel
MBR360	Axial Lead	500 Units/Bag
MBR360RL	Axial Lead	1500/Tape & Reel

MBR350, MBR360

THERMAL CHARACTERISTICS


Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Ambient (see Note 4, Mounting Method 3)	R_{\thetaJA}	28	°C/W

ELECTRICAL CHARACTERISTICS (T_L = 25°C unless otherwise noted) (Note 2)

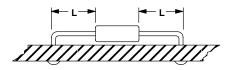

Characteristic	Symbol	Max	Unit
$\label{eq:maximum lnstantaneous Forward Voltage (Note 3)} \\ (i_F = 1.0 \mbox{ Amp}) \\ (i_F = 3.0 \mbox{ Amp}) \\ (i_F = 9.4 \mbox{ Amp}) \end{aligned}$	VF	0.600 0.740 1.080	V
Maximum Instantaneous Reverse Current @ Rated dc Voltage (Note 3) $T_L = 25^{\circ}C$ $T_L = 100^{\circ}C$	İR	0.60 20	mA

2. Lead Temperature reference is cathode lead 1/32" from case.

3. Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2.0%.

MBR350, MBR360

NOTE 4 — MOUNTING DATA

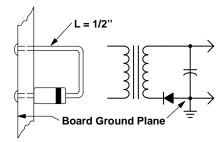

Data shown for thermal resistance junction-to-ambient $(R_{\theta JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering, or in case the tie point temperature cannot be measured.

TYPICAL	VALUES FOR	Rous IN	STILL AIR
TITIOAL	WALCES I ON	IN UJA IN	

Mounting Lead Length, L (in)					
Method	1/8	1/4	1/2	3/4	$R_{\theta JA}$
1	50	51	53	55	°C/W
2	58	59	61	63	°C/W
3	28				°C/W

Mounting Method 1

P.C. Board where available copper surface is small.



Mounting Method 2

Vector Push-In Terminals T-28

Mounting Method 3

P.C. Board with 2-1/2 " X 2-1/2" copper surface.

Preferred Device

Axial Lead Rectifier

... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

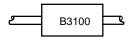
- Low Reverse Current
- Low Stored Charge, Majority Carrier Conduction
- Low Power Loss/High Efficiency
- Highly Stable Oxide Passivated Junction
- Guard-Ring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- High Surge Capacity

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.1 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 500 per bag
- Available Tape and Reeled, 1500 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode indicated by Polarity Band
- Marking: B3100

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	100	V
Average Rectified Forward Current $T_A = 100^{\circ}C (R_{\theta,JA} = 28^{\circ}C/W,$ P.C. Board Mounting, see Note 2)	lo	3.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	A
Operating and Storage Junction Temperature Range (Reverse Voltage Applied)	T _J , T _{stg}	-65 to +150	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10	V/ns


ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 3.0 AMPERES 100 VOLTS

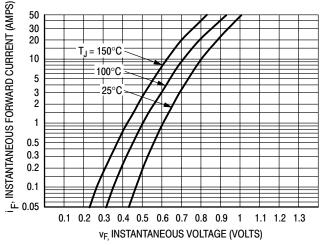
MARKING DIAGRAM

B3100 = Device Code

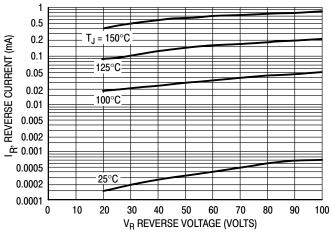
ORDERING INFORMATION

Device	vice Package Shipping	
MBR3100	Axial Lead	500 Units/Bag
MBR3100RL	Axial Lead	1500/Tape & Reel

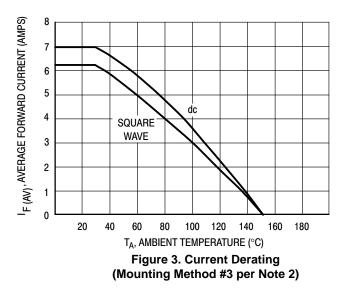
© Semiconductor Components Industries, LLC, 2002 January, 2002 - Rev. 2

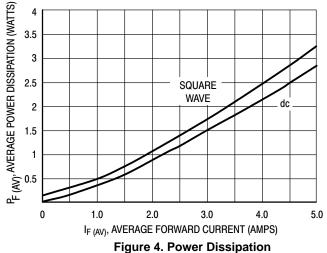

THERMAL CHARACTERISTICS

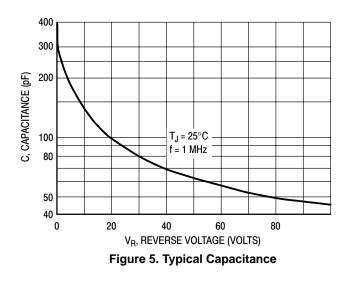
Characteristic		Max	Unit
Thermal Resistance, Junction to Ambient (see Note 2, Mounting Method 3)	R_{\thetaJA}	28	°C/W


ELECTRICAL CHARACTERISTICS (T_L = 25°C unless otherwise noted)

Characteristic	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (Note 1) ($i_F = 3.0 \text{ Amps}, T_L = 25^{\circ}\text{C}$) ($i_F = 3.0 \text{ Amps}, T_L = 100^{\circ}\text{C}$)	VF	0.79 0.69	V
Maximum Instantaneous Reverse Current @ Rated dc Voltage (Note 1) $T_L = 25^{\circ}C$ $T_L = 100^{\circ}C$	i _R	0.6 20	mA

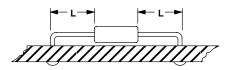

1. Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%.





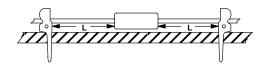
*The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these curves if V_R is sufficient below rated V_R .

NOTE 2 — MOUNTING DATA

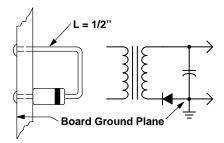

Data shown for thermal resistance junction-to-ambient $(R_{\theta JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering, or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR $\textbf{R}_{\theta \textbf{J}\textbf{A}}$ IN STILL AIR

Mounting Lead Length, L (in)					
Method	1/8	1/4	1/2	3/4	$R_{\theta JA}$
1	50	51	53	55	°C/W
2	58	59	61	63	°C/W
3	28				°C/W


Mounting Method 1

P.C. Board where available copper surface is small.


Mounting Method 2

Vector Push-In Terminals T-28

Mounting Method 3

P.C. Board with 2-1/2 " X 2-1/2" copper surface.

MBR1535CT, MBR1545CT

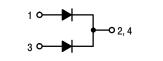
MBR1545CT is a Preferred Device

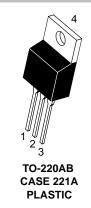
SWITCHMODE™ Power Rectifier

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

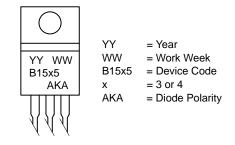
- Center-Tap Configuration
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Epoxy Meets UL94, VO at 1/8"
- Mechanical Characteristics:
- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: B1535, B1545

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Volta MBR1535CT MBR1545CT	V _{RRM} V _{RWM} V _R	35 45	V
Average Rectified Forward Current (Rated V_R , $T_C = 105^{\circ}C$) Per Diode Per Device	I _{F(AV)}	7.5 15	A
$\begin{array}{l} \mbox{Peak Repetitive Forward Current} \\ (Rated V_R, Square Wave, \\ 20 \mbox{ kHz}, T_C = 105^{\circ} C) & \mbox{Per Diode} \end{array}$	I _{FRM}	15	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	A
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	1.0	A
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	-65 to +150	°C
Voltage Rate of Change (Rated V_R)	dv/dt	1000	V/μs



ON Semiconductor[™]


http://onsemi.com

SCHOTTKY BARRIER RECTIFIERS 15 AMPERES 35 and 45 VOLTS

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
MBR1535CT	TO-220	50 Units/Rail
MBR1545CT	TO-220	50 Units/Rail

MBR1535CT, MBR1545CT

THERMAL CHARACTERISTICS PER DIODE

Characteristic	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Case	R_{\thetaJC}	3.0	°C/W
Maximum Thermal Resistance, Junction to Ambient	R_{\thetaJA}	60	°C/W

ELECTRICAL CHARACTERISTICS PER DIODE

	V _F	0.57 0.72 0.84	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 125^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	15 0.1	mA

1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle $\leq 2.0\%$

MBR1535CT, MBR1545CT

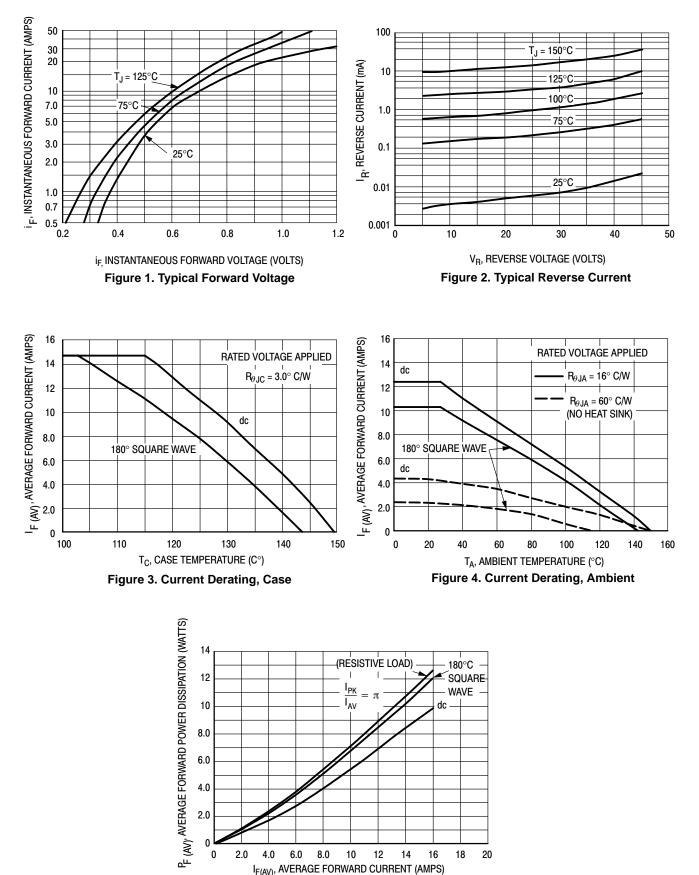


Figure 5. Power Dissipation

MBR16100CT

SWITCHMODE™ Power Rectifier

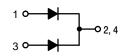
... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- 16 Amps Total (8.0 Amps Per Diode Leg)
- Guard-Ring for Stress Protection
- Low Forward Voltage
- 175°C Operating Junction Temperature
- Epoxy Meets UL94, VO at 1/8"
- Low Power Loss/High Efficiency
- High Surge Capacity
- Low Stored Charge Majority Carrier Conduction

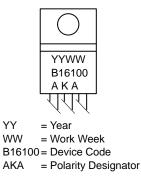
Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: B16100

MAXIMUM RATINGS (Per Diode Leg)


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	100	V
Average Rectified Forward Current (Rated V _R) T _C = 133°C	I _{F(AV)}	8.0	A
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 133°C	I _{FRM}	16	A
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	150	A
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	0.5	A
Operating Junction Temperature	TJ	- 65 to +175	°C
Storage Temperature	T _{stg}	- 65 to +175	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/µs

ON Semiconductor"


http://onsemi.com

MARKING DIAGRAM

ORDERING INFORMATION

	Device Package		Shipping	
MB	R16100CT	TO-220	50 Units/Rail	

MBR16100CT

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Maximum Thermal Resistance - Junction to Case - Junction to Ambient	R _{θJC} R _{θJA}	2.0 60	°C/W
ELECTRICAL CHARACTERISTICS (Per Diode Leg)			
$\label{eq:maximum lnstantaneous Forward Voltage (Note 1) \\ (i_F = 8.0 \text{ Amps}, T_C = 125^\circ\text{C}) \\ (i_F = 8.0 \text{ Amps}, T_C = 25^\circ\text{C}) \\ (i_F = 16 \text{ Amps}, T_C = 125^\circ\text{C}) \\ (i_F = 16 \text{ Amps}, T_C = 25^\circ\text{C}) \\ (i_F = 16 \text{ Amps}, T_C = 25^\circ\text{C}) \\ \end{array}$	VF	0.6 0.74 0.69 0.84	Volts
Maximum Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $T_C = 125^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	5.0 0.1	mA

1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2%.

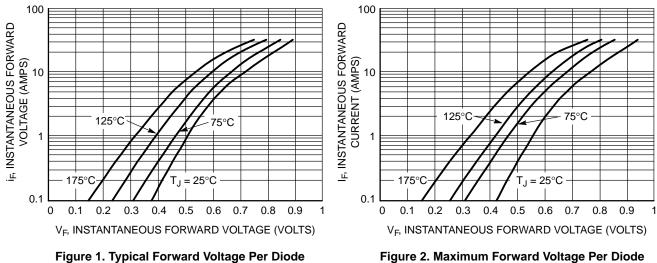


Figure 1. Typical Forward Voltage Per Diode

http://onsemi.com 239

MBR16100CT

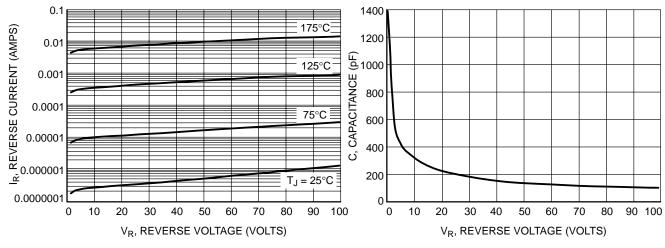
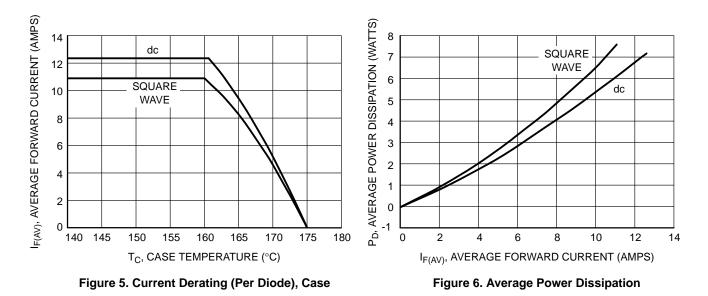



Figure 4. Typical Capacitance Per Diode

http://onsemi.com 240

MBR2030CTL

Preferred Device

SWITCHMODE[™] Dual Schottky Power Rectifier

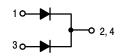
... employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for use as rectifiers in very low-voltage, high-frequency switching power supplies, free wheeling diodes and polarity protection diodes.

- Highly Stable Oxide Passivated Junction
- Very Low Forward Voltage Drop (0.4 Max @ 10 A, $T_C = 150^{\circ}C$)
- 150°C Operating Junction Temperature
- Matched Dual Die Construction (10 A per Leg or 20 A per Package)
- High Junction Temperature Capability
- High dv/dt Capability
- Excellent Ability to Withstand Reverse Avalanche Energy Transients
- Guardring for Stress Protection
- Epoxy Meets UL94, VO at 1/8"

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: B2030

MAXIMUM RATINGS


Please See the Table on the Following Page

ON Semiconductor[™]

http://onsemi.com

TO-220AB CASE 221A PLASTIC

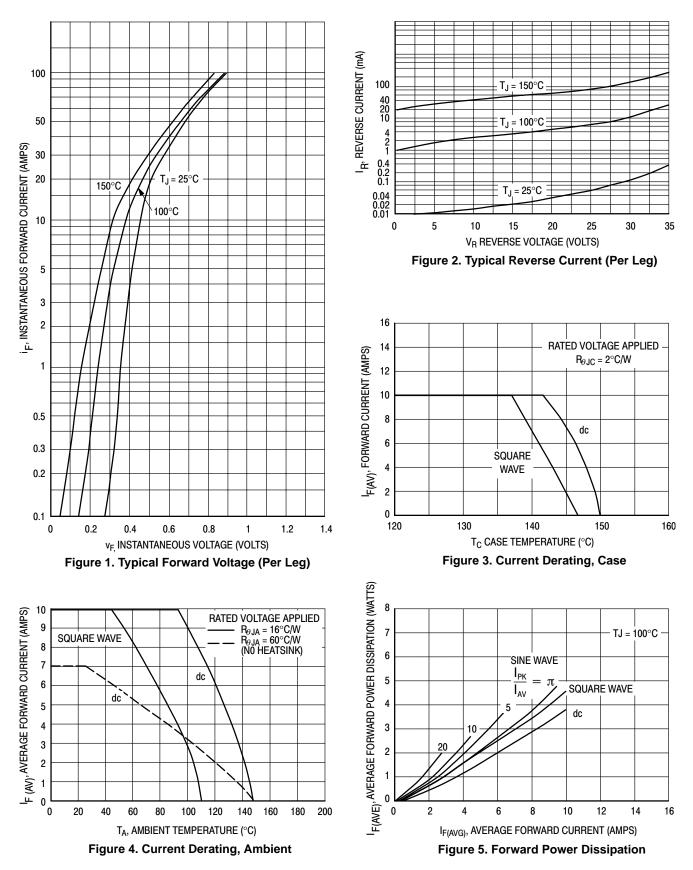
MARKING DIAGRAM

B2030 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBR2030CTL	TO-220	50 Units/Tube

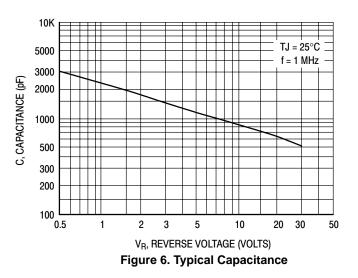
MBR2030CTL


MAXIMUM RATINGS (Per Leg)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	Volts
Average Rectified Forward Current	I _{F(AV)}	10	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	150	Amps
Peak Repetitive Reverse Surge Current (2.0 µs, 1.0 kHz)	I _{RRM}	1.0	Amp
Operating Junction Temperature	TJ	-65 to +150	°C
Storage Temperature	T _{stg}	-65 to +175	°C
Voltage Rate of Change (Rated V _R)	dv/dt	1000	V/µs
THERMAL CHARACTERISTICS (Per Leg)			
Thermal Resistance, Junction to Case	$R_{\theta JC}$	2.0	°C/W
ELECTRICAL CHARACTERISTICS (Per Leg)	· · · · ·		
Maximum Instantaneous Forward Voltage (Note 1.) (in = 10 Amps, To = 25°C)	V _F	0.52	Volts

		0.52 0.40 0.58 0.48	
Maximum Instantaneous Reverse Current (Note 1.) (Rated DC Voltage, $T_C = 25^{\circ}C$) (Rated DC Voltage, $T_C = 100^{\circ}C$) (Rated DC Voltage, $T_C = 125^{\circ}C$)	i _R	5.0 40 75	mA

1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle \leq 10%.


MBR2030CTL

HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 6.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

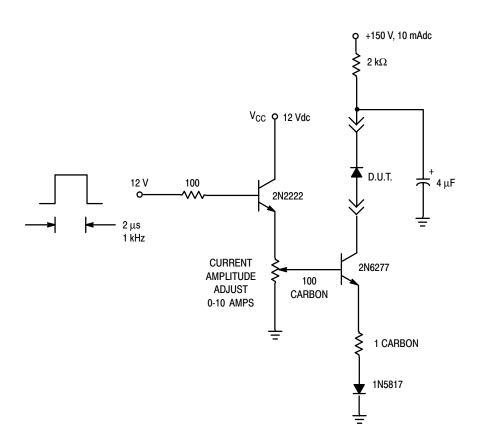


Figure 7. Test Circuit for dv/dt and Reverse Surge Current

Preferred Device

SWITCHMODE™ Power Rectifier

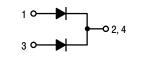
... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

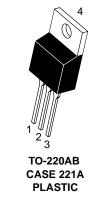
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Epoxy Meets UL94, VO at 1/8"

Mechanical Characteristics:

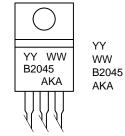
- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: B2045

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	45	V
Average Rectified Forward Current (Rated V_R , T_C = 135°C)	I _{F(AV)}	20	A
Peak Repetitive Forward Current per Diode Leg (Rated V_R , Square Wave, 20 kHz, $T_C = 135^{\circ}C$)	I _{FRM}	20	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	A
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz) See Figure 11	I _{RRM}	1.0	A
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	-65 to +150	°C
Voltage Rate of Change (Rated V_R)	dv/dt	1000	V/μs



ON Semiconductor[™]


http://onsemi.com

MARKING DIAGRAM

= Year

- = Work Week
- = Device Code = Diode Polarity

ORDERING INFORMATION

Device	Package	Shipping
MBR2045CT	TO-220	50 Units/Rail

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Maximum Thermal Resistance, Junction to Case	$R_{ extsf{ heta}JC}$	2.0	°C/W

ELECTRICAL CHARACTERISTICS			
	VF	0.57 0.72 0.84	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 125^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	İR	15 0.1	mA

1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.

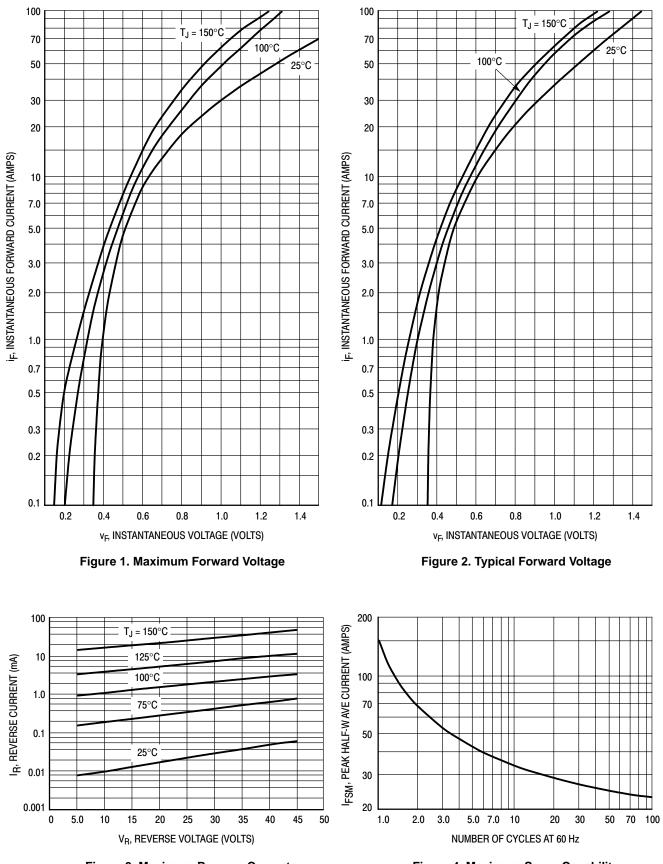
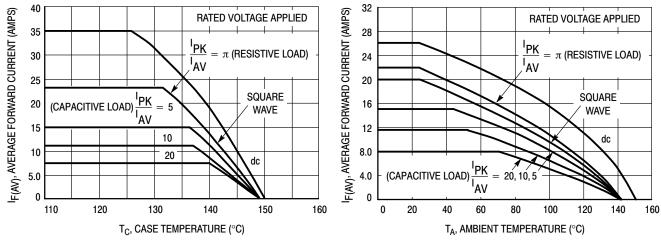



Figure 3. Maximum Reverse Current

Figure 4. Maximum Surge Capability

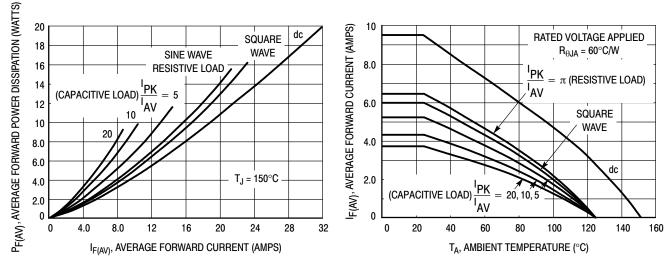


Figure 7. Forward Power Dissipation

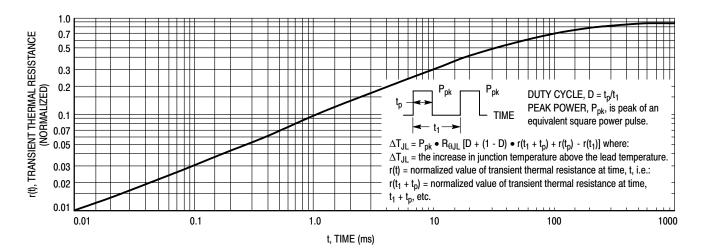


Figure 9. Thermal Response

HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 10.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

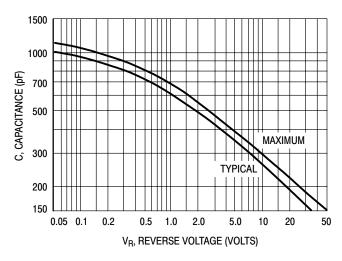


Figure 10. Capacitance

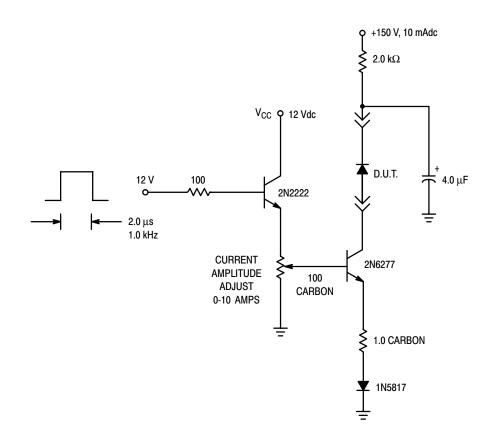


Figure 11. Test Circuit for dv/dt and Reverse Surge Current

MBR2060CT, MBR2080CT, MBR2090CT, MBR20100CT

MBR2060CT and MBR20100CT are Preferred Devices

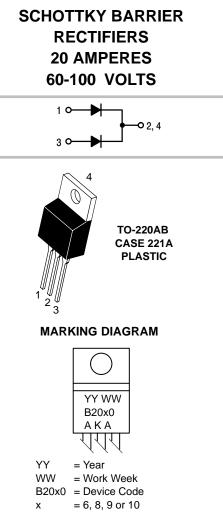
SWITCHMODE™ Power Rectifiers

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- 20 Amps Total (10 Amps Per Diode Leg)
- Guard-Ring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Epoxy Meets UL94, VO at 1/8"
- Low Power Loss/High Efficiency
- High Surge Capacity
- Low Stored Charge Majority Carrier Conduction

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: B2060, B2080, B2090, B20100


MAXIMUM RATINGS

Please See the Table on the Following Page

ON Semiconductor[™]

http://onsemi.com

AKA = Polarity Designator

ORDERING INFORMATION

Device	Package Shipping	
MBR2060CT	TO-220	50 Units/Rail
MBR2080CT	TO-220	50 Units/Rail
MBR2090CT	TO-220	50 Units/Rail
MBR20100CT	TO-220	50 Units/Rail

MBR2060CT, MBR2080CT, MBR2090CT, MBR20100CT

		MBR				
Rating	Symbol	2060CT	2080CT	2090CT	20100CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	60	80	90	100	Volts
Average Rectified Forward Current (Rated V_R) T _C = 133°C	I _{F(AV)}	10				Amps
Peak Repetitive Forward Current (Rated V_R , Square Wave, 20 kHz) $T_C = 133^{\circ}C$	I _{FRM}	20				Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	150			Amps	
Peak Repetitive Reverse Surge Current (2.0 µs, 1.0 kHz)	I _{RRM}	0.5			Amp	
Operating Junction Temperature	TJ	-65 to +150			°C	
Storage Temperature	T _{stg}	-65 to +175			°C	
Voltage Rate of Change (Rated V _R)	dv/dt	10,000				V/µs
THERMAL CHARACTERISTICS						
Maximum Thermal Resistance — Junction to Case — Junction to Ambient	$R_{ extsf{ heta}JC} \ R_{ hetaJA}$	2.0 60			°C/W	
ELECTRICAL CHARACTERISTICS (Per Diode Leg)						
	VF	0.75 0.85 0.85 0.95			Volts	
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 125^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	6.0 0.1			mA	

MAXIMUM RATINGS (Per Diode Leg)

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MBR2060CT, MBR2080CT, MBR2090CT, MBR20100CT

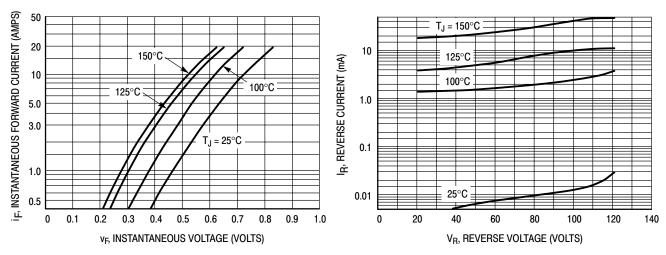


Figure 1. Typical Forward Voltage Per Diode

Figure 2. Typical Reverse Current Per Diode

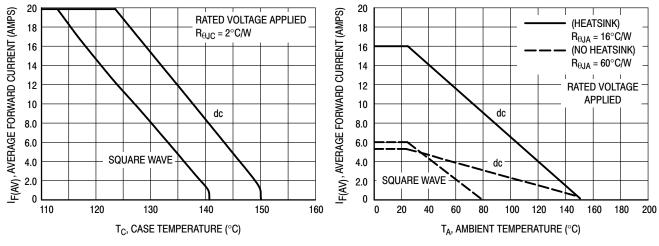
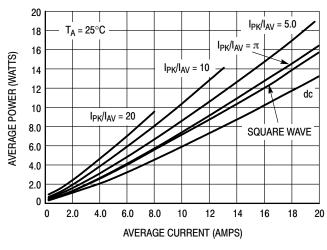
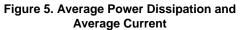




Figure 3. Current Derating, Case

Figure 4. Current Derating, Ambient

MBR20200CT

SWITCHMODE[™] Power

Dual Schottky Rectifier

... using Schottky Barrier technology with a platinum barrier metal. This state-of-the-art device is designed for use in high frequency switching power supplies and converters with up to 48 volt outputs. They block up to 200 volts and offer improved Schottky performance at frequencies from 250 kHz to 5.0 MHz.

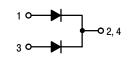
• 200 Volt Blocking Voltage

- Low Forward Voltage Drop
- Guardring for Stress Protection and High dv/dt Capability (10,000 V/µs)
- Dual Diode Construction Terminals 1 and 3 Must be Connected for Parallel Operation at Full Rating

Mechanical Characteristics

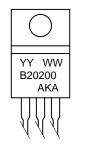
- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: B20200

MAXIMUM RATINGS (Per Leg)


RatingSymtPeak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking VoltageVR VRW VRAverage Rectified Forward Current (Rated VR, TC = 125°C)IF(AN Per Leg Per PackagePeak Repetitive Forward CurrentIF(AN) PER	M 200 M 10 20	Unit V A
Working Peak Reverse Voltage V_{RW} DC Blocking Voltage V_R Average Rectified Forward Current (Rated V_R , $T_C = 125^{\circ}C$) $Per Leg$ Per Package	/) 10 20	
(Rated V_R , $T_C = 125^{\circ}C$) Per Leg Per Package	10 20	A
Peak Repetitive Forward Current		
per Leg (Rated V _R , Square Wave, 20 kHz, T _C = 90°C)	M 20	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	M 150	A
Peak Repetitive Reverse Surge I _{RRI} Current (2.0 μs, 1.0 kHz)	M 1.0	A
Storage Temperature Range T _{stg}	-65 to +1	75 °C
Operating Junction Temperature T _J	-65 to +1	50 °C
Voltage Rate of Change (Rated V _R) dv/c	it 10,000	V/μs

ON Semiconductor[™]

http://onsemi.com



CASE 221A PLASTIC

MARKING DIAGRAM

YY

= Year WW = Work Week B20200 = Device Code = Diode Polarity AKA

ORDERING INFORMATION

Device	Package	Shipping
MBR20200CT	TO-220	50 Units/Rail

MBR20200CT

THERMAL CHARACTERISTICS (Per Leg)

Characteristic		Value	Unit
Thermal Resistance — Junction to Case	$R_{\theta JC}$	2.0	°C/W
ELECTRICAL CHARACTERISTICS (Per Leg)			
$ \begin{array}{ll} \mbox{Maximum Instantaneous Forward Voltage (Note 1.)} & (I_F = 10 \mbox{ Amps}, \ T_C = 25^\circ C) \\ & (I_F = 10 \ \mbox{Amps}, \ T_C = 125^\circ C) \\ & (I_F = 20 \ \mbox{Amps}, \ T_C = 25^\circ C) \\ & (I_F = 20 \ \mbox{Amps}, \ T_C = 125^\circ C) \end{array} $	V _F	0.9 0.8 1.0 0.9	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 25^{\circ}C$) (Rated dc Voltage, $T_C = 125^{\circ}C$)	۱ _R	1.0 50	mA
DYNAMIC CHARACTERISTICS (Per Leg)	·		
Capacitance (V_R = -5.0 V, T_C = 25°C, Frequency = 1.0 MHz)	CT	500	pF

1. Pulse Test: Pulse Width = $300 \ \mu$ s, Duty Cycle $\leq 2.0\%$.

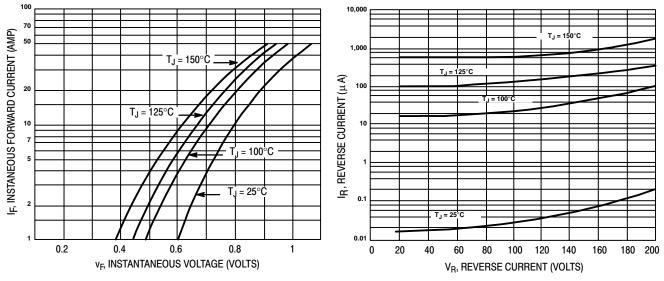


Figure 1. Typical Forward Voltage (Per Leg)

Figure 2. Typical Reverse Current (Per Leg)

MBR20200CT

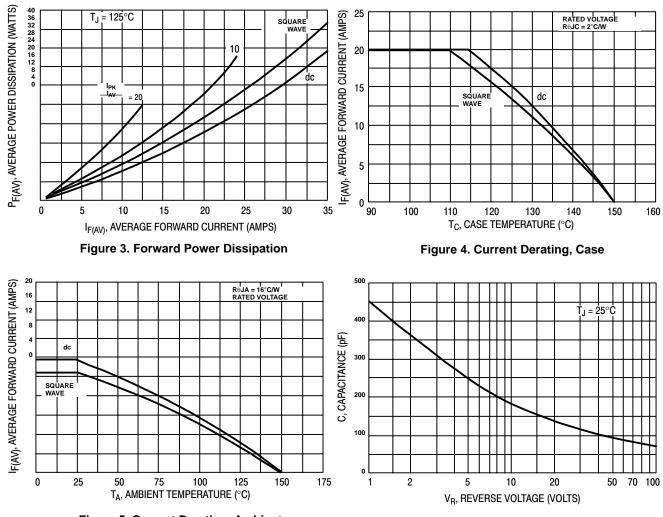


Figure 5. Current Derating, Ambient

Figure 6. Typical Capacitance (Per Leg)

MBR2535CTL

SWITCHMODE™ Power Rectifier

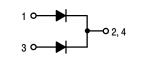
... employing the Schottky Barrier principle in a large metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for use in low voltage, high frequency switching power supplies, free wheeling diodes, and polarity protection diodes.

- Very Low Forward Voltage (0.55 V Maximum @ 25 Amps)
- Matched Dual Die Construction (12.5 A per Leg or 25 A per Package)
- Guardring for Stress Protection
- Highly Stable Oxide Passivated Junction (125°C Operating Junction Temperature)
- Epoxy Meets UL94, VO at 1/8"

Mechanical Characteristics

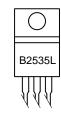
- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: B2535L


MAXIMUM RATINGS (Per Leg)


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	35	V
Average Rectified Forward Current (Rated V _R , T _C = 110°C)	I _{F(AV)}	12.5	A
Peak Repetitive Forward Current, per Leg (Rated V _R , Square Wave, 20 kHz, T _C = 95°C)	I _{FRM}	25	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions, Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	A
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	1.0	A
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature	TJ	-65 to +125	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/μs
Controlled Avalanche Energy	Waval	20	mJ

ON Semiconductor[™]

http://onsemi.com

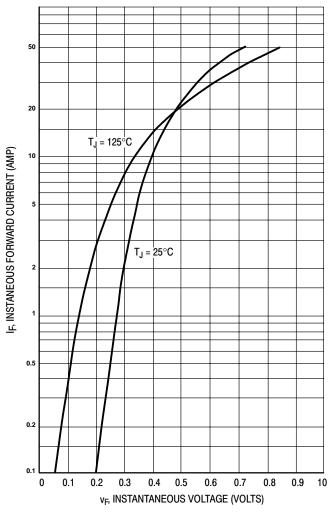


CASE 221A PLASTIC

MARKING DIAGRAM

B2535L = Device Code

ORDERING INFORMATION


Device	Package	Shipping
MBR2535CTL	TO-220	50 Units/Rail

MBR2535CTL

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance — Junction to Case	$R_{ extsf{ heta}JC}$	2.0	°C/W
ELECTRICAL CHARACTERISTICS (Per Leg)			
	V _F	0.55 0.47 0.41	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 125^{\circ}C$)	I _R	5.0 500	mA

1. Pulse Test: Pulse Width = $300 \ \mu$ s, Duty Cycle $\leq 2.0\%$.

MBR2535CTL

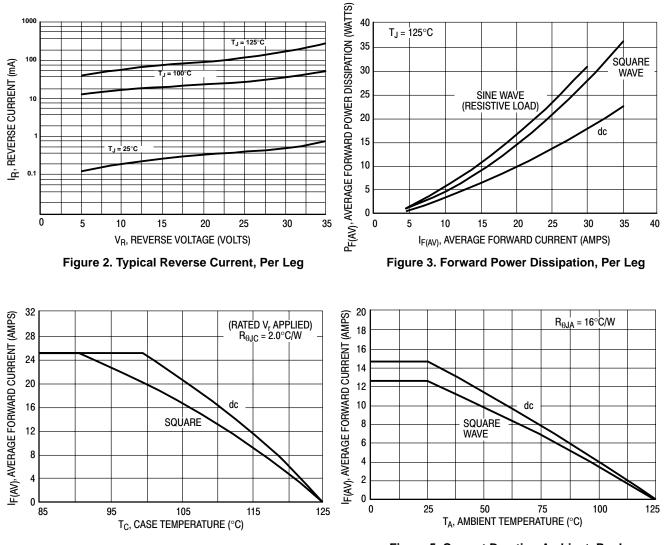


Figure 4. Current Derating

Figure 5. Current Derating Ambient, Per Leg

MBR2545CTP

SWITCHMODE™ Power Rectifier

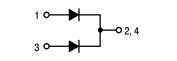
... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

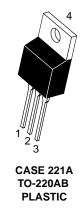
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature

Mechanical Characteristics:

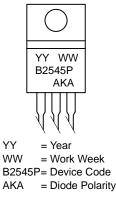
- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: B2545P

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	45	V
Average Rectified Forward Current (Rated V _R , T _C = 130°C)	I _{F(AV)}	30	A
$\label{eq:result} \begin{array}{l} \mbox{Peak Repetitive Forward Current} \\ \mbox{(Rated V}_R, \mbox{Square Wave, 20 kHz,} \\ \mbox{T}_C = 130^\circ\mbox{C} \\ \end{array} \\ \begin{array}{l} \mbox{Per Diode Leg} \end{array}$	I _{FRM}	30	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz) Per Diode Leg	I _{FSM}	150	A
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	1.0	A
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	-65 to +150	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/μs



ON Semiconductor[™]


http://onsemi.com

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
MBR2545CTP	TO-220	50 Units/Rail

MBR2545CTP

THERMAL CHARACTERISTICS (Per Diode Leg)

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%

Characteristic	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Case	$R_{ extsf{ heta}JC}$	2.0	°C/W
FLECTRICAL CHARACTERISTICS (Per Diode Leg)			

ELECTRICAL CHARACTERISTICS (Per Diode Leg)			
	VF	0.73 0.82	Volts
Maximum Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $T_C = 125^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	40 0.2	mA

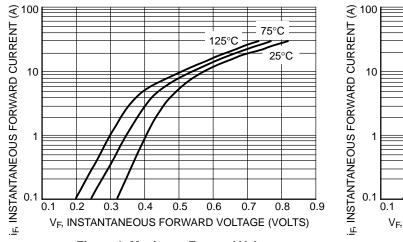
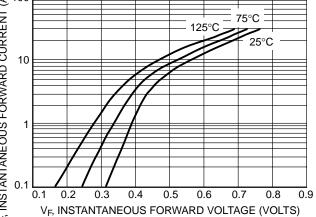



Figure 1. Maximum Forward Voltage

Figure 2. Typical Forward Voltage

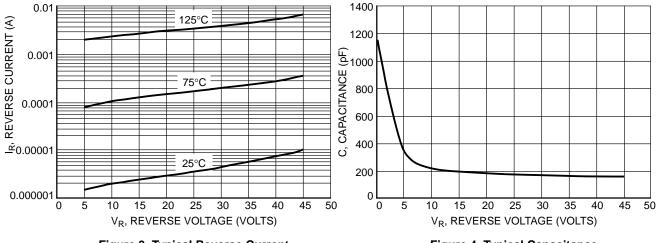
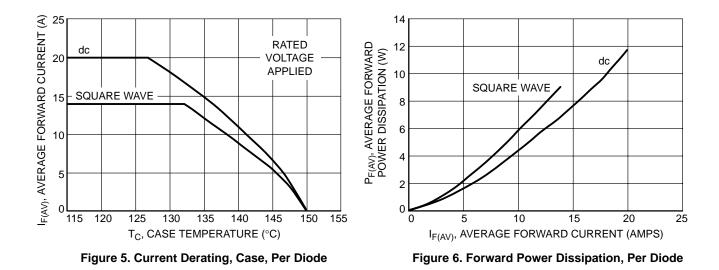



Figure 3. Typical Reverse Current

Figure 4. Typical Capacitance

MBR735, MBR745

MBR745 is a Preferred Device

SWITCHMODE™ Power Rectifiers

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

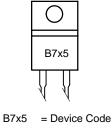
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Epoxy Meets UL94, VO at 1/8"

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: B735, B745

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage MBR735 MBR745	V _{RRM} V _{RWM} V _R	35 45	V
Average Rectified Forward Current (Rated V_R , T_C = 105°C)	I _{F(AV)}	7.5	A
Peak Repetitive Forward Current, (Rated V _R , Square Wave, 20 kHz, T _C = 105°C)	I _{FRM}	15	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	A
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	1.0	A
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	-65 to +150	°C
Voltage Rate of Change (Rated V _R)	dv/dt	10,000	V/μs


ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIERS 7.5 AMPERES 35 and 45 VOLTS

x = 3 or 4

ORDERING INFORMATION

Device	Package	Shipping
MBR735	TO-220	50 Units/Rail
MBR745	TO-220	50 Units/Rail

MBR735, MBR745

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	3.0	°C/W
Maximum Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	60	°C/W
ELECTRICAL CHARACTERISTICS			

	VF	0.57 0.72 0.84	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 125^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	15 0.1	mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

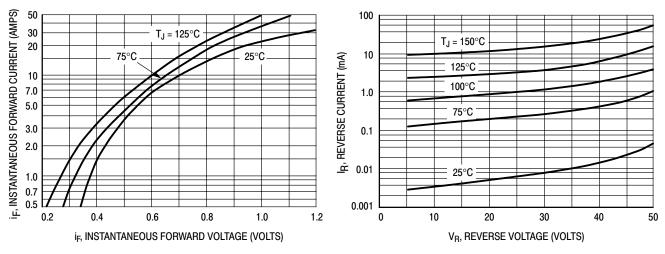


Figure 1. Typical Forward Voltage

Figure 2. Typical Reverse Current

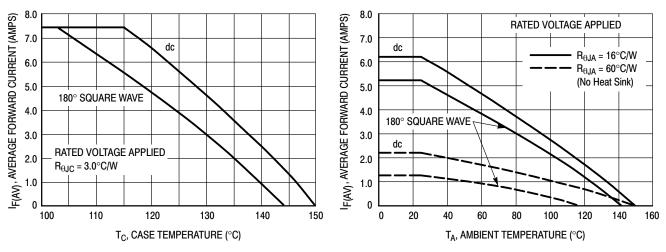


Figure 4. Current Derating, Ambient

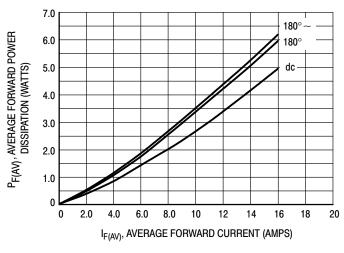


Figure 5. Power Dissipation

MBR1045 is a Preferred Device

SWITCHMODE™ Power Rectifiers

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Epoxy Meets UL94, VO at 1/8"

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: B1035, B1045

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage MBR1035 MBR1045	V _{RRM} V _{RWM} V _R	35 45	V
Average Rectified Forward Current (Rated V_R , T_C = 135°C)	I _{F(AV)}	10	A
Peak Repetitive Forward Current, (Rated V_R , Square Wave, 20 kHz, $T_C = 135^{\circ}C$)	I _{FRM}	20	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	A
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz) See Figure 12	I _{RRM}	1.0	A
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	-65 to +150	°C
Voltage Rate of Change (Rated V _R)	dv/dt	10,000	V/μs

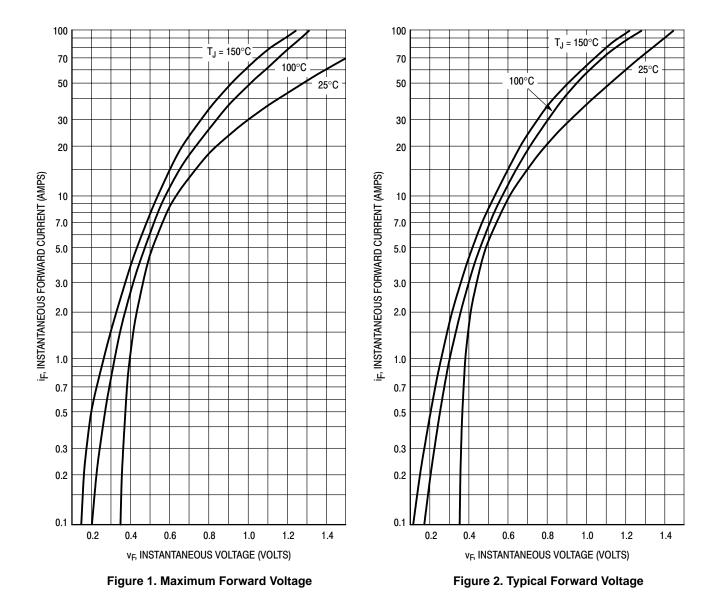
ON Semiconductor**

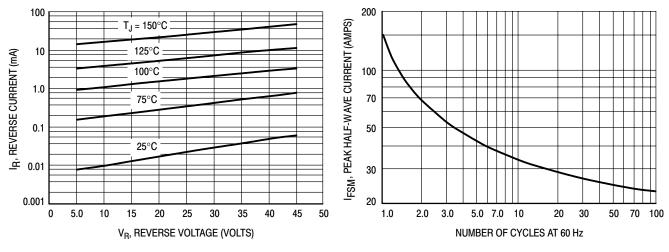
http://onsemi.com

SCHOTTKY BARRIER RECTIFIERS 10 AMPERES 35 to 45 VOLTS

B10x5 = Device Code x = 3 or 4

ORDERING INFORMATION


Device	Package	Shipping
MBR1035	TO-220	50 Units/Rail
MBR1045	TO-220	50 Units/Rail


THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Case	$R_{ extsf{ heta}JC}$	2.0	°C/W
FLECTRICAL CHARACTERISTICS			

ELECTRICAL CHARACTERISTICS			
Maximum Instantaneous Forward Voltage (Note 1.) ($i_F = 10 \text{ Amps}, \text{TC} = 125^{\circ}\text{C}$) ($i_F = 20 \text{ Amps}, \text{T}_C = 125^{\circ}\text{C}$) ($i_F = 20 \text{ Amps}, \text{T}_C = 25^{\circ}\text{C}$)	VF	0.57 0.72 0.84	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 125^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	15 0.1	mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

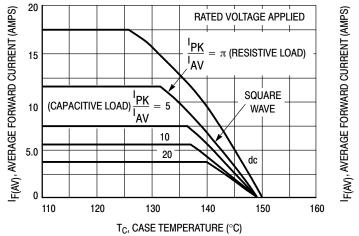
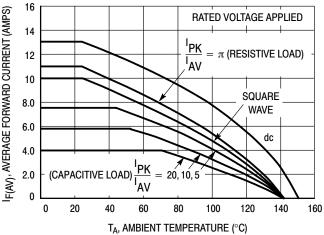



Figure 5. Current Derating, Infinite Heatsink

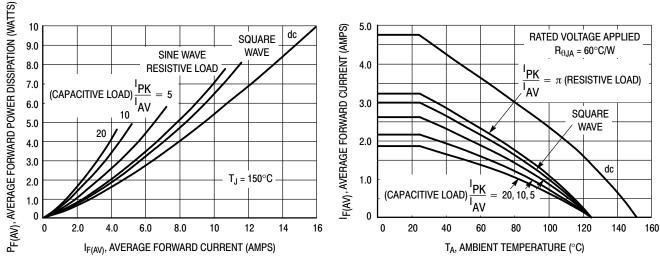


Figure 7. Forward Power Dissipation

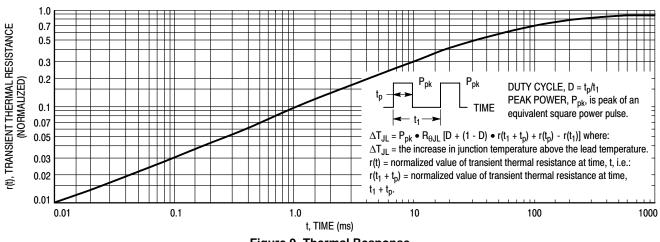
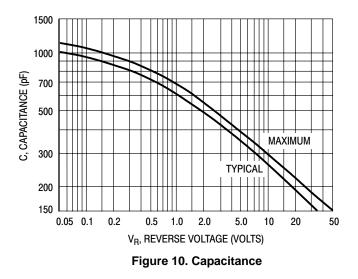



Figure 9. Thermal Response

HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 10)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

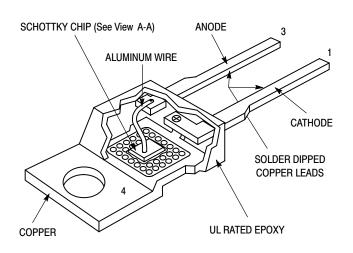
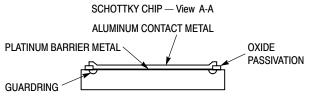



Figure 11. Schottky Rectifier

Motorola builds quality and reliability into its Schottky Rectifiers.

First is the chip, which has an interface metal between the barrier metal and aluminum-contact metal to eliminate any possible interaction between the two. The indicated guardring prevents dv/dt problems, so snubbers are not mandatory. The guardring also operates like a zener to absorb over-voltage transients.

Second is the package. The Schottky chip is bonded to the copper heat sink using a specially formulated solder. This gives the unit the capability of passing 10,000 operating thermal-fatigue cycles having a ΔT_J of 100°C. The epoxy molding compound is rated per UL 94, V0 @ 1/8". Wire bonds are 100% tested in assembly as they are made.

Third is the electrical testing, which includes 100% dv/dt at 1600 V/ μs and reverse avalanche as part of device characterization.

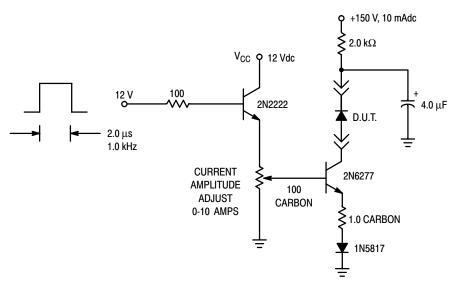


Figure 12. Test Circuit for dv/dt and Reverse Surge Current

MBR1060, MBR1080, MBR1090, MBR10100

MBR1060 and MBR10100 are Preferred Devices

SWITCHMODE™ Power Rectifiers

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Guard-Ring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Epoxy Meets UL94, VO at 1/8"
- Low Power Loss/High Efficiency
- High Surge Capacity
- Low Stored Charge Majority Carrier Conduction
- Mechanical Characteristics:
- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: B1060, B1080, B1090, B10100

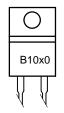
MAXIMUM RATINGS

Please See the Table on the Following Page



ON Semiconductor[™]

http://onsemi.com


SCHOTTKY BARRIER RECTIFIERS 10 AMPERES 60 to 100 VOLTS

3 0 0 1, 4

TO-220AC CASE 221B PLASTIC

MARKING DIAGRAM

B10x0 = Device Code x = 6, 8, 9 or 10

ORDERING INFORMATION

Device	Package	Shipping
MBR1060	TO-220	50 Units/Rail
MBR1080	TO-220	50 Units/Rail
MBR1090	TO-220	50 Units/Rail
MBR10100	TO-220	50 Units/Rail

MBR1060, MBR1080, MBR1090, MBR10100

MAXIMUM RATINGS

Define	0	MBR				
Rating	Symbol -	1060	1080	1090	10100	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	60	80	90	100	Volts
Average Rectified Forward Current (Rated V_R) T_C = 133°C	I _{F(AV)}			10		Amps
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz) T _C = 133°C	I _{FRM}		2	20		Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}		1	50		Amps
Peak Repetitive Reverse Surge Current (2.0 µs, 1.0 kHz)	I _{RRM}		C).5		Amp
Operating Junction Temperature	TJ	- 65 to +150			°C	
Storage Temperature	T _{stg} - 65 to +175			°C		
Voltage Rate of Change (Rated V _R)	dv/dt	10,000			V/µs	
THERMAL CHARACTERISTICS						
Maximum Thermal Resistance — Junction to Case — Junction to Ambient	R _{θJC} R _{θJA}	2.0 60			°C/W	
ELECTRICAL CHARACTERISTICS						
	VF	0.7 0.8 0.85 0.95		Volts		
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 125^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	6.0 0.10		mA		

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MBR1060, MBR1080, MBR1090, MBR10100

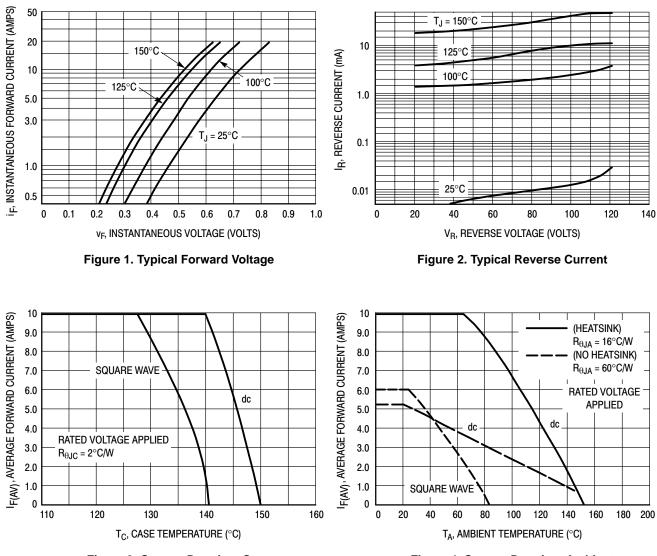


Figure 3. Current Derating, Case

Figure 4. Current Derating, Ambient

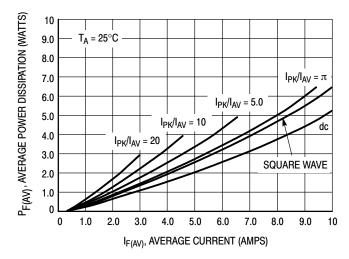


Figure 5. Forward Power Dissipation

MBR1645 is a Preferred Device

SWITCHMODE™ Power Rectifiers

... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

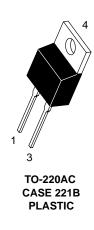
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature

Mechanical Characteristics:

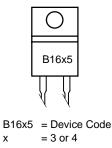
- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: B1635, B1645

MAXIMUM RATINGS

	1		
Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage MBR1635 MBR1645	V _{RRM} V _{RWM} V _R	35 45	V
Average Rectified Forward Current (Rated V _R , T _C = 125°C)	I _{F(AV)}	16	A
Peak Repetitive Forward Current, (Rated V _R , Square Wave, 20 kHz, T _C = 125°C)	I _{FRM}	32	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	A
Peak Repetitive Reverse Surge Current (2.0 µs, 1.0 kHz)	I _{RRM}	1.0	A
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	-65 to +150	°C
Voltage Rate of Change (Rated V _R)	dv/dt	10,000	V/μs



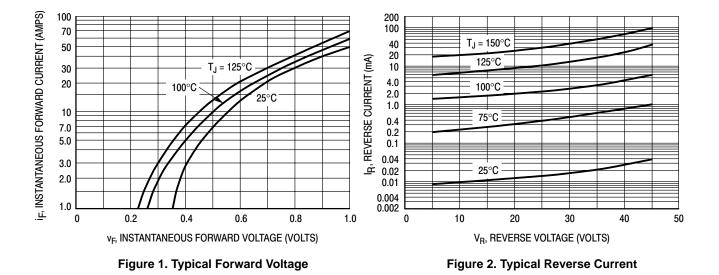
ON Semiconductor"


http://onsemi.com

SCHOTTKY BARRIER RECTIFIERS 16 AMPERES 35 and 45 VOLTS

MARKING DIAGRAM

ORDERING INFORMATION


Device	Package	Shipping
MBR1635	TO-220	50 Units/Rail
MBR1645	TO-220	50 Units/Rail

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Case	$R_{ extsf{ heta}JC}$	1.5	°C/W

ELECTRICAL CHARACTERISTICS			
	VF	0.57 0.63	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 125^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	40 0.2	mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

http://onsemi.com 274

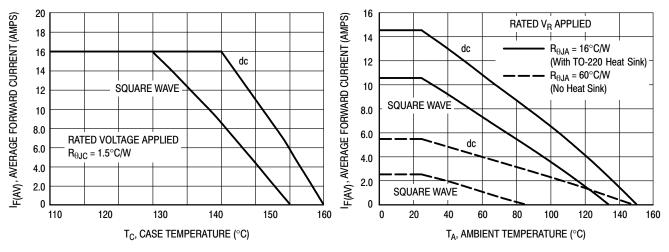


Figure 4. Current Derating, Ambient

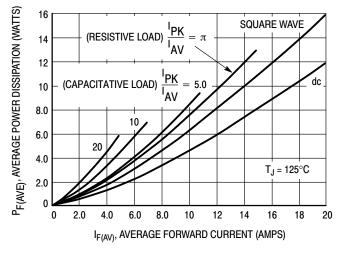


Figure 5. Forward Power Dissipation

MBR2515L

SWITCHMODE™ Power Rectifier

... employing the Schottky Barrier principle in a large metal-to-silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for use in low voltage, high frequency switching power supplies, low voltage converters, OR'ing diodes, and polarity protection devices.

- Very Low Forward Voltage (0.28 V Maximum @ 19 Amps, 70°C)
- Guardring for Stress Protection
- Highly Stable Oxide Passivated Junction (100°C Operating Junction Temperature)
- Epoxy Meets UL94, VO at 1/8"

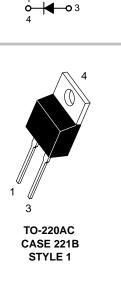
Mechanical Characteristics

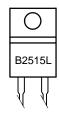
- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 Units Per Plastic Tube
- Marking: B2515L

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	15	V
Average Rectified Forward Current (Rated V_R , $T_C = 90^{\circ}C$)	I _{F(AV)}	25	A
Peak Repetitive Forward Current, per Leg (Rated V _R , Square Wave, 20 kHz, T _C = 90°C)	I _{FRM}	30	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	A
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	1.0	A
Storage Temperature Range	T _{stg}	-65 to +125	°C
Operating Junction Temperature	TJ	-65 to +100	°C

THERMAL CHARACTERISTICS


Thermal Resistance —	$R_{\theta JC}$	2.0	°C/W
Junction to Case			


ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 25 AMPERES 15 VOLTS

MARKING DIAGRAM

B2515L = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBR2515L	TO-220	50 Units/Rail

MBR2515L

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Maximum Instantaneous Forward Voltage (Note 1) ($i_F = 25 \text{ Amps}, T_J = 25^{\circ}C$) ($i_F = 25 \text{ Amps}, T_J = 70^{\circ}C$) ($i_F = 19 \text{ Amps}, T_J = 70^{\circ}C$)	VF	0.45 0.42 0.38	Volts
Maximum Instantaneous Reverse Current (Note 1) (Rated DC Voltage, $T_J = 25^{\circ}C$) (Rated DC Voltage, $T_J = 70^{\circ}C$)	۱ _R	15 200	mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MBRF2060CT

Preferred Device

SWITCHMODE™ Schottky Power Rectifier

The SWITCHMODE Power Rectifier employs the Schottky Barrier principle in a large area metal- to- silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for use as rectifiers in very low-voltage, high-frequency switching power supplies, free wheeling diodes and polarity protection diodes.

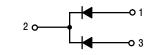
- Highly Stable Oxide Passivated Junction
- Very Low Forward Voltage Drop
- Matched Dual Die Construction
- High Junction Temperature Capability
- High dv/dt Capability
- Excellent Ability to Withstand Reverse Avalanche Energy Transients
- Guardring for Stress Protection
- Epoxy Meets UL94, V_O at 1/8"
- Electrically Isolated. No Isolation Hardware Required.
- UL Recognized File #E69369 (Note 1.)

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: B2060

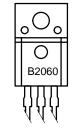
MAXIMUM RATINGS

Please See the Table on the Following Page


1. UL Recognized mounting method is per Figure 4

ON Semiconductor®

http://onsemi.com



ISOLATED TO-220 CASE 221D STYLE 3

MARKING DIAGRAM

B2060 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRF2060CT	TO-220	50 Units/Rail

MBRF2060CT

MAXIMUM RATINGS (Per Leg)

Rating		Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		V _{RRM} V _{RWM} V _R	60	Volts
Average Rectified Forward Current (Rated V_R), T_C = 133°C	Total Device	I _{F(AV)}	10 20	Amps
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz), T _C = 133°C		I _{FRM}	20	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)		I _{FSM}	150	Amps
Peak Repetitive Reverse Surge Current (2.0 µs, 1.0 kHz)		I _{RRM}	0.5	Amp
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 65 to +150	°C
Voltage Rate of Change (Rated V _R)		dv/dt	10000	V/µs
RMS Isolation Voltage (t = 1.0 second, R.H. \leq 30%, T_A = 25°C) (Note 2.) Per	Per Figure 3 Figure 4 (Note 1.) Per Figure 5	V _{iso1} V _{iso2} V _{iso3}	4500 3500 1500	Volts

THERMAL CHARACTERISTICS (Per Leg)

Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	4.0	°C/W
Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	ΤL	260	°C

ELECTRICAL CHARACTERISTICS (Per Leg)

Characteristic	Symbol	Max	Unit
	VF	0.85 0.75 0.95 0.85	Volts
Maximum Instantaneous Reverse Current (Note 3.) (Rated DC Voltage, $T_C = 25^{\circ}C$) (Rated DC Voltage, $T_C = 125^{\circ}C$)	i _R	0.15 150	mA

1. UL Recognized mounting method is per Figure 42. Proper strike and creepage distance must be provided.3. Pulse Test: Pulse Width = $300 \ \mu s$, Duty Cycle $\leq 2.0\%$

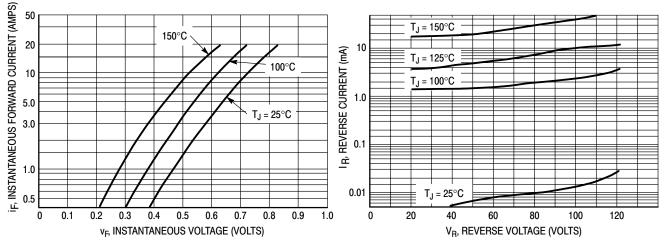


Figure 1. Typical Forward Voltage Per Diode

MBRF2060CT

TEST CONDITIONS FOR ISOLATION TESTS*

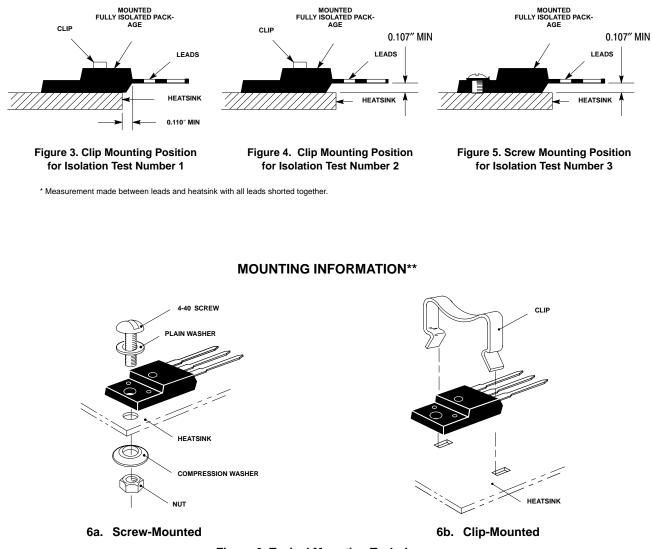


Figure 6. Typical Mounting Techniques

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in · lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.

Destructive laboratory tests show that using a hex head 4-40 screw, without washers, and applying a torque in excess of 20 in \cdot lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.

Additional tests on slotted 4-40 screws indicate that the screw slot fails between 15 to 20 in \cdot lbs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recommend exceeding 10 in \cdot lbs of mounting torque under any mounting conditions.

**For more information about mounting power semiconductors see Application Note AN1040.

MBRF20100CT

Preferred Device

SWITCHMODE™ Schottky Power Rectifier

The SWITCHMODE Power Rectifier employs the Schottky Barrier principle in a large area metal- to- silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for use as rectifiers in very low-voltage, high-frequency switching power supplies, free wheeling diodes and polarity protection diodes.

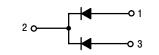
- Highly Stable Oxide Passivated Junction
- Very Low Forward Voltage Drop
- Matched Dual Die Construction
- High Junction Temperature Capability
- High dv/dt Capability
- Excellent Ability to Withstand Reverse Avalanche Energy Transients
- Guardring for Stress Protection
- Epoxy Meets UL94, V_O at 1/8"
- Electrically Isolated. No Isolation Hardware Required.
- UL Recognized File #E69369 (Note 1.)

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: B20100

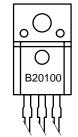
MAXIMUM RATINGS

Please See the Table on the Following Page


1. UL Recognized mounting method is per Figure 4

ON Semiconductor®

http://onsemi.com



ISOLATED TO-220 CASE 221D STYLE 3

MARKING DIAGRAM

B20100 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRF20100CT	TO-220	50 Units/Rail

MBRF20100CT

MAXIMUM RATINGS (Per Leg)

Rating		Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		V _{RRM} V _{RWM} V _R	100	Volts
Average Rectified Forward Current (Rated V_R), T_C = 133°C	Total Device	I _{F(AV)}	10 20	Amps
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz), T _C = 133°C		I _{FRM}	20	Amps
Non-repetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)		I _{FSM}	150	Amps
Peak Repetitive Reverse Surge Current (2.0 µs, 1.0 kHz)		I _{RRM}	0.5	Amp
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 65 to +150	°C
Voltage Rate of Change (Rated V _R)		dv/dt	10000	V/µs
RMS Isolation Voltage (t = 1.0 second, R.H. \leq 30%, T_A = 25°C) (Note 2.) Per	Per Figure 3 Figure 4 (Note 1.) Per Figure 5	V _{iso1} V _{iso2} V _{iso3}	4500 3500 1500	Volts

THERMAL CHARACTERISTICS (Per Leg)

Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	3.5	°C/W
Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds		260	°C

ELECTRICAL CHARACTERISTICS (Per Leg)

Characteristic	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (Note 3.)	VF		Volts
(i _F = 10 Amp, T _C = 25°C)		0.85	
(i _F = 10 Amp, T _C = 125°C)		0.75	
$(i_F = 20 \text{ Amp}, T_C = 25^{\circ}C)$		0.95	
(i _F = 20 Amp, T _C = 125°C)		0.85	
Maximum Instantaneous Reverse Current (Note 3.)	i _R		mA
(Rated DC Voltage, $T_C = 25^{\circ}C$)		0.15	
(Rated DC Voltage, $T_C = 125^{\circ}C$)		150	

1. UL Recognized mounting method is per Figure 42. Proper strike and creepage distance must be provided.3. Pulse Test: Pulse Width = $300 \ \mu s$, Duty Cycle $\leq 2.0\%$

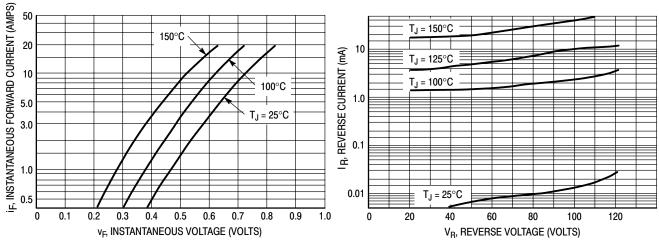


Figure 1. Typical Forward Voltage Per Diode

Figure 2. Typical Reverse Current Per Diode

MBRF20100CT

TEST CONDITIONS FOR ISOLATION TESTS*

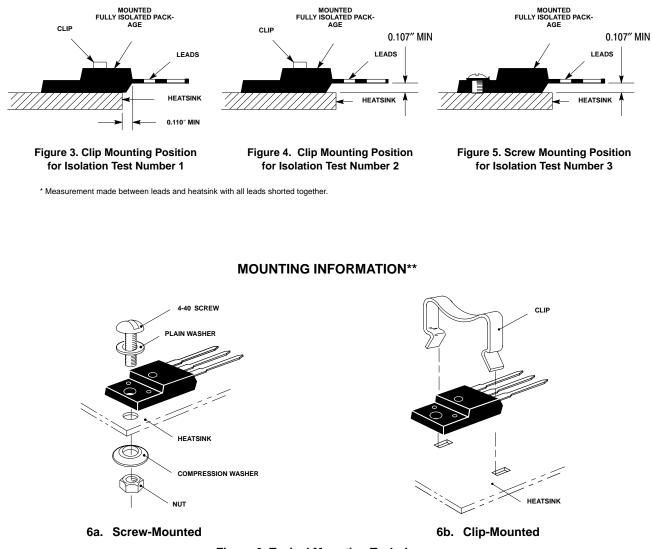


Figure 6. Typical Mounting Techniques

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in · lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.

Destructive laboratory tests show that using a hex head 4-40 screw, without washers, and applying a torque in excess of 20 in \cdot lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.

Additional tests on slotted 4-40 screws indicate that the screw slot fails between 15 to 20 in \cdot lbs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recommend exceeding 10 in \cdot lbs of mounting torque under any mounting conditions.

**For more information about mounting power semiconductors see Application Note AN1040.

MBRF20200CT

Preferred Device

SWITCHMODE™ Schottky Power Rectifier

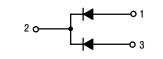
The SWITCHMODE Power Rectifier employs the Schottky Barrier principle in a large area metal- to- silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for use as rectifiers in very low-voltage, high-frequency switching power supplies, free wheeling diodes and polarity protection diodes.

- Highly Stable Oxide Passivated Junction
- Very Low Forward Voltage Drop
- Matched Dual Die Construction
- High Junction Temperature Capability
- High dv/dt Capability
- Excellent Ability to Withstand Reverse Avalanche Energy Transients
- Guardring for Stress Protection
- Epoxy Meets UL94, V_O at 1/8"
- Electrically Isolated. No Isolation Hardware Required.
- UL Recognized File #E69369

Mechanical Characteristics

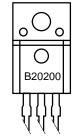
- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: B20200

MAXIMUM RATINGS


Please See the Table on the Following Page

ON Semiconductor®

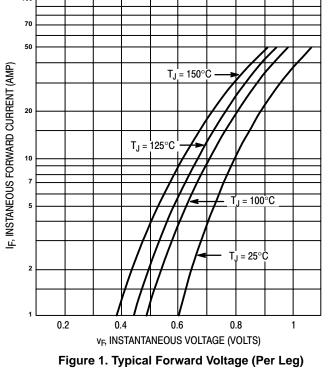
http://onsemi.com

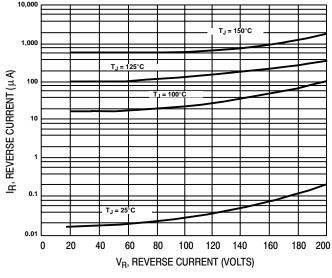


ISOLATED TO-220 CASE 221D STYLE 3

MARKING DIAGRAM

B20200 = Device Code


ORDERING INFORMATION


Device	Package	Shipping
MBRF20200CT	TO-220	50 Units/Rail

MBRF20200CT

MAXIMUM RATINGS (Per Leg)

Rating		Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		V _{RRM} V _{RWM} V _R	200	Volts
Average Rectified Forward Current (Rated V_R) T_C = 125°C	Per Leg Per Package	I _{F(AV)}	10 20	Amps
Peak Repetitive Forward Current, Per Leg (Rated V_R , Square Wave, 20 kHz) T_C = 90°C		I _{FRM}	20	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)		I _{FSM}	150	Amps
Peak Repetitive Reverse Surge Current (2.0 µs, 1.0 kHz)		I _{RRM}	1.0	Amp
Operating Junction Temperature and Storage Temperature		T _J , T _{stg}	- 65 to +150	°C
Voltage Rate of Change (Rated V _R)		dv/dt	10,000	V/µs
THERMAL CHARACTERISTICS (Per Leg)				
Thermal Resistance — Junction to Case		$R_{ extsf{ heta}JC}$	3.5	°C/W
ELECTRICAL CHARACTERISTICS (Per Leg)			
Rating		Symbol	Max	Unit
$\label{eq:maximum lnstantaneous Forward Voltage (Note (i_F = 10 Amp, T_C = 25^{\circ}C) (i_F = 10 Amp, T_C = 125^{\circ}C) (i_F = 20 Amp, T_C = 25^{\circ}C) (i_F = 20 Amp, T_C = 125^{\circ}C) \\ \end{tabular}$	1.)	VF	0.9 0.8 1.0 0.9	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 25^{\circ}C$) (Rated dc Voltage, $T_C = 125^{\circ}C$)		İR	1.0 50	mA
DYNAMIC CHARACTERISTICS (Per Leg)		· ·		•
Capacitance (V _R = -5.0 V, T _C = 25°C, Freq. = 1.0 MHz)		CT	500	pF
1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq	2.0%	· ·		·
	10,000			
70			T 150°C	

MBRF20200CT

TEST CONDITIONS FOR ISOLATION TESTS*

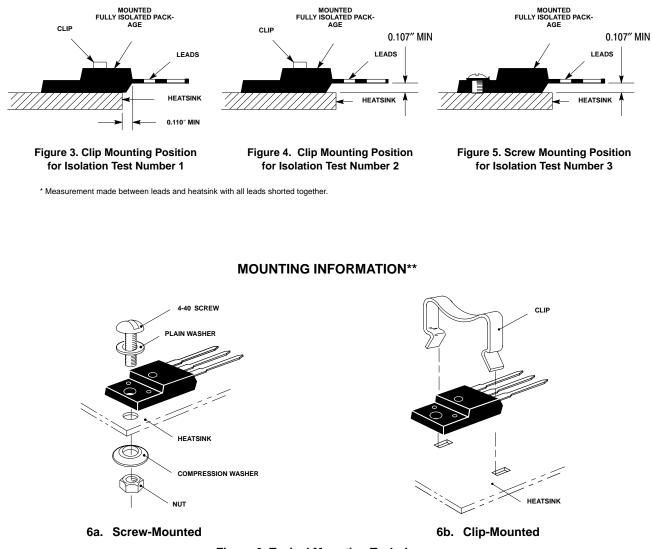


Figure 6. Typical Mounting Techniques

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in · lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.

Destructive laboratory tests show that using a hex head 4-40 screw, without washers, and applying a torque in excess of 20 in \cdot lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.

Additional tests on slotted 4-40 screws indicate that the screw slot fails between 15 to 20 in \cdot lbs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recommend exceeding 10 in \cdot lbs of mounting torque under any mounting conditions.

**For more information about mounting power semiconductors see Application Note AN1040.

MBRF2545CT

Preferred Device

SWITCHMODE™ Schottky Power Rectifier

The SWITCHMODE Power Rectifier employs the Schottky Barrier principle in a large area metal- to- silicon power diode. State-of-the-art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for use as rectifiers in very low-voltage, high-frequency switching power supplies, free wheeling diodes and polarity protection diodes.

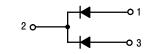
- Highly Stable Oxide Passivated Junction
- Very Low Forward Voltage Drop
- Matched Dual Die Construction
- High Junction Temperature Capability
- High dv/dt Capability
- Excellent Ability to Withstand Reverse Avalanche Energy Transients
- Guardring for Stress Protection
- Epoxy Meets UL94, V_O at 1/8"
- Electrically Isolated. No Isolation Hardware Required.
- UL Recognized File #E69369 (Note 1.)

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: B2545

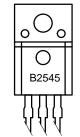
MAXIMUM RATINGS

Please See the Table on the Following Page


1. UL Recognized mounting method is per Figure 4

ON Semiconductor®

http://onsemi.com



ISOLATED TO-220 CASE 221D STYLE 3

MARKING DIAGRAM

B2545 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBRF2545CT	TO-220	50 Units/Rail

MBRF2545CT

MAXIMUM RATINGS (Per Leg)

Rating		Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		V _{RRM} V _{RWM} V _R	45	Volts
Average Rectified Forward Current (Rated V_R), T_C = 125°CTo	otal Device	I _{F(AV)}	12.5 25	Amps
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz), T _C = 125°C		I _{FRM}	25	Amps
Non-repetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)		I _{FSM}	150	Amps
Peak Repetitive Reverse Surge Current (2.0 µs, 1.0 kHz)		I _{RRM}	1.0	Amp
Operating Junction and Storage Temperature		T _J , T _{stg}	- 65 to +150	°C
Voltage Rate of Change (Rated V _R)		dv/dt	10000	V/µs
RMS Isolation Voltage (t = 1.0 second, R.H. \leq 30%, T _A = 25°C) (Note 2.) Per Figu	Per Figure 3 re 4 (Note 1.) Per Figure 5	V _{iso1} V _{iso2} V _{iso3}	4500 3500 1500	Volts

THERMAL CHARACTERISTICS (Per Leg)

Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	3.5	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	ΤL	260	°C

ELECTRICAL CHARACTERISTICS (Per Leg)

Characteristic	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (Note 3.)	٧ _F		Volts
$(i_{F} = 12.5 \text{ Amps}, T_{C} = 25^{\circ}C)$		0.7	
(i _F = 12.5 Amps, T _C = 125°C)		0.62	
Maximum Instantaneous Reverse Current (Note 3.)	i _R		mA
(Rated DC Voltage, $T_{C} = 25^{\circ}C$)		0.2	
(Rated DC Voltage, $T_C = 125^{\circ}C$)		40	

1. UL Recognized mounting method is per Figure 4

2. Proper strike and creepage distance must be provided.

3. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%

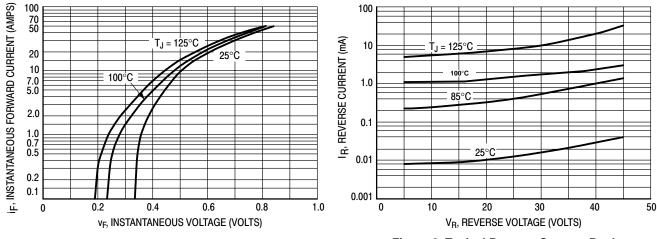


Figure 1. Typical Forward Voltage, Per Leg

Figure 2. Typical Reverse Current, Per Leg

MBRF2545CT

TEST CONDITIONS FOR ISOLATION TESTS*

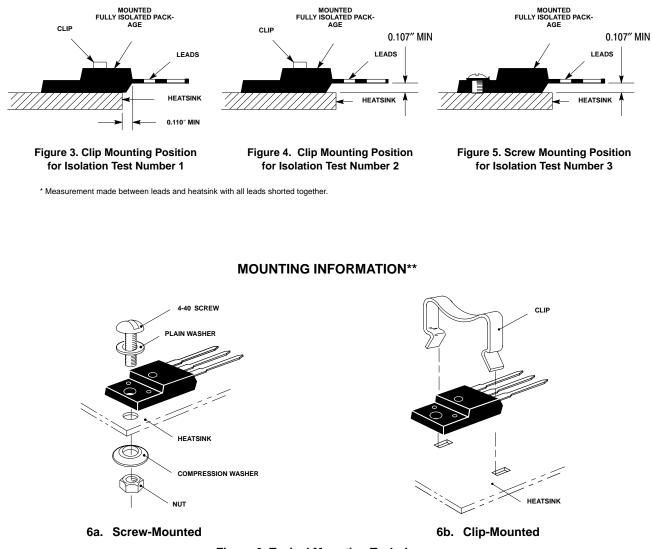


Figure 6. Typical Mounting Techniques

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in · lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.

Destructive laboratory tests show that using a hex head 4-40 screw, without washers, and applying a torque in excess of 20 in \cdot lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.

Additional tests on slotted 4-40 screws indicate that the screw slot fails between 15 to 20 in \cdot lbs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recommend exceeding 10 in \cdot lbs of mounting torque under any mounting conditions.

**For more information about mounting power semiconductors see Application Note AN1040.

MBR3045PT

Preferred Device

SWITCHMODE™ Power Rectifier

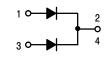
... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

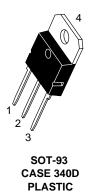
- Dual Diode Construction Terminals 1 and 3 may be Connected for Parallel Operation at Full Rating
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature

Mechanical Characteristics:

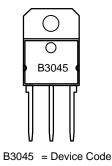
- Case: Epoxy, Molded
- Weight: 4.3 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 30 units per plastic tube
- Marking: B3045

MAXIMUM RATINGS


Rating	Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	45	V
Average Rectified Forward Current (Rated V_R , $T_C = 105^{\circ}C$) Per Device Per Diode	I _{F(AV)}	30 15	A
Peak Repetitive Forward Current, (Rated V _R , Square Wave, 20 kHz) Per Diode	I _{FRM}	30	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	200	A
Peak Repetitive Reverse Current (2.0 μs, 1.0 kHz) Per Diode See Figure 6	I _{RRM}	2.0	A
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	-65 to +150	°C
Peak Surge Junction Temperature (Forward Current Applied)	T _{J(pk)}	175	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/µs



ON Semiconductor**


http://onsemi.com

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
MBR3045PT	SOT-93	30 Units/Rail

Preferred devices are recommended choices for future use and best overall value.

MBR3045PT

THERMAL CHARACTERISTICS PER DIODE

Rating	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{ extsf{ heta}JC}$	1.4	°C/W
Thermal Resistance, Junction to Ambient	$R_{ extsf{ heta}JA}$	40	°C/W

ELECTRICAL CHARACTERISTICS PER DIODE

Instantaneous Forward Voltage (Note 1.) ($i_F = 20 \text{ Amps}, T_C = 125^{\circ}C$) ($i_F = 30 \text{ Amps}, T_C = 125^{\circ}C$) ($i_F = 30 \text{ Amps}, T_C = 25^{\circ}C$)	VF	0.60 0.72 0.76	Volts
Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 125$ °C) (Rated dc Voltage, $T_C = 25$ °C)	i _R	100 1.0	mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

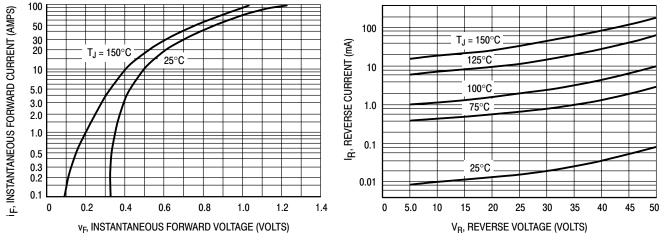
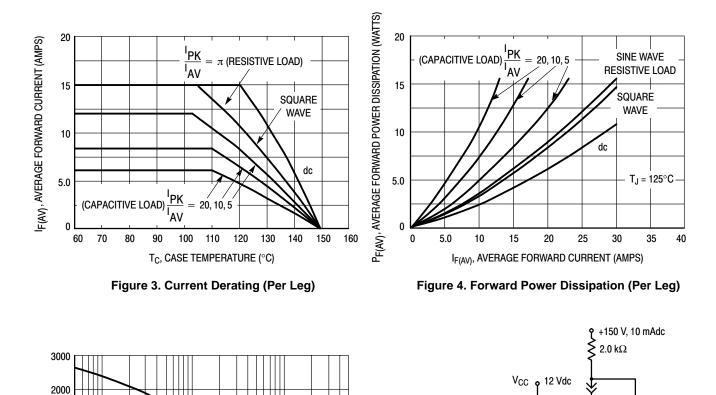



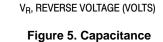
Figure 1. Typical Forward Voltage

Figure 2. Typical Reverse Current

MBR3045PT

12 V

2.0 µs


1.0 kHz

100

CURRENT

AMPLITUDE

ADJUST 0-10 AMPS

5.0

10

20

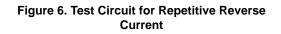
50

1.0 2.0

0.5

C, CAPACITANCE (pF)

600


500

400

300

0.05 0.1

0.2

2N2222

 100Ω

CARBON

D.U.T.

2N6277

2

1.0 CARBON

1N5817

市 4.0 μF

SWITCHMODE™ Power Rectifier

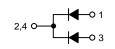
The SWITCHMODE power rectifier employs the use of the Schottky Barrier principle with a Platinum barrier metal. This state-of-the-art device has the following features:

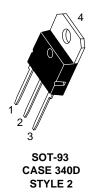
- Dual Diode Construction Terminals 1 and 3 May Be Connected for Parallel Operation at Full Rating
- 45 Volt Blocking Voltage
- Low Forward Voltage Drop
- Guardring for Stress Protection and High dv/dt Capability (> 10 V/ns)
- 150°C Operating Junction Temperature

Mechanical Characteristics

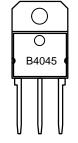
- Case: Epoxy, Molded
- Weight: 4.3 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 30 Units Per Plastic Tube
- Marking: B4045

MAXIMUM RATINGS


Rating	Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	45	V
Average Rectified Forward Current (Rated V_R , $T_C = 125^{\circ}C$) Per Diode Per Device	I _{F(AV)}	20 40	A
Peak Repetitive Forward Current, (Rated V_R , Square Wave, 20 kHz @ T _C = 90°C) Per Diode	I _{FRM}	40	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	400	A
Peak Repetitive Reverse Current (2.0 μs, 1.0 kHz)	I _{RRM}	2.0	A
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	-65 to +150	°C
Peak Surge Junction Temperature (Forward Current Applied)	T _{J(pk)}	175	°C
Voltage Rate of Change	dv/dt	10,000	V/μs



ON Semiconductor[™]

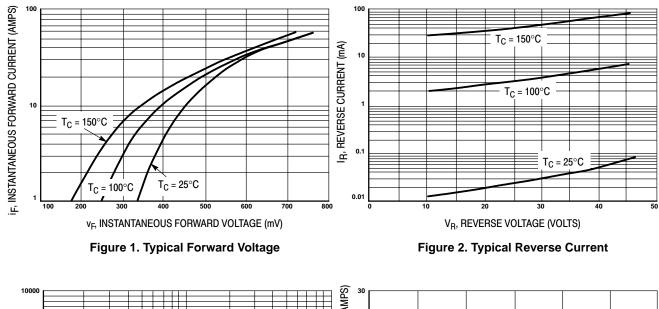

http://onsemi.com

MARKING DIAGRAM

B4045 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBR4045PT	SOT-93	30 Units/Rail


Semiconductor Components Industries, LLC, 2000 October, 2000 - Rev. 4

MBR4045PT

THERMAL CHARACTERISTICS

Rating	Symbol	Мах	Unit
Thermal Resistance — Junction to Case	R _{θJC}	1.4	°C/W
ELECTRICAL CHARACTERISTICS			
Instantaneous Forward Voltage (Note 1.) @ $I_F = 20 \text{ Amps}, T_C = 25^{\circ}C$ @ $I_F = 20 \text{ Amps}, T_C = 125^{\circ}C$ @ $I_F = 40 \text{ Amps}, T_C = 25^{\circ}C$ @ $I_F = 40 \text{ Amps}, T_C = 125^{\circ}C$	VF	0.70 0.60 0.80 0.75	Volts
Instantaneous Reverse Current (Note 1.) @ Rated DC Voltage, $T_C = 25^{\circ}C$ @ Rated DC Voltage, $T_C = 100^{\circ}C$	۱ _R	1.0 50	mA

1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle $\leq 2.0\%$

TYPICAL ELECTRICAL CHARACTERISTICS

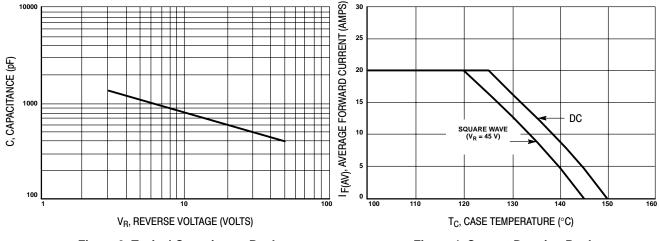


Figure 4. Current Derating Per Leg

MBR6045PT

SWITCHMODE™ Power Rectifier

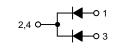
The SWITCHMODE power rectifier employs the use of the Schottky Barrier principle with a Platinum barrier metal. This state-of-the-art device has the following features:

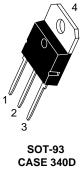
- Dual Diode Construction Terminals 1 and 3 May Be Connected for Parallel Operation at Full Rating
- 45 Volt Blocking Voltage
- Low Forward Voltage Drop
- Guardring for Stress Protection and High dv/dt Capability (> 10 V/ns)
- 150°C Operating Junction Temperature

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 4.3 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 30 Units Per Plastic Tube
- Marking: MBR6045PT

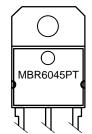
MAXIMUM RATINGS


Rating	Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	45	V
Average Rectified Forward Current (Rated V_R , $T_C = 125^{\circ}C$) Per Diode Per Device	I _{F(AV)}	30 60	A
Peak Repetitive Forward Current, (Rated V_R , Square Wave, 20 kHz @ T _C = 90°C) Per Diode	I _{FRM}	60	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	500	A
Peak Repetitive Reverse Current (2.0 μs, 1.0 kHz)	I _{RRM}	2.0	A
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	-65 to +150	°C
Peak Surge Junction Temperature (Forward Current Applied)	T _{J(pk)}	175	°C
Voltage Rate of Change	dv/dt	10,000	V/μs



ON Semiconductor[™]

http://onsemi.com

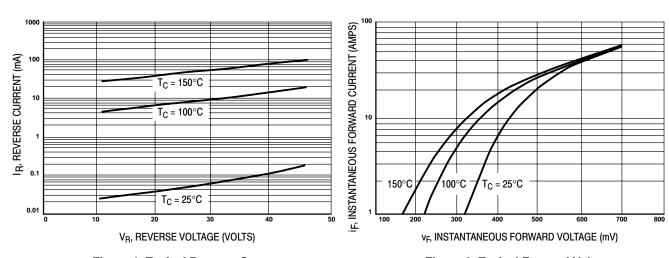

SCHOTTKY BARRIER RECTIFIER 60 AMPERES 45 VOLTS

STYLE 2

MARKING DIAGRAM

MBR6045PT = Device Code

ORDERING INFORMATION


Device	Package	Shipping
MBR6045PT	SOT-93	30 Units/Rail

MBR6045PT

THERMAL CHARACTERISTICS

Rating	Symbol	Мах	Unit
Thermal Resistance - Junction to Case	$R_{ extsf{ heta}JC}$	1.0	°C/W
ELECTRICAL CHARACTERISTICS			
Instantaneous Forward Voltage (Note 1.) @ $I_F = 30 \text{ Amps}, T_C = 25^{\circ}C$ @ $I_F = 30 \text{ Amps}, T_C = 125^{\circ}C$ @ $I_F = 60 \text{ Amps}, T_C = 25^{\circ}C$	V _F	0.62 0.55 0.75	Volts
Instantaneous Reverse Current (Note 1.) @ Rated DC Voltage, T _C = 25°C @ Rated DC Voltage, T _C = 100°C	IR	1.0 50	mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%

TYPICAL ELECTRICAL CHARACTERISTICS

Figure 1. Typical Reverse Current

Figure 2. Typical Forward Voltage

MBR3045WT

Preferred Device

SWITCHMODE™ Power Rectifier

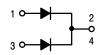
... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Dual Diode Construction Terminals 1 and 3 may be Connected for Parallel Operation at Full Rating
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Popular TO-247 Package

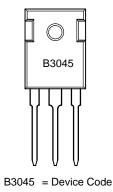
Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 4.3 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 30 units per plastic tube
- Marking: B3045

MAXIMUM RATINGS


$\begin{tabular}{ c c c c } \hline Rating & Symbol & Max \\ \hline Peak Repetitive Reverse Voltage & V_{RRM} & V_{RVVM} & V_R & V_$	Unit
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
(Rated V_R , $T_C = 105^{\circ}C$)Per Device Per Diode30 15Peak Repetitive Forward Current, (Rated V_R , Square Wave, 20 kHz) Per DiodeIFRM30Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)IFSM200Peak Repetitive Reverse Current (2.0 μ s, 1.0 kHz) Per DiodeIRRM2.0	V
(Rated V _R , Square Wave, 20 kHz) Per Diode Item Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz) IFSM 200 Peak Repetitive Reverse Current (2.0 μs, 1.0 kHz) Per Diode See Figure 6 I _{RRM} 2.0	A
(Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz) Image: Condition of the second	A
(2.0 μs, 1.0 kHz) Per Diode See Figure 6	A
	A
Storage Temperature Range T _{stg} -65 to +	175 °C
Operating Junction Temperature T _J -65 to +	150 °C
Peak Surge Junction Temperature (Forward Current Applied) T _{J(pk)} 175	°C
Voltage Rate of Change (Rated V _R) dv/dt 10,00	0 V/μs

ON Semiconductor"


http://onsemi.com

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
MBR3045WT	TO-247	30 Units/Rail

Preferred devices are recommended choices for future use and best overall value.

MBR3045WT

THERMAL CHARACTERISTICS (Per Diode)

Rating	Symbol	Мах	Unit
Thermal Resistance — Junction to Case — Junction to Ambient	R _{θJC} R _{θJA}	1.4 40	°C/W
ELECTRICAL CHARACTERISTICS (Per Diode)	· · · · · ·		
Instantaneous Forward Voltage (Note 1.) ($i_F = 20 \text{ Amps}, T_C = 125^{\circ}C$) ($i_F = 30 \text{ Amps}, T_C = 125^{\circ}C$) ($i_F = 30 \text{ Amps}, T_C = 25^{\circ}C$)	VF	0.6 0.72 0.76	Volts
Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 125^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	İR	100 1.0	mA

1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.

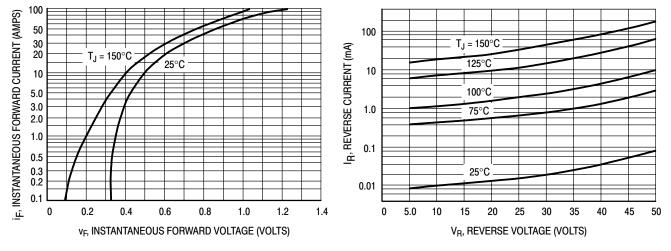


Figure 1. Typical Forward Voltage

Figure 2. Typical Reverse Current

MBR3045WT

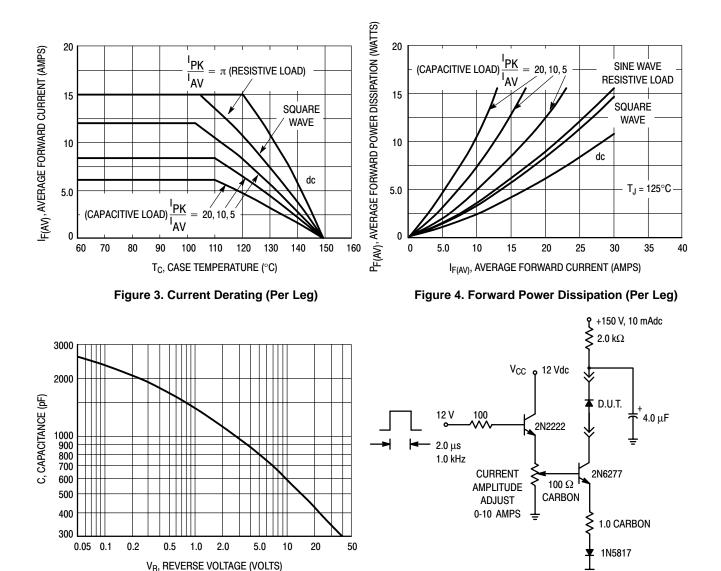


Figure 5. Capacitance

Figure 6. Test Circuit for Repetitive Reverse Current

SWITCHMODE™ Schottky Power Rectifier

TO247 Power Package

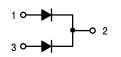
... employing the Schottky Barrier principle in a large area metal-to-silicon power rectifier. Features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies; free wheeling diodes and polarity protection diodes.

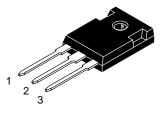
- Highly Stable Oxide Passivated Junction
- Guardring for Over-Voltage Protection
- Low Forward Voltage Drop
- Monolithic Dual Die Construction. May Be Paralleled for High Current Output.
- Full Electrical Isolation without Additional Hardware

Mechanical Characteristics:

- Case: Molded Epoxy
- Epoxy Meets UL94, V_O at 1/8"
- Weight: 4.3 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 30 Units Per Plastic Tube
- Marking: B4015L

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	15	V
Average Rectified Forward Current (At Rated V_R , $T_C = 95^{\circ}C$) Per Leg Per Package	Ι _Ο	20 40	A
$\begin{array}{l} \mbox{Peak Repetitive Forward Current,} \\ \mbox{(At Rated V}_{R}, \mbox{Square Wave,} \\ \mbox{20 kHz}, \mbox{T}_{C} = 95^{\circ}\mbox{C}) & \mbox{Per Leg} \end{array}$	I _{FRM}	40	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz) Per Package	I _{FSM}	120	A
Storage/Operating Case Temperature	T _{stg} , T _C	-55 to +100	°C
Operating Junction Temperature	TJ	-55 to +100	°C
Voltage Rate of Change (Rated V_R , T_J = 25°C)	dv/dt	10,000	V/µs



ON Semiconductor[™]

http://onsemi.com

TO-247 CASE 340L STYLE 2

MARKING DIAGRAM

B4015L = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MBR4015LWT	TO-247	30 Units/Rail

THERMAL CHARACTERISTICS

Rating		Symbol	Va	lue	Unit
Thermal Resistance — Junction-to-Case — Junction-to-Ambient	Per Leg Per Leg	R _{θJC} R _{θJA}	-	57 i5	°C/W
ELECTRICAL CHARACTERISTICS					
Maximum Instantaneous Forward Voltage (Note 1.), See Figure 2	Per Leg	V _F	T _J = 25°C	T _J = 100°C	V
(I _F = 20 A) (I _F = 40 A)			0.42 0.50	0.36 0.48	
Maximum Instantaneous Reverse Current (Note 1.), See Figure 4	Per Leg	I _R	T _J = 25°C	T _J = 100°C	mA
(V _R = 15 V) (V _R = 7.5 V)			5.0 2.7	530 370	

1. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2%.

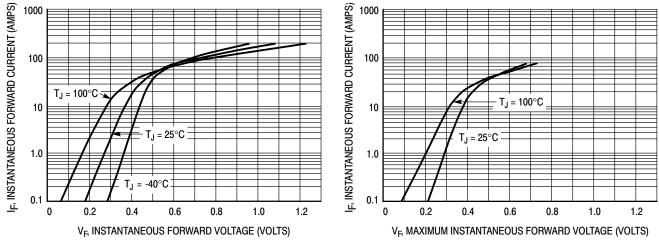


Figure 1. Typical Forward Voltage Per Leg

Figure 2. Maximum Forward Voltage Per Leg

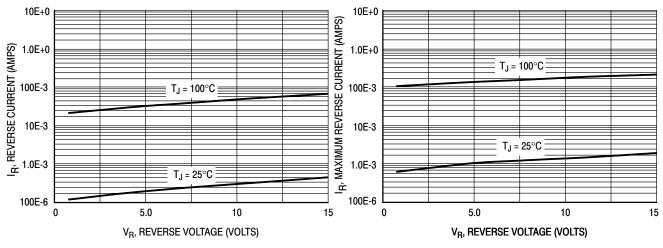
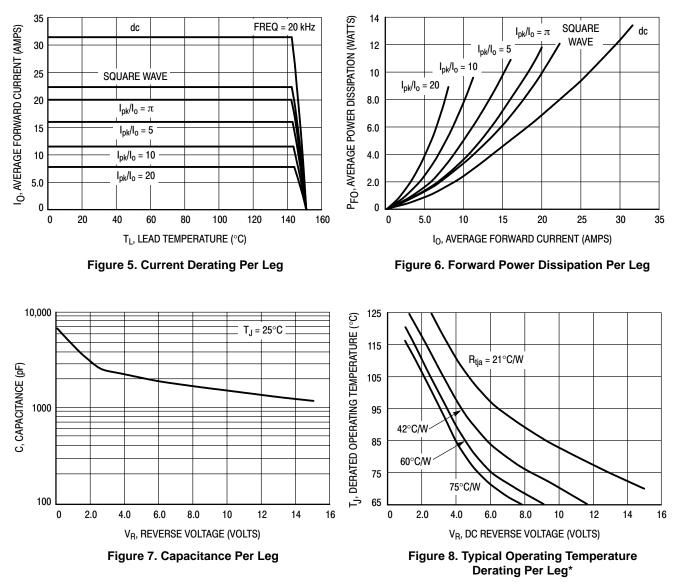
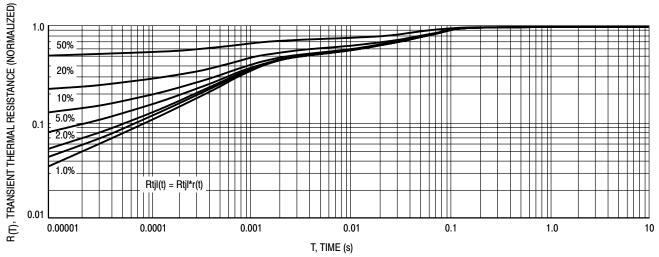
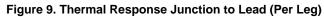



Figure 3. Typical Reverse Current Per Leg

Figure 4. Maximum Reverse Current Per Leg


* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of TJ therefore must include forward and reverse power effects. The allowable operating T_. may be calculated from the equation:


 $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where

r(t) = thermal impedance under given conditions,

Pf = forward power dissipation, and Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

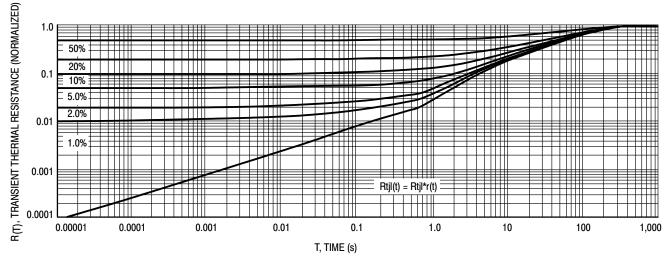


Figure 10. Thermal Response Junction to Ambient (Per Leg)

MBR4045WT

SWITCHMODE™ Power Rectifier

The SWITCHMODE power rectifier employs the use of the Schottky Barrier principle with a Platinum barrier metal. This state-of-the-art device has the following features:

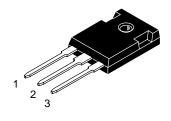
- Dual Diode Construction Terminals 1 and 3 May Be Connected for Parallel Operation at Full Rating
- 45 Volt Blocking Voltage
- Low Forward Voltage Drop
- Guardring for Stress Protection and High dv/dt Capability (> 10 V/ns)
- 150°C Operating Junction Temperature

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 4.3 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 30 Units Per Plastic Tube
- Marking: B4045

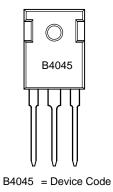
MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	45	V
Average Rectified Forward Current (Rated V_R , $T_C = 125^{\circ}C$) Per Diode Per Device	I _{F(AV)}	20 40	A
$\begin{array}{l} \mbox{Peak Repetitive Forward Current,} \\ (Rated V_R, Square Wave, \\ 20 \mbox{ kHz}, T_C = 90 \mbox{°C}) & \mbox{Per Diode} \end{array}$	I _{FRM}	40	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	400	A
Peak Repetitive Reverse Current (2.0 μs, 1.0 kHz)	I _{RRM}	2.0	A
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	-65 to +150	°C
Peak Surge Junction Temperature (Forward Current Applied)	T _{J(pk)}	175	°C
Voltage Rate of Change	dv/dt	10,000	V/μs



ON Semiconductor[™]

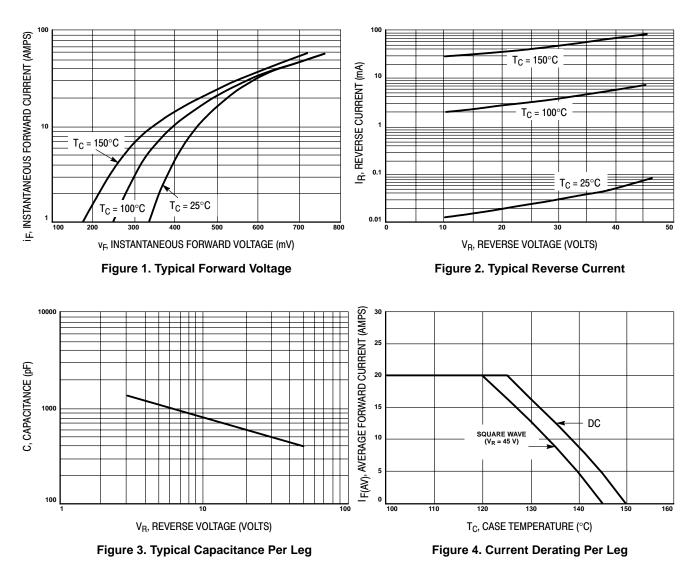
http://onsemi.com



TO-247AC CASE 340L STYLE 2

MARKING DIAGRAM

ORDERING INFORMATION


Device	Package	Shipping
MBR4045WT	TO-247	30 Units/Rail

MBR4045WT

THERMAL CHARACTERISTICS (Per Diode)

Rating	Symbol	Max	Unit
Thermal Resistance — Junction to Case	R _{θJC}	1.4	°C/W
ELECTRICAL CHARACTERISTICS (Per Diode)			
Instantaneous Forward Voltage (Note 1.) @ $I_F = 20 \text{ Amps}, T_C = 25^{\circ}C$ @ $I_F = 20 \text{ Amps}, T_C = 125^{\circ}C$ @ $I_F = 40 \text{ Amps}, T_C = 25^{\circ}C$ @ $I_F = 40 \text{ Amps}, T_C = 125^{\circ}C$	V _F	0.70 0.60 0.80 0.75	Volts
Instantaneous Reverse Current (Note 1.) @ Rated DC Voltage, T _C = 25°C @ Rated DC Voltage, T _C = 100°C	I _R	1.0 50	mA

1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle < 2.0%

TYPICAL ELECTRICAL CHARACTERISTICS

MBR6045WT

SWITCHMODE™ Power Rectifier

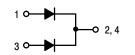
The SWITCHMODE power rectifier employs the use of the Schottky Barrier principle with a Platinum barrier metal. This state-of-the-art device has the following features:

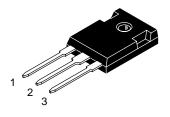
- Dual Diode Construction Terminals 1 and 3 May Be Connected for Parallel Operation at Full Rating
- 45 Volt Blocking Voltage
- Low Forward Voltage Drop
- Guardring for Stress Protection and High dv/dt Capability (> 10 V/ns)
- 150°C Operating Junction Temperature

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 4.3 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 30 Units Per Plastic Tube
- Marking: MBR6045WT

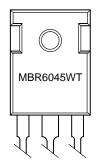
MAXIMUM RATINGS


Rating	Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	45	V
Average Rectified Forward Current (Rated V_R , $T_C = 125^{\circ}C$) Per Diode Per Device	I _{F(AV)}	30 60	A
$\begin{array}{l} \mbox{Peak Repetitive Forward Current,} \\ (Rated V_R, Square Wave, \\ 20 \mbox{ kHz}, T_C = 90 \mbox{°C}) & \mbox{Per Diode} \end{array}$	I _{FRM}	60	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	500	A
Peak Repetitive Reverse Current (2.0 μs, 1.0 kHz)	I _{RRM}	2.0	A
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature	TJ	-65 to +150	°C
Peak Surge Junction Temperature (Forward Current Applied)	T _{J(pk)}	175	°C
Voltage Rate of Change	dv/dt	10,000	V/µs



ON Semiconductor[™]

http://onsemi.com

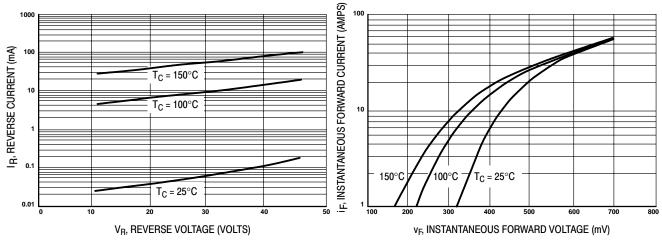


TO-247AC CASE 340L STYLE 2

MARKING DIAGRAM

MBR6045WT = Device Code

ORDERING INFORMATION


Device	Package	Shipping
MBR6045WT	TO-247	30 Units/Rail

MBR6045WT

THERMAL CHARACTERISTICS (Per Diode)

Rating	Symbol	Мах	Unit
Thermal Resistance - Junction to Case	$R_{ extsf{ heta}JC}$	1.0	°C/W
ELECTRICAL CHARACTERISTICS (Per Diode)			
Instantaneous Forward Voltage (Note 1.) @ $I_F = 30 \text{ Amps}, T_C = 25^{\circ}C$ @ $I_F = 30 \text{ Amps}, T_C = 125^{\circ}C$ @ $I_F = 60 \text{ Amps}, T_C = 25^{\circ}C$	V _F	0.62 0.55 0.75	Volts
Instantaneous Reverse Current (Note 1.) @ Rated DC Voltage, T _C = 25°C @ Rated DC Voltage, T _C = 100°C	۱ _R	1.0 50	mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle < 2.0%

TYPICAL ELECTRICAL CHARACTERISTICS

Figure 1. Typical Reverse Current

Figure 2. Typical Forward Voltage

Preferred Device

POWERTAP™ II SWITCHMODE™ Power Rectifier

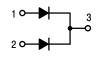
The SWITCHMODE Power Rectifier uses the Schottky Barrier principle with a platinum barrier metal. This state-of-the-art device has the following features:

- Dual Diode Construction May Be Paralleled for Higher Current Output
- Guardring for Stress Protection
- Low Forward Voltage Drop
- 150°C Operating Junction Temperature
- Recyclable Epoxy
- Guaranteed Reverse Avalanche Energy Capability
- Improved Mechanical Ratings

Mechanical Characteristics

- Case: Epoxy, Molded with metal heatsink base
- Weight: 80 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant
- Top Terminal Torque: 25 40 lb-in max
- Base Plate Torques: See procedure given in the Package Outline Section
- Shipped 25 units per foam
- Marking: B20030L

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	V
Average Rectified Forward Current (At Rated V_R , $T_C = 125$ °C) Per Leg Per Device	I _{F(AV)}	100 200	A
Peak Repetitive Forward Current, (At Rated V_R , Square Wave, 20 kHz, $T_C = 100^{\circ}C$)	I _{FRM}	200	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	1500	A
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	2.0	A
Storage Temperature Range	T _{stg}	-55 to +150	°C
Operating Junction Temperature	Т _Ј	-55 to +150	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/µs

ON Semiconductor"

http://onsemi.com

LOW V_F SCHOTTKY BARRIER RECTIFIER 200 AMPERES 30 VOLTS

MARKING DIAGRAM

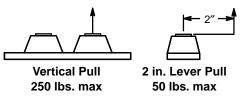
B20030L = Device Code YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MBRP20030CTL	POWERTAP II	25 Units/Tray

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS


Rating	Symbol	Value	Unit
Thermal Resistance — Junction to Case	$R_{ extsf{ heta}JC}$	0.45	°C/W
ELECTRICAL CHARACTERISTICS			
$\label{eq:linear} \begin{array}{l} \mbox{Maximum Instantaneous Forward Voltage (Note 1.)} \\ (I_F = 200 \mbox{ Amps, } T_C = +125^\circ C) \\ (I_F = 200 \mbox{ Amps, } T_C = +25^\circ C) \end{array}$	V _F	0.52 0.60	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, T _C = +25°C)	۱ _R	5.0	mA

1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2%.

MAXIMUM MECHANICAL RATINGS

Terminal Penetration:	0.235 max
Terminal Torque:	25-40 in-lb max
Mounting Torque — Outside Holes:	30-40 in-lb max
Mounting Torque — Center Hole:	8-10 in-lb max
Seating Plane Flatness	1 mil per in. (between mounting holes)

POWERTAP MECHANICAL DATA APPLIES OVER OPERATING TEMPERATURE

Note: While the POWERTAP is capable of sustaining these vertical and levered tensions, the intimate contact between POWERTAP and heat sink may be lost. This could lead to thermal runaway. The use of very flexible leads is recommended for the anode connections. Use of thermal grease is highly recommended.

MOUNTING PROCEDURE

The POWERTAP package requires special mounting considerations because of the long longitudinal axis of the copper heat sink. It is important to follow the proper tightening sequence to avoid warping the heat sink, which can reduce thermal contact between the POWERTAP and heat sink.

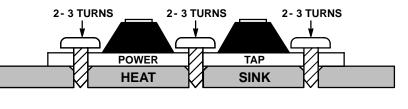
STEP 1:

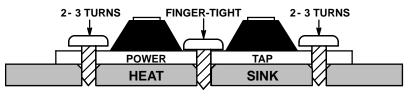
Locate the POWERTAP on the heat sink and start mounting bolts into the threads by hand (2 or 3 turns).

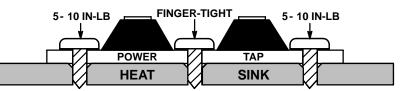
STEP 2:

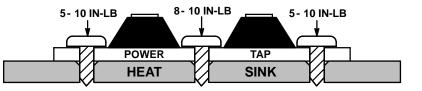
Finger tighten the center bolt. The bolt may catch on the threads of the heat sink so it is important to make sure the face of the bolt or washer is in contact with the surface of the POWERTAP.

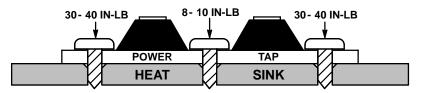
STEP 3:


Tighten each of the end bolts between 5 to 10 in-lb.


STEP 4:


Tighten the center bolt between 8 to 10 in-lb.


STEP 5:


Finally, tighten the end bolts between 30 to 40 in-lb.

Preferred Device

POWERTAP™ II SWITCHMODE™ Power Rectifier

The SWITCHMODE Power Rectifier uses the Schottky Barrier principle with a platinum barrier metal. This state-of-the-art device has the following features:

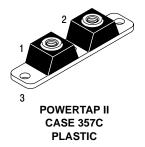
- Dual Diode Construction -May Be Paralleled for Higher Current Output
- Guardring for Stress Protection
- Low Forward Voltage Drop
- 150°C Operating Junction Temperature
- Recyclable Epoxy
- Improved Mechanical Ratings

Mechanical Characteristics

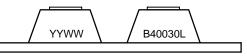
- Case: Epoxy, Molded with metal heatsink base
- Weight: 80 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant
- Top Terminal Torque: 25 40 lb-in max
- Base Plate Torques: See procedure given in the Package Outline Section
- Shipped 25 units per foam
- Marking: B40030L

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30	V
Average Rectified Forward Current (At Rated V_R , $T_C = 100^{\circ}C$) Per Leg Per Device	I _{F(AV)}	200 400	A
Peak Repetitive Forward Current, (At Rated V_R , Square Wave, 20 kHz, $T_C = 100^{\circ}C$)	I _{FRM}	200	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	1500	A
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	2.0	A
Storage Temperature Range	T _{stg}	-55 to +150	°C
Operating Junction Temperature	Τ _J	-55 to +150	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/µs



ON Semiconductor"


http://onsemi.com

LOW V_F SCHOTTKY BARRIER RECTIFIER 400 AMPERES 30 VOLTS

MARKING DIAGRAM

B40030L = Device Code YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MBRP40030CTL	POWERTAP II	25 Units/Tray

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance - Junction to Case (Note 1.)	$R_{ extsf{ heta}JC}$	0.4	°C/W
ELECTRICAL CHARACTERISTICS			
$\label{eq:constant} \begin{array}{l} \mbox{Maximum Instantaneous Forward Voltage (Note 2.)} \\ (i_F = 200 \mbox{ Amps}, \ T_C = +25^{\circ}C) \\ (i_F = 200 \mbox{ Amps}, \ T_C = +100^{\circ}C) \end{array}$	V _F	0.5 0.41	Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, $T_C = +25^{\circ}C$) (Rated dc Voltage, $T_C = +100^{\circ}C$)	I _R	20 1000	mA

1. Rating applies when surface mounted on the minimum pad size recommended.

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2%.

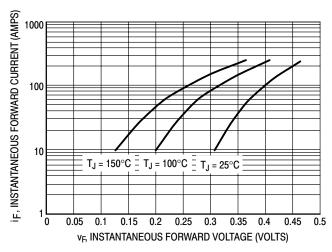


Figure 1. Typical Instantaneous Forward Voltage

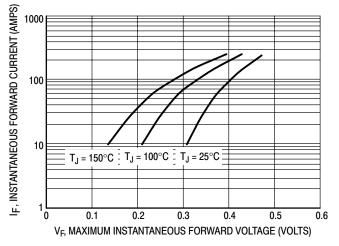


Figure 2. Maximum Instantaneous Forward Voltage

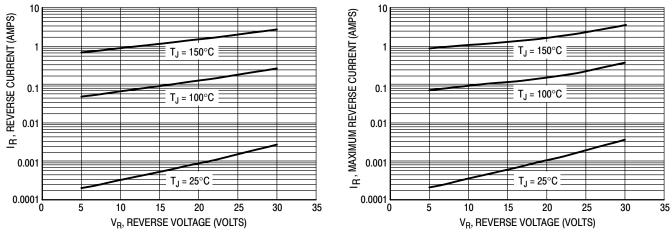


Figure 4. Maximum Reverse Current

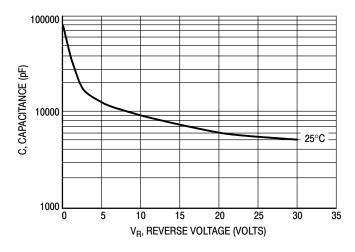
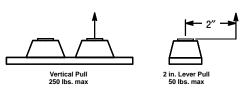
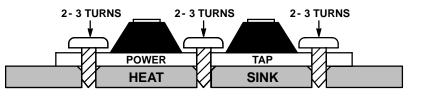



Figure 5. Typical Capacitance

MAXIMUM MECHANICAL RATINGS

Terminal Penetration:	0.235 max
Terminal Torque:	25-40 in-lb max
Mounting Torque - Outside Holes:	30-40 in-lb max
Mounting Torque - Center Hole:	8-10 in-lb max
Seating Plane Flatness	1 mil per in. (between mounting holes)

POWERTAP MECHANICAL DATA APPLIES OVER OPERATING TEMPERATURE


Note: While the POWERTAP is capable of sustaining these vertical and levered tensions, the intimate contact between POWERTAP and heat sink may be lost. This could lead to thermal runaway. The use of very flexible leads is recommended for the anode connections. Use of thermal grease is highly recommended.

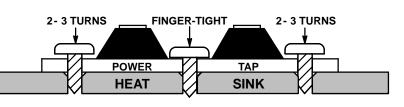
MOUNTING PROCEDURE

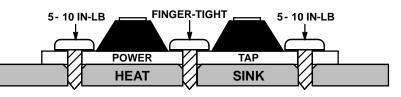
The POWERTAP package requires special mounting considerations because of the long longitudinal axis of the copper heat sink. It is important to follow the proper tightening sequence to avoid warping the heat sink, which can reduce thermal contact between the POWERTAP and heat sink.

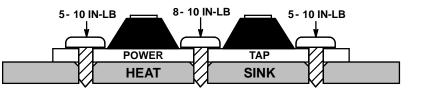
STEP 1:

Locate the POWERTAP on the heat sink and start mounting bolts into the threads by hand (2 or 3 turns).

STEP 2:

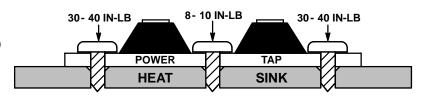

Finger tighten the center bolt. The bolt may catch on the threads of the heat sink so it is important to make sure the face of the bolt or washer is in contact with the surface of the POWERTAP.


STEP 3:


Tighten each of the end bolts between 5 to 10 in-lb.

STEP 4:

Tighten the center bolt between 8 to 10 in-lb.



Finally, tighten the end bolts between 30 to 40 in-lb.

MBRP60035CTL

Preferred Device

POWERTAP™ II SWITCHMODE™ Power Rectifier

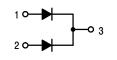
The SWITCHMODE Power Rectifier uses the Schottky Barrier principle with a platinum barrier metal. This state-of-the-art device has the following features:

- Dual Diode Construction May Be Paralleled for Higher Current Output
- Guardring for Stress Protection
- Low Forward Voltage Drop
- 150°C Operating Junction Temperature
- Recyclable Epoxy
- Guaranteed Reverse Avalanche Energy Capability
- Improved Mechanical Ratings

Mechanical Characteristics

- Case: Epoxy, Molded with metal heatsink base
- Weight: 80 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant
- Top Terminal Torque: 25 40 lb-in max
- Base Plate Torques: See procedure given in the Package Outline Section
- Shipped 25 units per foam
- Marking: B60035L

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	35	V
Average Rectified Forward Current (At Rated V_R , $T_C = 100^{\circ}C$) Per Leg Per Device	I _{F(AV)}	300 600	A
Peak Repetitive Forward Current, (At Rated V_R , Square Wave, 20 kHz, T _C = 100°C)	I _{FRM}	300	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	4000	A
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz)	I _{RRM}	2.0	A
Storage Temperature Range	T _{stg}	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +150	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/µs

ON Semiconductor"

http://onsemi.com

LOW V_F SCHOTTKY BARRIER RECTIFIER 600 AMPERES 35 VOLTS

MARKING DIAGRAM

B60035L = Device Code YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MBRP60035CTL	POWERTAP II	25 Units/Tray

Preferred devices are recommended choices for future use and best overall value.

MBRP60035CTL

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance — Junction to Case	$R_{ extsf{ heta}JC}$	0.4	°C/W
ELECTRICAL CHARACTERISTICS			
$\label{eq:maximum lnstantaneous Forward Voltage (Note 1.)} \\ (i_F = 300 \text{ Amps, } T_C = +25^\circ\text{C}) \\ (i_F = 300 \text{ Amps, } T_C = +100^\circ\text{C}) \\ \end{aligned}$	V _F	0.57 0.50	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = +25^{\circ}C$) (Rated dc Voltage, $T_C = +100^{\circ}C$)	I _R	3.0 250	mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2%.

MAXIMUM MECHANICAL RATINGS

Terminal Penetration:	0.235 max
Terminal Torque:	25-40 in-lb max
Mounting Torque — Outside Holes:	30-40 in-lb max
Mounting Torque — Center Hole:	8-10 in-lb max
Seating Plane Flatness	1 mil per in. (between mounting holes)

POWERTAP MECHANICAL DATA APPLIES OVER OPERATING TEMPERATURE

Vertical Pull 250 lbs. max

50 lbs. max

Note: While the POWERTAP is capable of sustaining these vertical and levered tensions, the intimate contact between POWERTAP and heat sink may be lost. This could lead to thermal runaway. The use of very flexible leads is recommended for the anode connections. Use of thermal grease is highly recommended.

MBRP60035CTL

MOUNTING PROCEDURE

The POWERTAP package requires special mounting considerations because of the long longitudinal axis of the copper heat sink. It is important to follow the proper tightening sequence to avoid warping the heat sink, which can reduce thermal contact between the POWERTAP and heat sink.

STEP 1:

Locate the POWERTAP on the heat sink and start mounting bolts into the threads by hand (2 or 3 turns).

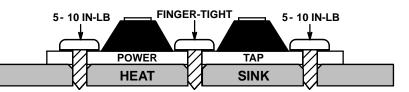
STEP 2:

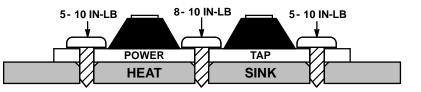
Finger tighten the center bolt. The bolt may catch on the threads of the heat sink so it is important to make sure the face of the bolt or washer is in contact with the surface of the POWERTAP.

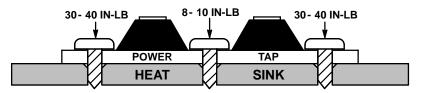
STEP 3:


Tighten each of the end bolts between 5 to 10 in-lb.

STEP 4:


Tighten the center bolt between 8 to 10 in-lb.


STEP 5:


Finally, tighten the end bolts between 30 to 40 in-lb.

MBRP20045CT

Preferred Device

POWERTAP™ II SWITCHMODE™ Power Rectifier

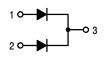
... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Dual Diode Construction May Be Paralleled for Higher Current Output
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche

Mechanical Characteristics:

- Case: Epoxy, Molded with metal heatsink base
- Weight: 80 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant
- Top Terminal Torque: 25-40 lb-in max
- Base Plate Torques: See procedure given in the Package Outline Section
- Shipped 25 units per foam
- Marking: B20045T

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	45	V
Average Rectified Forward Current (Rated V_R , T_C = 140°C) Per Leg Per Device	I _{F(AV)}	100 200	A
$\label{eq:rescaled} \begin{array}{l} \mbox{Peak Repetitive Forward Current,} \\ (Rated V_R, Square Wave, \\ 20 \mbox{ kHz}, T_C = 140^{\circ} \mbox{C}) \qquad \mbox{Per Leg} \end{array}$	I _{FRM}	200	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	1500	A
Peak Repetitive Reverse Current (2.0 μs, 1.0 kHz) Per Leg	I _{RRM}	2.0	A
Storage Temperature Range	T _{stg}	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +150	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/μs

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 200 AMPERES 45 VOLTS

MARKING DIAGRAM

B20045T = Device Code YY = Year WW = Work Week

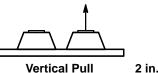
ORDERING INFORMATION

Device	Package	Shipping
MBRP20045CT	POWERTAP II	25 Units/Tray

Preferred devices are recommended choices for future use and best overall value.

MBRP20045CT

THERMAL CHARACTERISTICS (Per Leg)


Rating	Symbol	Value	Unit
Thermal Resistance, Junction to Case	R _{θJC}	0.6	°C/W
ELECTRICAL CHARACTERISTICS (Per Leg)			
Instantaneous Forward Voltage (Note 1) ($i_F = 200 \text{ Amps}, T_J = 25^{\circ}C$) ($i_F = 200 \text{ Amps}, T_J = 125^{\circ}C$)	VF	0.89 0.78	Volts
Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $T_J = 125^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	i _R	50 0.5	mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM MECHANICAL RATINGS

Terminal Penetration:	0.235 max
Terminal Torque:	25-40 in-lb max
Mounting Torque — Outside Holes:	30-40 in-lb max
Mounting Torque — Center Hole:	8-10 in-lb max
Seating Plane Flatness	1 mil per in. (between mounting holes)

POWERTAP MECHANICAL DATA **APPLIES OVER OPERATING TEMPERATURE**

250 lbs. max

Note: While the POWERTAP is capable of sustaining these vertical and levered tensions, the intimate contact between POWERTAP and heat sink may be lost. This could lead to thermal runaway. The use of very flexible leads is recommended for the anode connections. Use of thermal grease is highly recommended.

MBRP20045CT

MOUNTING PROCEDURE

The POWERTAP package requires special mounting considerations because of the long longitudinal axis of the copper heat sink. It is important to follow the proper tightening sequence to avoid warping the heat sink, which can reduce thermal contact between the POWERTAP and heat sink.

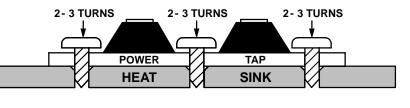
STEP 1:

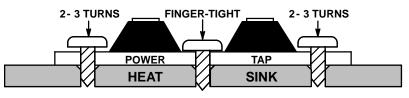
Locate the POWERTAP on the heat sink and start mounting bolts into the threads by hand (2 or 3 turns).

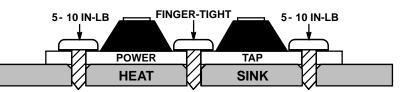
STEP 2:

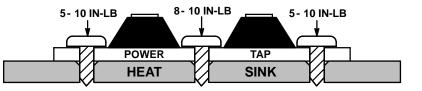
Finger tighten the center bolt. The bolt may catch on the threads of the heat sink so it is important to make sure the face of the bolt or washer is in contact with the surface of the POWERTAP.

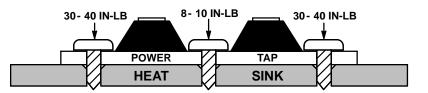
STEP 3:


Tighten each of the end bolts between 5 to 10 in-lb.


STEP 4:


Tighten the center bolt between 8 to 10 in-lb.


STEP 5:


Finally, tighten the end bolts between 30 to 40 in-lb.

MBRP30045CT

Preferred Device

POWERTAP™ II SWITCHMODE™ Power Rectifier

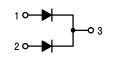
... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Dual Diode Construction May Be Paralleled for Higher Current Output
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature
- Guaranteed Reverse Avalanche

Mechanical Characteristics:

- Case: Epoxy, Molded with metal heatsink base
- Weight: 80 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant
- Top Terminal Torque: 25-40 lb-in max
- Base Plate Torques: See procedure given in the Package Outline Section
- Shipped 25 units per foam
- Marking: B30045T

MAXIMUM RATINGS


Rating	Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	45	V
$\begin{array}{llllllllllllllllllllllllllllllllllll$	I _{F(AV)}	150 300	A
$\label{eq:rescaled} \begin{array}{l} \mbox{Peak Repetitive Forward Current,} \\ (Rated V_R, Square Wave, \\ 20 \mbox{ kHz}, T_C = 140^{\circ} \mbox{C}) \qquad \mbox{Per Leg} \end{array}$	I _{FRM}	300	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz) Per Leg	I _{FSM}	2500	A
Peak Repetitive Reverse Current (2.0 μs, 1.0 kHz) Per Leg	I _{RRM}	2.0	A
Storage Temperature Range	T _{stg}	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +150	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/µs

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 300 AMPERES 45 VOLTS

MARKING DIAGRAM

B30045T = Device Code YY = Year WW = Work Week

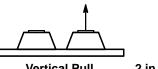
ORDERING INFORMATION

Device	Package	Shipping
MBRP30045CT	POWERTAP II	25 Units/Tray

Preferred devices are recommended choices for future use and best overall value.

MBRP30045CT

THERMAL CHARACTERISTICS (Per Leg)


Rating	Symbol	Value	Unit
Thermal Resistance, Junction to Case	R _{θJC}	0.45	°C/W
ELECTRICAL CHARACTERISTICS (Per Leg)			
Instantaneous Forward Voltage (Note 1) ($i_F = 150 \text{ Amps}, T_J = 25^{\circ}C$) ($i_F = 300 \text{ Amps}, T_J = 25^{\circ}C$)	v _F	0.70 0.82	Volts
Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $T_J = 125^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	İR	75 0.8	mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM MECHANICAL RATINGS

Terminal Penetration:	0.235 max
Terminal Torque:	25-40 in-lb max
Mounting Torque — Outside Holes:	30-40 in-lb max
Mounting Torque — Center Hole:	8-10 in-lb max
Seating Plane Flatness	1 mil per in. (between mounting holes)

POWERTAP MECHANICAL DATA APPLIES OVER OPERATING TEMPERATURE

Vertical Pull 250 lbs. max

Note: While the POWERTAP is capable of sustaining these vertical and levered tensions, the intimate contact between POWERTAP and heat sink may be lost. This could lead to thermal runaway. The use of very flexible leads is recommended for the anode connections. Use of thermal grease is highly recommended.

MBRP30045CT

MOUNTING PROCEDURE

The POWERTAP package requires special mounting considerations because of the long longitudinal axis of the copper heat sink. It is important to follow the proper tightening sequence to avoid warping the heat sink, which can reduce thermal contact between the POWERTAP and heat sink.

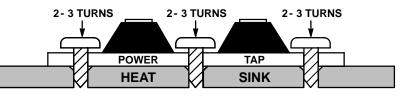
STEP 1:

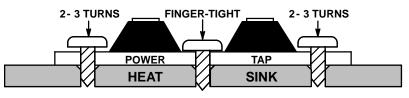
Locate the POWERTAP on the heat sink and start mounting bolts into the threads by hand (2 or 3 turns).

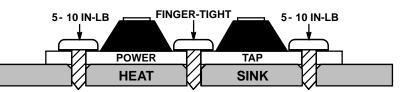
STEP 2:

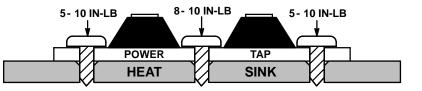
Finger tighten the center bolt. The bolt may catch on the threads of the heat sink so it is important to make sure the face of the bolt or washer is in contact with the surface of the POWERTAP.

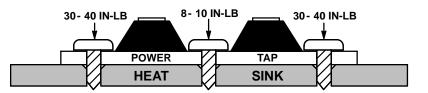
STEP 3:


Tighten each of the end bolts between 5 to 10 in-lb.


STEP 4:


Tighten the center bolt between 8 to 10 in-lb.


STEP 5:


Finally, tighten the end bolts between 30 to 40 in-lb.

MBRP40045CTL

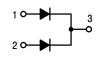
POWERTAP™ II SWITCHMODE™ Power Rectifier

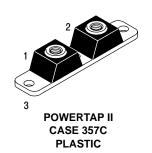
... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

Features:

- Dual Diode Construction May be Paralleled for Higher Current Output
- Guardring for Stress Protection
- Low Forward Voltage Drop
- 150°C Operating Junction Temperature
- Recyclable Epoxy
- Guaranteed Reverse Avalanche Energy Capability
- Improved Mechanical Ratings

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	45	V
Average Rectified Forward Current (At Rated V_R , $T_C = 100^{\circ}C$) Per Leg Per Device	I _{F(AV)}	200 400	A
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz, T _C = 100°C)	I _{FRM}	400	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	2500	A
Peak Repetitive Reverse Current (2.0 μs, 1.0 kHz)	I _{RRM}	2.0	A
Storage and Operating Case Temperature Range	T _{stg} , T _C	-55 to +150	°C
Operating Junction Temperature	Т _Ј	-55 to +150	°C
Voltage Rate of Change (Rated V_R)	dv/dt	1000	V/μs



ON Semiconductor[™]

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 400 AMPERES 45 VOLTS

MARKING DIAGRAM

B40045L = Device Code YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MBRP40045CTL	POWERTAP II	25 Units/Tray

MBRP40045CTL

THERMAL CHARACTERISTICS

Rating		Symbol	Value	Unit
Thermal Resistance — Junction-to-Case F	Per Leg	$R_{ extsf{ heta}JC}$	0.45	°C/W

ELECTRICAL CHARACTERISTICS

Rating		Symbol	Value		Unit
Maximum Instantaneous Forward Voltage (Note 1.)	Per Leg	VF	T _C = 25°C	T _C = 125°C	V
(I _F = 200 A) (I _F = 400 A)			0.57 0.73	0.52 0.68	
Maximum Instantaneous Reverse Current (Note 1.)	Per Leg	I _R	T _C = 25°C	T _C = 125°C	mA
(Rated DC Voltage)			10	400	

1. Pulse Test: Pulse Width = 380 $\mu s,$ Duty Cycle \leq 2%.

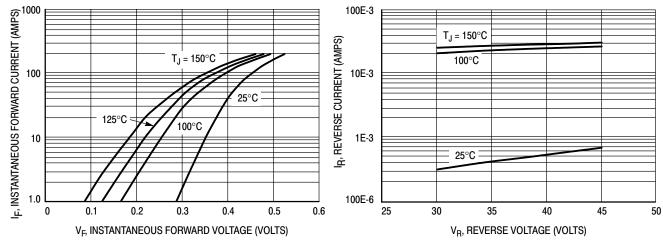


Figure 1. Typical Forward Voltage

Figure 2. Typical Reverse Current

Preferred Device

POWERTAP[™] II SWITCHMODE[™] Power Rectifier

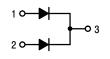
... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Dual Diode Construction May Be Paralleled for Higher Current Output
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature

Mechanical Characteristics:

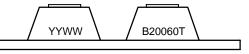
- Case: Epoxy, Molded with metal heatsink base
- Weight: 80 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant
- Top Terminal Torque: 25-40 lb-in max
- Base Plate Torques: See procedure given in the Package Outline Section
- Shipped 25 units per foam
- Marking: B20060T

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	60	V
Average Rectified Forward Current (Rated V_R , $T_C = 140^{\circ}C$) Per Leg Per Device	I _{F(AV)}	100 200	A
$\begin{array}{l} \mbox{Peak Repetitive Forward Current,} \\ (Rated V_R, Square Wave, \\ 20 \mbox{ kHz, } T_C = 140^\circ \mbox{C}) \qquad \mbox{Per Leg} \end{array}$	I _{FRM}	200	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	1500	A
Peak Repetitive Reverse Current (2.0 μs, 1.0 kHz) Per Leg	I _{RRM}	2.0	A
Storage Temperature Range	T _{stg}	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +150	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/μs



ON Semiconductor®


http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 200 AMPERES 60 VOLTS

MARKING DIAGRAM

B20060T = Device Code YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package Shipping	
MBRP20060CT	POWERTAP II	25 Units/Tray

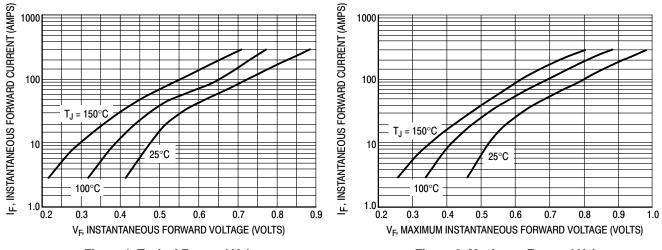
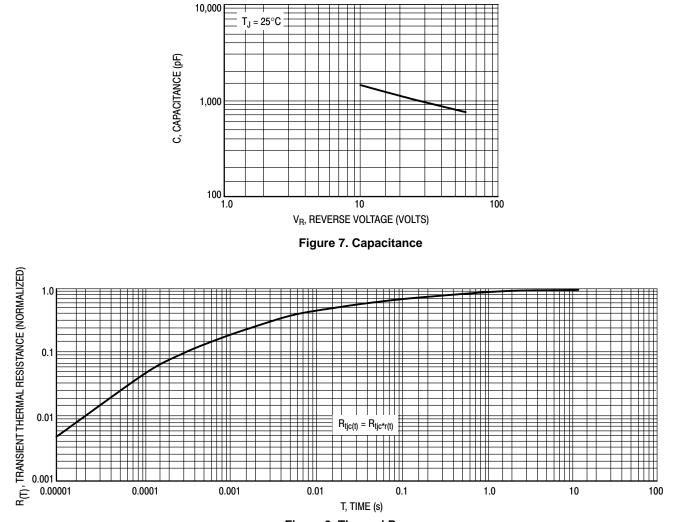
Preferred devices are recommended choices for future use and best overall value.

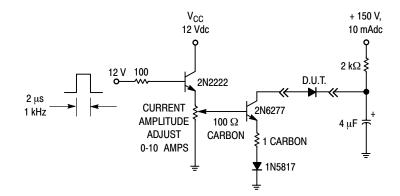
THERMAL CHARACTERISTICS (Per Leg)

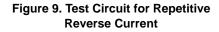
Rating	Symbol	Value	Unit
Thermal Resistance, Junction to Case	R _{θJC}	0.6	°C/W
ELECTRICAL CHARACTERISTICS (Per Leg)			
Instantaneous Forward Voltage (Note 1)	٧ _F	0.01	Volts

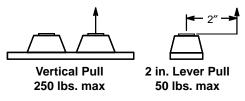
(i _F = 200 Amps, T _J = 25°C) (i _F = 200 Amps, T _J = 100°C)		0.91 0.80		
Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $T_J = 125^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	i _R	50 0.5	mA	

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.


Figure 1. Typical Forward Voltage

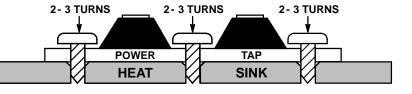

Figure 2. Maximum Forward Voltage



MAXIMUM MECHANICAL RATINGS

Terminal Penetration:	0.235 max
Terminal Torque:	25-40 in-lb max
Mounting Torque — Outside Holes:	30-40 in-lb max
Mounting Torque — Center Hole:	8-10 in-lb max
Seating Plane Flatness	1 mil per in. (between mounting holes)

POWERTAP MECHANICAL DATA APPLIES OVER OPERATING TEMPERATURE


Note: While the POWERTAP is capable of sustaining these vertical and levered tensions, the intimate contact between POWERTAP and heat sink may be lost. This could lead to thermal runaway. The use of very flexible leads is recommended for the anode connections. Use of thermal grease is highly recommended.

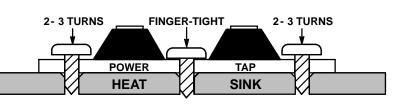
MOUNTING PROCEDURE

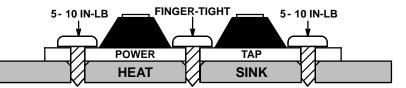
The POWERTAP package requires special mounting considerations because of the long longitudinal axis of the copper heat sink. It is important to follow the proper tightening sequence to avoid warping the heat sink, which can reduce thermal contact between the POWERTAP and heat sink.

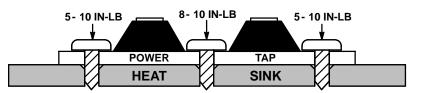
STEP 1:

Locate the POWERTAP on the heat sink and start mounting bolts into the threads by hand (2 or 3 turns).

STEP 2:

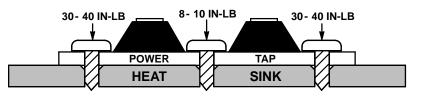

Finger tighten the center bolt. The bolt may catch on the threads of the heat sink so it is important to make sure the face of the bolt or washer is in contact with the surface of the POWERTAP.


STEP 3:


Tighten each of the end bolts between 5 to 10 in-lb.

STEP 4:

Tighten the center bolt between 8 to 10 in-lb.



STEP 5:

Finally, tighten the end bolts between 30 to 40 in-lb.

Preferred Device

POWERTAP™ II SWITCHMODE™ Power Rectifier

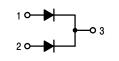
... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

- Dual Diode Construction May Be Paralleled for Higher Current Output
- Guardring for Stress Protection
- Low Forward Voltage
- 150°C Operating Junction Temperature

Mechanical Characteristics:

- Case: Epoxy, Molded with metal heatsink base
- Weight: 80 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant
- Top Terminal Torque: 25-40 lb-in max
- Base Plate Torques: See procedure given in the Package Outline Section
- Shipped 25 units per foam
- Marking: B30060T

MAXIMUM RATINGS


Rating	Symbol	Max	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	60	V
Average Rectified Forward Current (Rated V_R , T_C = 140°C) Per Leg Per Device	I _{F(AV)}	150 300	A
$\label{eq:result} \begin{array}{l} \mbox{Peak Repetitive Forward Current,} \\ (Rated V_R, Square Wave, \\ 20 \mbox{ kHz, } T_C = 140^\circ \mbox{C}) \qquad \mbox{Per Leg} \end{array}$	I _{FRM}	300	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz) Per Leg	I _{FSM}	2500	A
Peak Repetitive Reverse Current (2.0 μs, 1.0 kHz) Per Leg	I _{RRM}	2.0	A
Storage Temperature Range	T _{stg}	-55 to +150	°C
Operating Junction Temperature	TJ	-55 to +150	°C
Voltage Rate of Change (Rated V_R)	dv/dt	10,000	V/µs

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 300 AMPERES 60 VOLTS

MARKING DIAGRAM

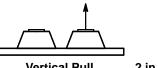
B30060T = Device Code YY = Year WW = Work Week

ORDERING INFORMATION

Device	e Package Shipping	
MBRP30060CT	POWERTAP II	25 Units/Tray

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS (Per Leg)


Rating	Symbol	Value	Unit
Thermal Resistance, Junction to Case	R _{θJC}	0.45	°C/W
ELECTRICAL CHARACTERISTICS (Per Leg)			
Instantaneous Forward Voltage (Note 1) ($i_F = 150 \text{ Amps}, T_J = 25^{\circ}C$) ($i_F = 300 \text{ Amps}, T_J = 25^{\circ}C$)	۷F	0.79 0.89	Volts
Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $T_J = 125^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	İR	75 0.8	mA

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM MECHANICAL RATINGS

Terminal Penetration:	0.235 max
Terminal Torque:	25-40 in-lb max
Mounting Torque — Outside Holes:	30-40 in-lb max
Mounting Torque — Center Hole:	8-10 in-lb max
Seating Plane Flatness	1 mil per in. (between mounting holes)

POWERTAP MECHANICAL DATA APPLIES OVER OPERATING TEMPERATURE

Vertical Pull 250 lbs. max

Note: While the POWERTAP is capable of sustaining these vertical and levered tensions, the intimate contact between POWERTAP and heat sink may be lost. This could lead to thermal runaway. The use of very flexible leads is recommended for the anode connections. Use of thermal grease is highly recommended.

MOUNTING PROCEDURE

The POWERTAP package requires special mounting considerations because of the long longitudinal axis of the copper heat sink. It is important to follow the proper tightening sequence to avoid warping the heat sink, which can reduce thermal contact between the POWERTAP and heat sink.

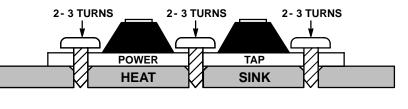
STEP 1:

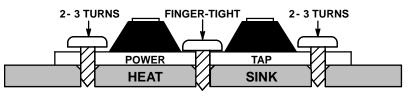
Locate the POWERTAP on the heat sink and start mounting bolts into the threads by hand (2 or 3 turns).

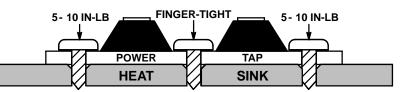
STEP 2:

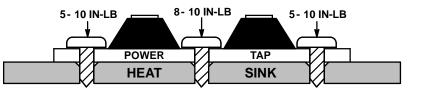
Finger tighten the center bolt. The bolt may catch on the threads of the heat sink so it is important to make sure the face of the bolt or washer is in contact with the surface of the POWERTAP.

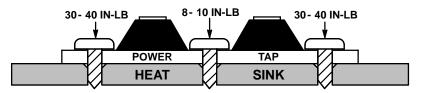
STEP 3:


Tighten each of the end bolts between 5 to 10 in-lb.


STEP 4:


Tighten the center bolt between 8 to 10 in-lb.


STEP 5:


Finally, tighten the end bolts between 30 to 40 in-lb.

MBRP400100CTL

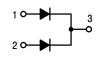
POWERTAP™ II SWITCHMODE™ Power Rectifier

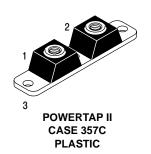
... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features:

Features:

- Dual Diode Construction -May be Paralleled for Higher Current Output
- Guardring for Stress Protection
- Low Forward Voltage Drop
- 175°C Operating Junction Temperature
- Recyclable Epoxy
- Guaranteed Reverse Avalanche Energy Capability
- Improved Mechanical Ratings

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	100	V
Average Rectified Forward Current (At Rated V_R , $T_C = 100^{\circ}C$) Per Leg Per Device	I _{F(AV)}	200 400	A
Peak Repetitive Forward Current (At Rated V_R , Square Wave, 20 kHz, $T_C = 100^{\circ}C$)	I _{FRM}	400	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	2500	A
Peak Repetitive Reverse Current (2.0 μs, 1.0 kHz)	I _{RRM}	2.0	A
Storage and Operating Case Temperature Range	T _{stg} , T _C	-55 to +175	°C
Operating Junction Temperature	TJ	-55 to +175	°C
Voltage Rate of Change (Rated V_R)	dv/dt	1000	V/µs



ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 400 AMPERES 100 VOLTS

MARKING DIAGRAM

B400100L = Device Code YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MBRP400100CTL	POWERTAP II	25 Units/Tray

MBRP400100CTL

THERMAL CHARACTERISTICS

Rating	S	Symbol	Value	Unit
Thermal Resistance - Junction-to-Case Per Le	eg	$R_{\theta JC}$	0.45	°C/W

ELECTRICAL CHARACTERISTICS

Rating		Symbol	Va	lue	Unit
Maximum Instantaneous Forward Voltage (Note 1)	Per Leg	V _F	T _C = 25°C	T _C = 125°C	V
(I _F = 200 (I _F = 400			0.83 0.97	0.69 0.82	
Maximum Instantaneous Reverse Current (Note 1)	Per Leg	Ι _R	T _C = 25°C	T _C = 125°C	mA
(Rated D	C Voltage)		6.0	80	

1. Pulse Test: Pulse Width = 380 μ s, Duty Cycle \leq 2%.

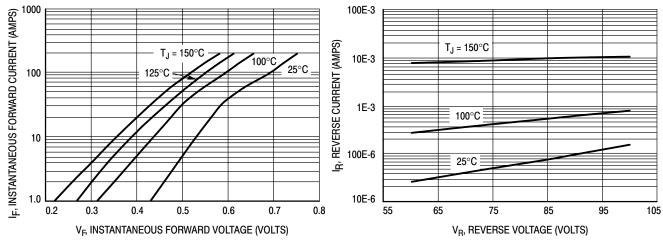


Figure 1. Typical Forward Voltage

Figure 2. Typical Reverse Current

SWITCHMODE™ Soft Ultrafast Recovery Power Rectifier

Plastic DPAK Package

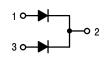
State of the art geometry features epitaxial construction with glass passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies, free wheeling diode and polarity protection diodes.

- Soft Ultrafast Recovery (35 ns typ.)
- Highly Stable Oxide Passivated Junction
- Matched Dual Die Construction May Be Paralleled for High Current Output
- Short Heat Sink Tab Manufactured Not Sheared
- Epoxy Meets UL94, V_O at 1/8"

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 0.4 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 75 units per plastic tube
- Available in 16 mm Tape and Reel, 2500 units per Reel, Add "T4" to Suffix part number
- Marking: S620T

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	V
Average Rectified Forward Current (At Rated V_R , $T_C = 137^{\circ}C$) Per Leg Per Package	Ι _Ο	3.0 6.0	A
$\begin{array}{c} \mbox{Peak Repetitive Forward Current} \\ \mbox{(At Rated V}_{R}, \mbox{Square Wave}, \\ \mbox{20 kHz}, \mbox{T}_{C} = 138^{\circ}\mbox{C}) & \mbox{Per Leg} \end{array}$	I _{FRM}	6.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz) Per Package	I _{FSM}	50	A
Storage/Operating Case Temperature Range	T _{stg} , T _C	-55 to +175	°C
Operating Junction Temperature Range	TJ	-55 to +175	°C

ON Semiconductor[™]

http://onsemi.com

SOFT ULTRAFAST RECTIFIER 6.0 AMPERES 200 VOLTS

CASE 369A PLASTIC

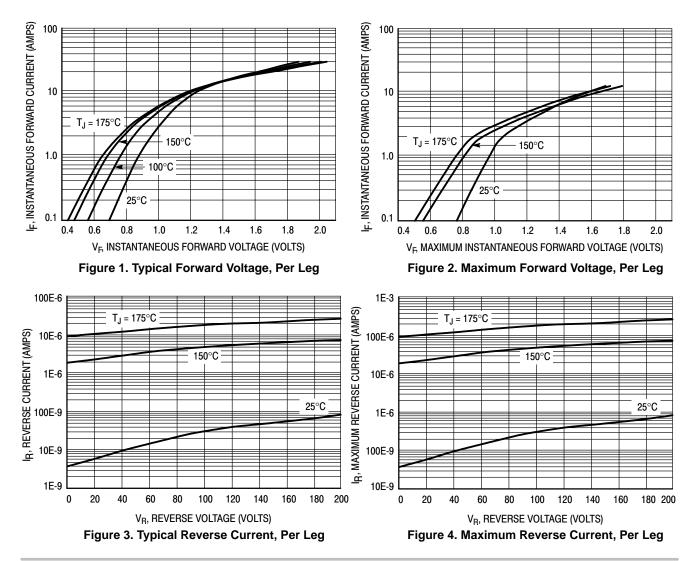
MARKING DIAGRAM

S620T = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MSRD620CT	DPAK	75 Units/Rail
MSRD620CTT4	DPAK	2500/Tape & Reel

THERMAL CHARACTERISTICS


Rating		Symbol	Value	Unit
Thermal Resistance - Junction to Case	Per Leg	R _{θJC}	9.0	°C/W
- Junction to Ambient	Per Leg	R _{θJA}	80	

ELECTRICAL CHARACTERISTICS

Rating		Symbol	Va	lue	Unit
Maximum Instantaneous Forward Voltage (Note 1.), see Figure 2	Per Leg	V _F	T _J = 25°C	T _J = 150°C	V
(I _F = 3.0 A) (I _F = 6.0 A)			1.15 1.35	1.05 1.30	
Maximum Instantaneous Reverse Current, see Figure 4	Per Leg	I _R	T _J = 25°C	T _J = 150°C	μA
(V _R = 200 V) (V _R = 100 V)			5.0 2.0	200 100	
Maximum Reverse Recovery Time (Note 2.) $(V_R = 30 \text{ V}, I_F = 1.0 \text{ A}, \text{ di/dt} = 50 \text{ A/}\mu\text{s})$ $(V_R = 30 \text{ V}, I_F = 3.0 \text{ A}, \text{ di/dt} = 50 \text{ A/}\mu\text{s})$	Per Leg	t _{rr}		15 55	ns
Maximum Peak Reverse Recovery Current $(V_R = 30 \text{ V}, I_F = 1.0 \text{ A}, \text{ di/dt} = 50 \text{ A/}\mu\text{s})$ $(V_R = 30 \text{ V}, I_F = 3.0 \text{ A}, \text{ di/dt} = 50 \text{ A/}\mu\text{s})$	Per Leg	I _{RM}		2.0 5.0	A

1. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2%.

2. t_{rr} measured projecting from 25% of I_{RM} to ground.

http://onsemi.com 337

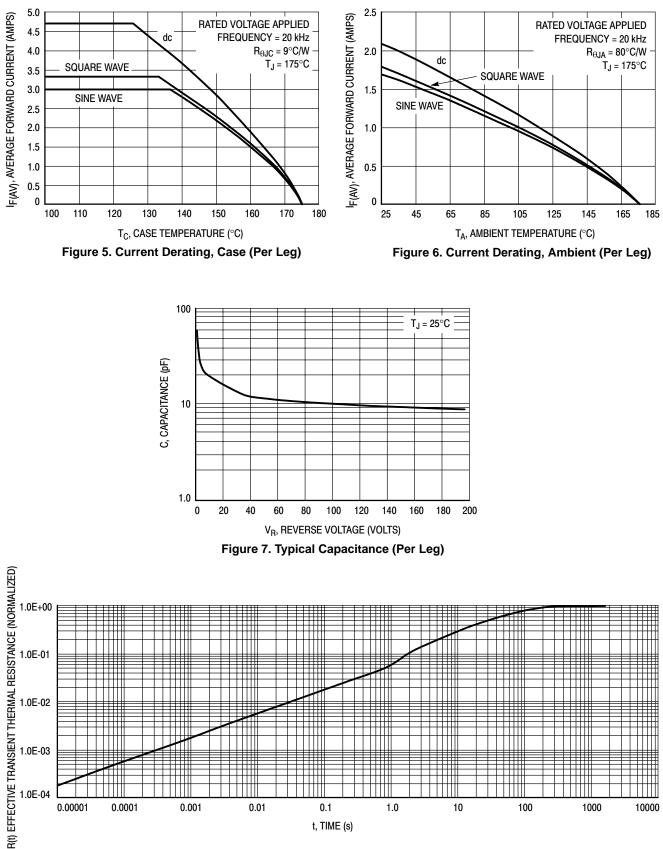


Figure 8. Transient Thermal Response ($R_{\theta JA}$)

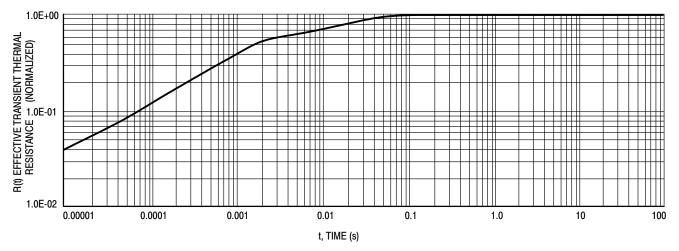


Figure 9. Transient Thermal Response ($R_{\theta JC}$)

SWITCHMODE[™] Soft Recovery Power Rectifier

Plastic TO-220 Package

Designed for use as free wheeling diodes in variable speed motor control applications and switching power supplies. These state-of-the-art devices have the following features:

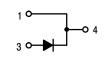
- Soft Recovery with Guaranteed Low Reverse Recovery Charge (Q_{RR}) and Peak Reverse Recovery Current (I_{RRM})
- 150°C Operating Junction Temperature
- Popular TO-220 Package
- Epoxy meets UL94, V_O @ 1/8"
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction

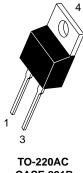
Mechanical Characteristics:

- Case: Molded Epoxy
- Weight: 1.9 Grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 50 Units per Plastic Tube
- Marking: MSR860

MAXIMUM RATINGS

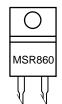
	-	1	-
Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	600	V
Average Rectified Forward Current (At Rated V_R , $T_C = 125^{\circ}C$)	Ι _Ο	8.0	A
Peak Repetitive Forward Current (At Rated V_R , Square Wave, 20 kHz, $T_C = 125^{\circ}C$)	I _{FRM}	16	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	100	A
Storage/Operating Case Temperature Range	T _{stg} , T _C	-65 to +150	°C
Operating Junction Temperature Range	TJ	-65 to +150	°C
THERMAL CHARACTERISTICS			
TI IDII		1.0	


Thermal Resistance -	$R_{\theta JC}$	1.6	°C/W
Junction-to-Case	$R_{\theta JA}$	72.8	
Thermal Resistance -			
Junction-to-Ambient			



ON Semiconductor[™]

http://onsemi.com

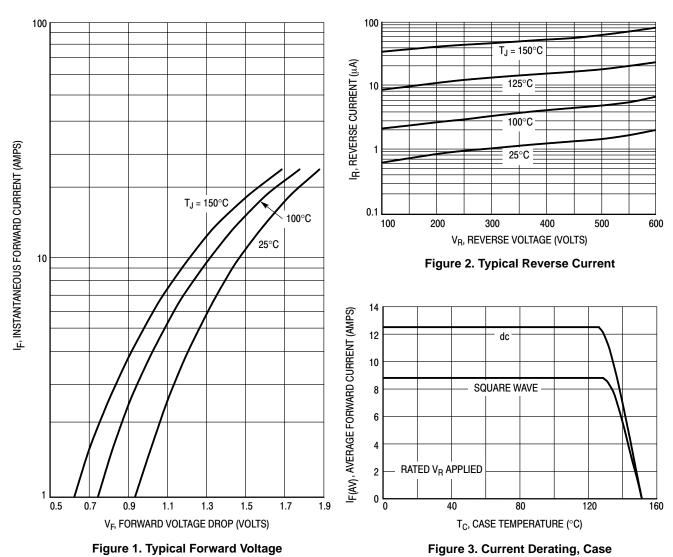

SOFT RECOVERY POWER RECTIFIER 8.0 AMPERES 600 VOLTS

CASE 221B STYLE 1

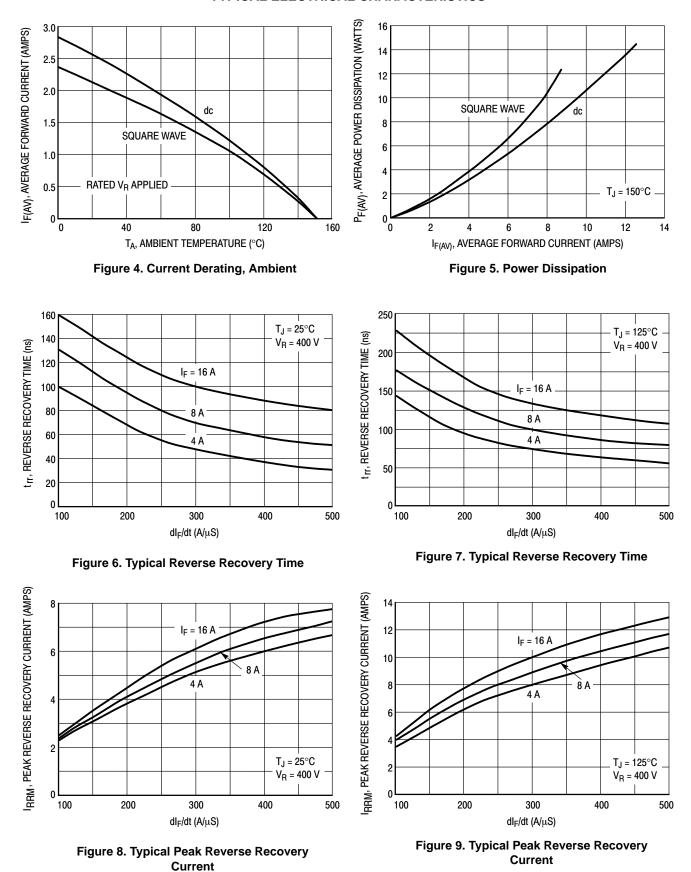
MARKING DIAGRAM

MSR860 = Device Code

ORDERING INFORMATION

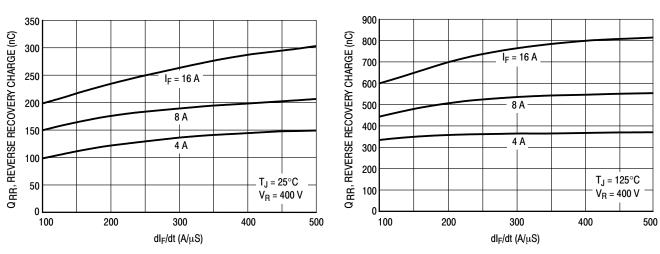

Device	Package	Shipping
MSR860	TO-220	50 Units/Rail

ELECTRICAL CHARACTERISTICS


Characteristic	Symbol	Va	lue	Unit
Maximum Instantaneous Forward Voltage (Note 1.) (I _F = 8.0 A)	V _F	T _J = 25°C	T _J = 150°C	V
Typical		1.7 1.4	1.3 <i>1.1</i>	
Maximum Instantaneous Reverse Current	I _R	T _J = 25°C	T _J = 150°C	μΑ
(V _R = 600 V) <i>Typical</i>		10 <i>2.0</i>	1000 <i>80</i>	
Maximum Reverse Recovery Time (Note 2.)	t _{rr}	T _J = 25°C	T _J = 125°C	ns
(V _R = 400 V, I _F = 8.0 A, di/dt = 200 A/µs) <i>Typical</i>		120 <i>95</i>	190 <i>125</i>	
Typical Recovery Softness Factor ($V_R = 400 \text{ V}, I_F = 8.0 \text{ A}, \text{ di/dt} = 200 \text{ A/}\mu\text{s}$)	$s = t_b/t_a$	2.5	3.0	
Maximum Peak Reverse Recovery Current ($V_R = 400 \text{ V}, I_F = 8.0 \text{ A}, \text{ di/dt} = 200 \text{ A/}\mu\text{s}$)	I _{RRM}	5.8	8.3	A
Maximum Reverse Recovery Charge ($V_R = 400 \text{ V}, I_F = 8.0 \text{ A}, \text{ di/dt} = 200 \text{ A/}\mu\text{s}$)	Q _{RR}	350	700	nC

1. Pulse Test: Pulse Width \leq 380 µs, Duty Cycle \leq 2%

2. T_{RR} measured projecting from 25% of I_{RRM} to zero current



TYPICAL ELECTRICAL CHARACTERISTICS

TYPICAL ELECTRICAL CHARACTERISTICS

http://onsemi.com 342

TYPICAL ELECTRICAL CHARACTERISTICS

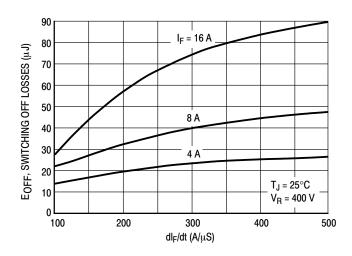


Figure 12. Typical Switching Off Losses

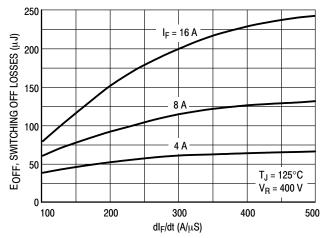


Figure 13. Typical Switching Off Losses

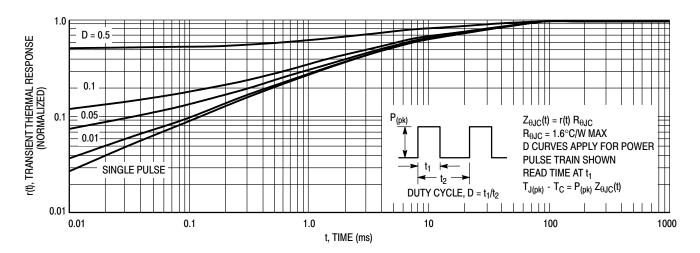


Figure 14. Thermal Response

SWITCHMODE[™] Soft Recovery Power Rectifier

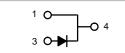
Designed for boost converter or hard-switched converter applications, especially for Power Factor Correction application. It could also be used as a free wheeling diode in variable speed motor control applications and switching mode power supplies. These state-of-the-art devices have the following features:

- Soft Recovery with Low Reverse Recovery Charge (Q_{RR}) and Peak Reverse Recovery Current (I_{RRM})
- 150°C Operating Junction Temperature
- Popular TO-220 Package
- Epoxy meets UL94, V_O @ 1/8"
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- **Mechanical Characteristics:**
- Case: Molded Epoxy
- Weight: 1.9 Grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 50 Units per Plastic Tube
- Marking: MSR1560

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	600	V
Average Rectified Forward Current (At Rated V _R , T _C = 125°C)	Ι _Ο	15	A
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz,T _C = 125°C)	I _{FRM}	30	A
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	I _{FSM}	100	A
Storage/Operating Case Temperature	T _{stg} , T _C	-65 to +150	°C
Operating Junction Temperature	TJ	-65 to +150	°C

THERMAL CHARACTERISTICS

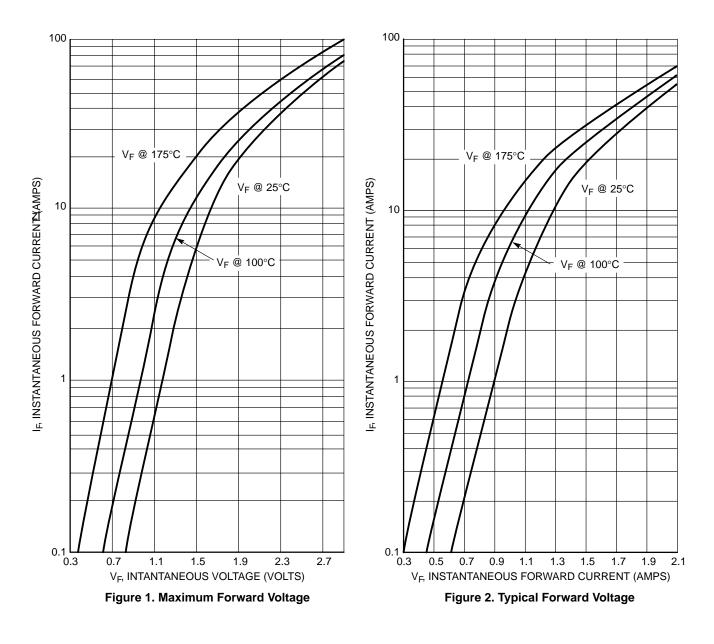

Parameter	Symbol	Value	Unit
Thermal Resistance - Junction-to-Case Thermal Resistance -	$R_{ extsf{ heta}JC}$	1.6	°C/W
Junction-to-Ambient	$R_{\theta JA}$	72.8	

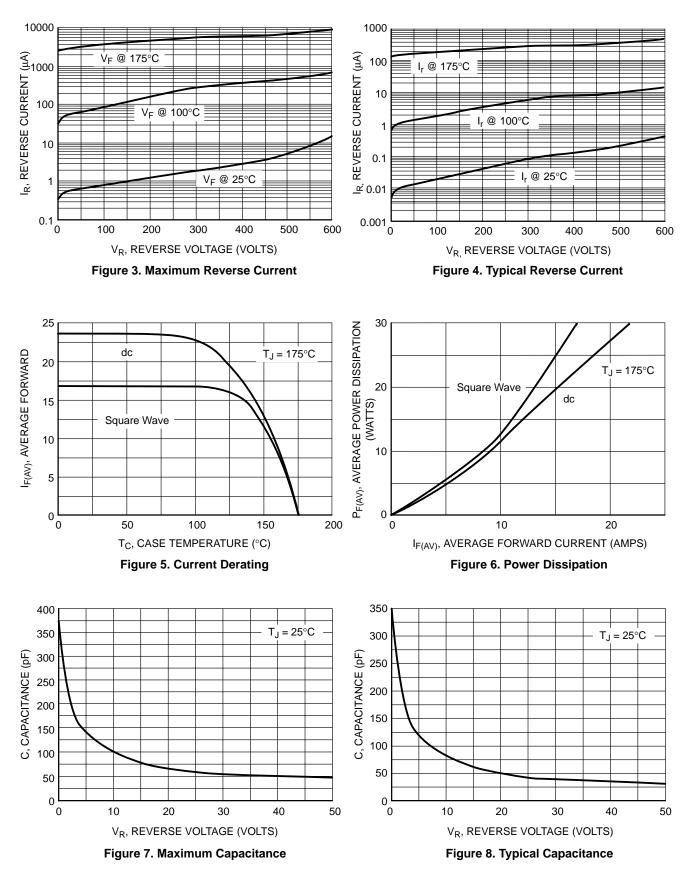

ON Semiconductor[™]

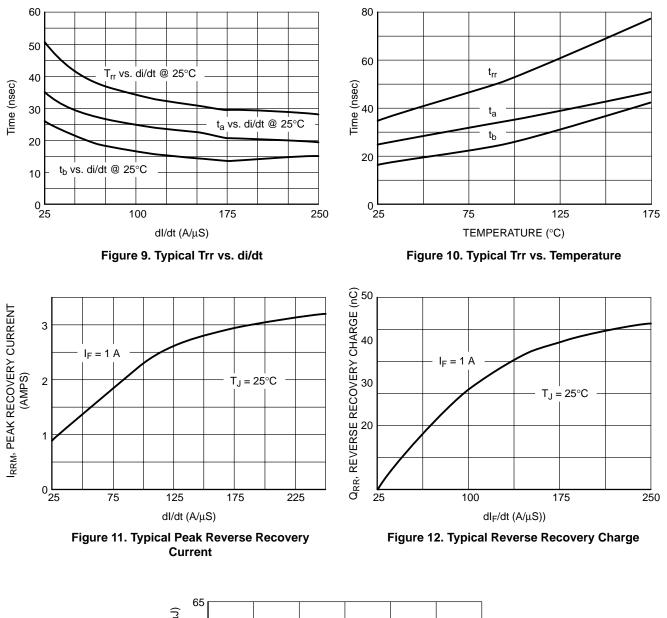
http://onsemi.com

SOFT RECOVERY POWER RECTIFIER 15 AMPERES 600 VOLTS

MARKING DIAGRAM


ORDERING INFORMATION


Device	Package	Shipping
MSR1560	TO-220	50 Units/Rail


ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 1) ($I_F = 15 \text{ A}$)	V _F	T _J = 25°C	T _J = 150°C	V
Typical		1.8 <i>1.5</i>	1.4 <i>1.2</i>	
Maximum Instantaneous Reverse Current (V _R = 600 V)	I _R	T _J = 25°C	T _J = 150°C	μΑ
Typical		15 <i>0.4</i>	5000 <i>100</i>	
Maximum Reverse Recovery Time (Note 2) (V _R = 30 V, I _F = 1 A, di/dt = 100 A/ μ s)	t _{rr}	T _J = 25°C	T _J = 100°C	ns
Typical		45 <i>35</i>	65 <i>54</i>	
Typical Recovery Softness Factor (V _R = 30 V, I _F = 1 A, di/dt = 100 A/ μ s)	$s = t_b/t_a$.67	.74	
Typical Peak Reverse Recovery Current (V _R = 30 V, I _F = 1 A, di/dt = 100 A/ μ s)	I _{RRM}	2.3	3.2	А
Typical Reverse Recovery Charge ($V_R = 30 \text{ V}$, $I_F = 1 \text{ A}$, di/dt = 100 A/µs)	Q _{RR}	31	78	nC

1. Pulse Test: Pulse Width \leq 380 µs, Duty Cycle \leq 2% 2. T_{RR} measured projecting from 25% of I_{RRM} to zero current

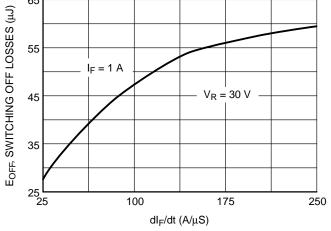


Figure 13. Typical Switching Off Losses

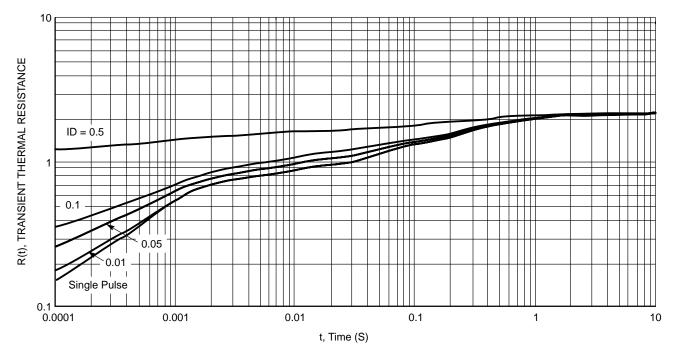


Figure 14. Transient Thermal Response

CHAPTER 4 Ultrafast Data Sheets

MURA105T3, MURA110T3

Preferred Devices

Surface Mount Ultrafast Power Rectifiers

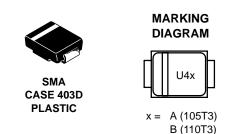
Ideally suited for high voltage, high frequency rectification, or as free wheeling and protection diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- High Temperature Glass Passivated Junction
- Low Forward Voltage Drop (0.66 Volts Max @ $1.0 \text{ A}, \text{T}_{J} = 150^{\circ}\text{C}$)

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 70 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 5000 units per reel
- Polarity: Polarity Band Indicates Cathode Lead
- ESD Protection: Human Body Model > 4000 V (Class 3) Machine Model > 400 V (Class C)
- Marking: U4A, U4B

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage MURA105T3 MURA110T3	V _{RRM} V _{RWM} V _R	50 100	V
Average Rectified Forward Current @ $T_L = 155^{\circ}C$ @ $T_L = 135^{\circ}C$	I _{F(AV)}	1.0 2.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	50	A
Operating Junction Temperature Range	TJ	- 65 to +175	°C

ON Semiconductor[®]

http://onsemi.com

ULTRAFAST RECTIFIERS 1 AMPERE 50-100 VOLTS

ORDERING INFORMATION

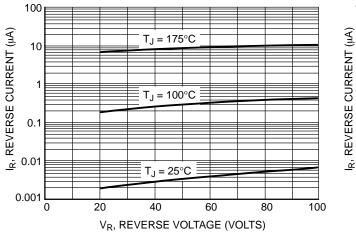
Device	Package	Shipping
MURA105T3	SMA	5000/Tape & Reel
MURA110T3	SMA	5000/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

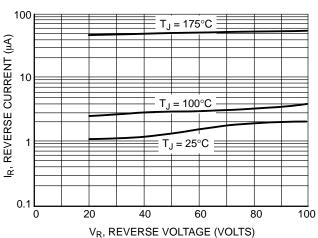
MURA105T3, MURA110T3

THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Lead (Note 1)	Psi _{JL} (Note 2)	24	°C/W
Thermal Resistance, Junction to Ambient (Note 1)	$R_{\theta JA}$	216	


ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 3) ($i_F = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}$) ($i_F = 1.0 \text{ A}, T_J = 150^{\circ}\text{C}$)	VF	0.875 0.66	Volts
Maximum Instantaneous Reverse Current (Note 3) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 150^{\circ}C$)	i _R	2.0 50	μΑ
Maximum Reverse Recovery Time (i _F = 1.0 A, di/dt = 50 A/µs)	t _{rr}	30	ns


1. Rating applies when surface mounted on the minimum pad size recommended, PC Board FR-4.

2. In compliance with JEDEC 51, these values (historically represented by $R_{\theta,L}$) are now referenced as Psi_{JL} .


3. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

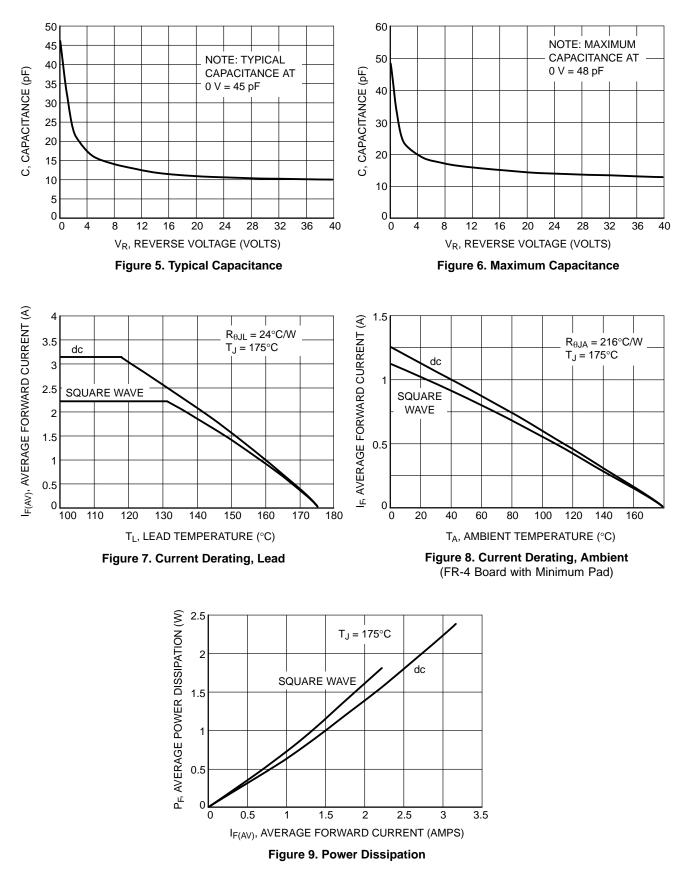


Figure 2. Maximum Reverse Current

MURA105T3, MURA110T3

MURA115T3, MURA120T3

Preferred Devices

Surface Mount Ultrafast Power Rectifiers

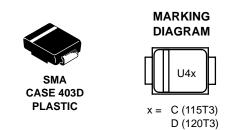
Ideally suited for high voltage, high frequency rectification, or as free wheeling and protection diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- High Temperature Glass Passivated Junction
- Low Forward Voltage Drop (0.71 Volts Max @ $1.0 \text{ A}, \text{T}_{\text{J}} = 150^{\circ}\text{C}$)

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 70 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 5000 units per reel
- Polarity: Polarity Band Indicates Cathode Lead
- ESD Protection: Human Body Model > 4000 V (Class 3) Machine Model > 400 V (Class C)
- Marking: U4C, U4D

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage MURA115T3 MURA120T3	V _{RRM} V _{RWM} V _R	150 200	V
Average Rectified Forward Current @ $T_L = 155^{\circ}C$ @ $T_L = 135^{\circ}C$	I _{F(AV)}	1.0 2.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	40	A
Operating Junction Temperature Range	TJ	- 65 to +175	°C

ON Semiconductor[®]

http://onsemi.com

ULTRAFAST RECTIFIERS 1 AMPERE 100-200 VOLTS

ORDERING INFORMATION

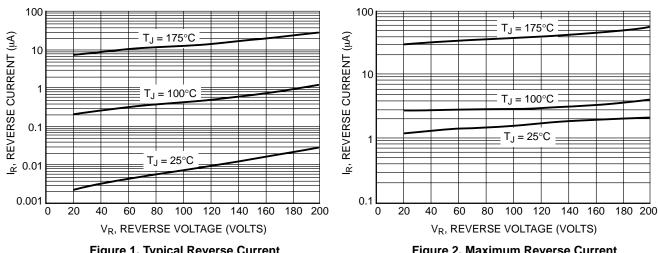
Device	Package	Shipping
MURA115T3	SMA	5000/Tape & Reel
MURA120T3	SMA	5000/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

MURA115T3, MURA120T3

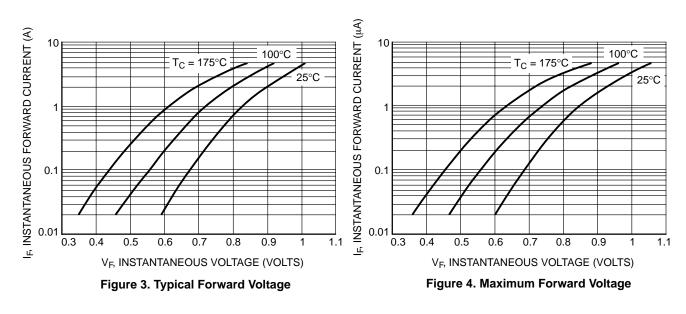
THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Lead ($T_L = 25^{\circ}C$) (Note 1)	Psi _{JL} (Note 2)	24	°C/W
Thermal Resistance, Junction to Ambient (Note 1)	R _{0JA}	216	

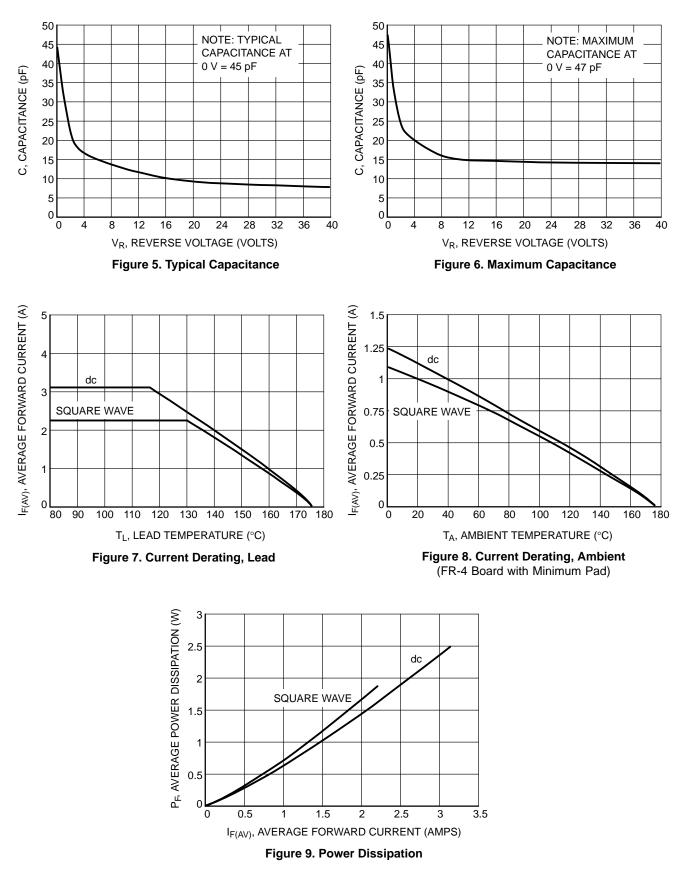

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 3) ($i_F = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}$) ($i_F = 1.0 \text{ A}, T_J = 150^{\circ}\text{C}$)	VF	0.875 0.71	Volts
Maximum Instantaneous Reverse Current (Note 3) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 150^{\circ}C$)	i _R	2.0 50	μΑ
Maximum Reverse Recovery Time (i _F = 1.0 A, di/dt = 50 A/μs)	t _{rr}	35	ns

1. Rating applies when surface mounted on the minimum pad size recommended, PC Board FR-4.


In compliance with JEDEC 51, these values (historically represented by $R_{\theta,JL}$) are now referenced as Psi_{JL}. 2.

3. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.



MURA115T3, MURA120T3

MURA130T3, MURA140T3

Preferred Devices

Surface Mount Ultrafast Power Rectifiers

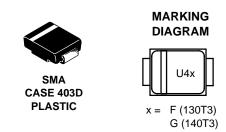
Ideally suited for high voltage, high frequency rectification, or as free wheeling and protection diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- High Temperature Glass Passivated Junction
- Low Forward Voltage Drop (0.8 Volts Max @ 1.0 A, $T_J = 150^{\circ}C$)

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 70 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 5000 units per reel
- Polarity: Polarity Band Indicates Cathode Lead
- ESD Protection: Human Body Model > 4000 V (Class 3) Machine Model > 400 V (Class C)
- Marking: U4F, U4G

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage MURA130T3 MURA140T3	V _{RRM} V _{RWM} V _R	300 400	V
Average Rectified Forward Current @ $T_L = 150^{\circ}C$ @ $T_L = 125^{\circ}C$	I _{F(AV)}	1.0 2.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	35	A
Operating Junction Temperature Range	TJ	- 65 to +175	°C

ON Semiconductor[®]

http://onsemi.com

ULTRAFAST RECTIFIERS 1 AMPERE 300-400 VOLTS

ORDERING INFORMATION

Device	Package	Shipping
MURA130T3	SMA	5000/Tape & Reel
MURA140T3	SMA	5000/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

MURA130T3, MURA140T3

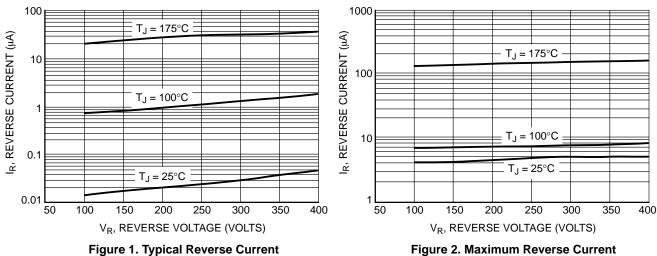
THERMAL CHARACTERISTICS

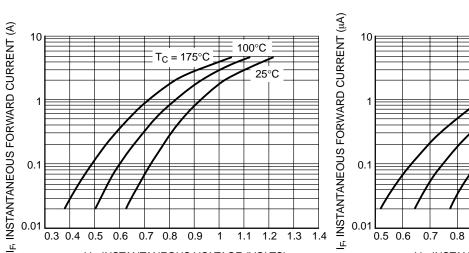
Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Lead ($T_L = 25^{\circ}C$) (Note 1)	Psi _{JL} (Note 2)	24	°C/W
Thermal Resistance, Junction to Ambient (Note 1)	$R_{\theta JA}$	216	

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 3) ($i_F = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}$) ($i_F = 1.0 \text{ A}, T_J = 150^{\circ}\text{C}$)	۷F	1.1 0.8	Volts
Maximum Instantaneous Reverse Current (Note 3) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 150^{\circ}C$)	i _R	5.0 150	μΑ
Maximum Reverse Recovery Time (i _F = 1.0 A, di/dt = 50 A/µs)	t _{rr}	65	ns

1. Rating applies when surface mounted on the minimum pad size recommended, PC Board FR-4.

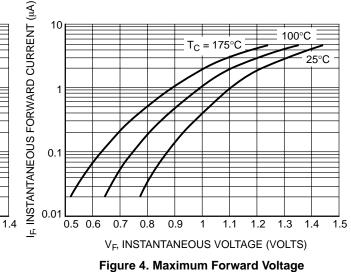

2. In compliance with JEDEC 51, these values (historically represented by $R_{\theta JL}$) are now referenced as Psi_{JL} . 3. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.


0.1

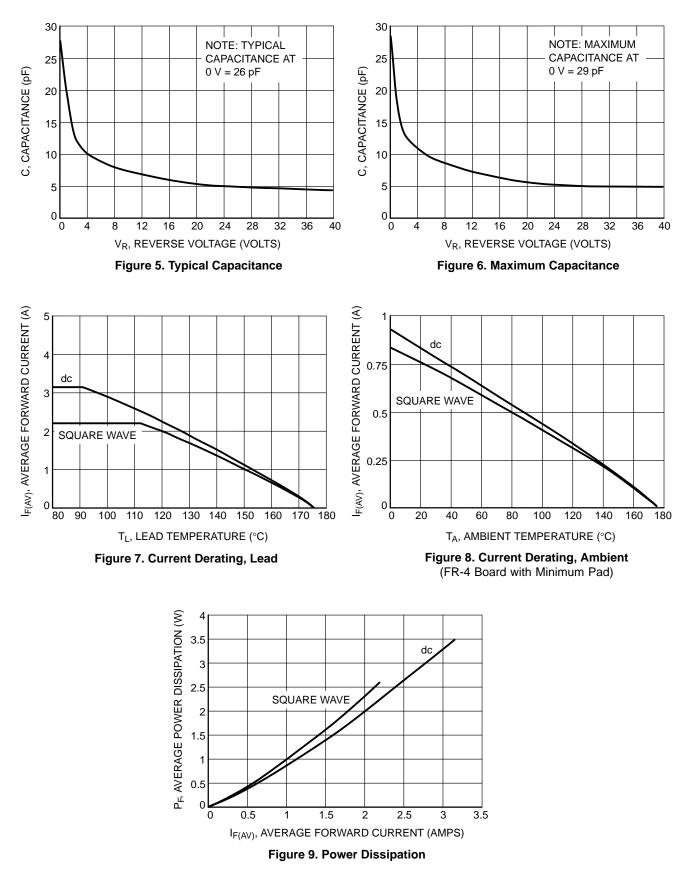
0.01

0.3 0.4

0.5 0.6


0.7 0.8 0.9

V_F, INSTANTANEOUS VOLTAGE (VOLTS)


Figure 3. Typical Forward Voltage

1 1.1 1.2 1.3

MURA130T3, MURA140T3

MURA160T3

Preferred Device

Surface Mount Ultrafast Power Rectifier

Ideally suited for high voltage, high frequency rectification, or as free wheeling and protection diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- High Temperature Glass Passivated Junction
- Low Forward Voltage Drop (1.05 Volts Max @ $1.0 \text{ A}, \text{T}_{J} = 150^{\circ}\text{C}$)

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 70 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 5000 units per reel
- Polarity: Polarity Band Indicates Cathode Lead
- ESD Protection: Human Body Model > 4000 V (Class 3) Machine Model > 400 V (Class C)
- Marking: U4J

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	600	V
Average Rectified Forward Current @ $T_L = 145^{\circ}C$ @ $T_L = 110^{\circ}C$	I _{F(AV)}	1.0 2.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	30	A
Operating Junction Temperature Range	Τ _J	- 65 to +175	°C

ON Semiconductor®

http://onsemi.com

ULTRAFAST RECTIFIER 1 AMPERE 600 VOLTS

U4J = Device Code

ORDERING INFORMATION

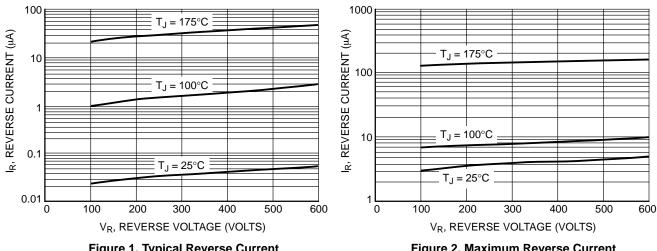
Device	Package	Shipping
MURA160T3	SMA	5000/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

MURA160T3

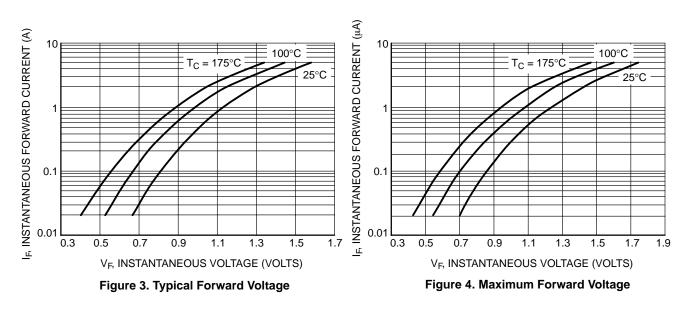
THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Lead ($T_L = 25^{\circ}C$) (Note 1)	Psi _{JL} (Note 2)	24	°C/W
Thermal Resistance, Junction to Ambient (Note 1)	`R _{θJA} ´	216	

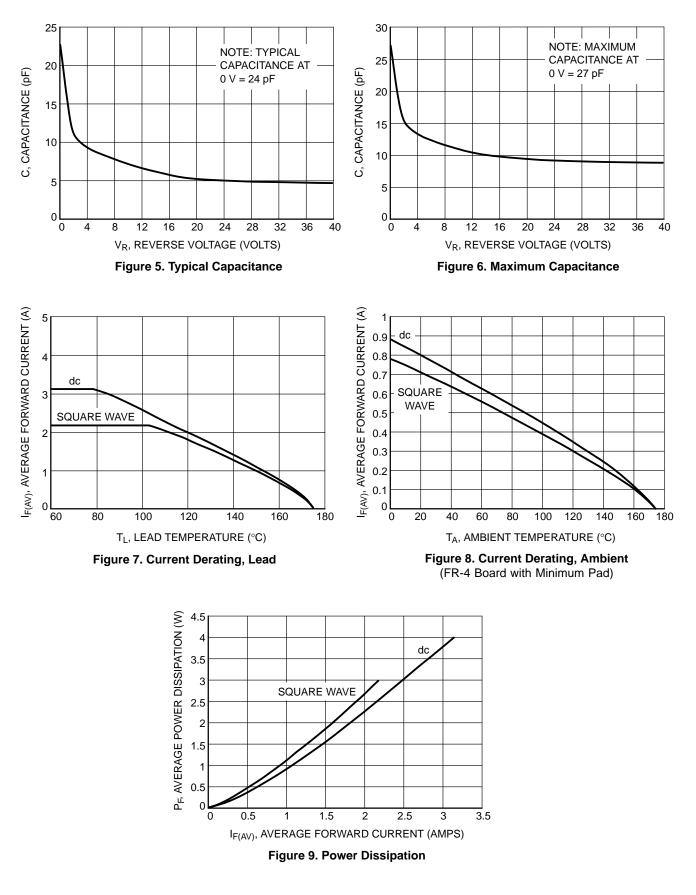

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 3) ($i_F = 1.0 \text{ A}, T_J = 25^{\circ}\text{C}$) ($i_F = 1.0 \text{ A}, T_J = 150^{\circ}\text{C}$)	v _F	1.25 1.05	Volts
Maximum Instantaneous Reverse Current (Note 3) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 150^{\circ}C$)	i _R	5.0 150	μΑ
Maximum Reverse Recovery Time (i _F = 1.0 A, di/dt = 50 A/µs)	t _{rr}	75	ns

1. Rating applies when surface mounted on the minimum pad size recommended, PC Board FR-4.


In compliance with JEDEC 51, these values (historically represented by $R_{\theta,JL}$) are now referenced as Psi_{JL}. 2.

3. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.



MURA160T3

MURA205T3, MURA210T3

Preferred Devices

Surface Mount Ultrafast Power Rectifiers

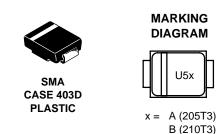
Ideally suited for high voltage, high frequency rectification, or as free wheeling and protection diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- High Temperature Glass Passivated Junction
- Low Forward Voltage Drop (0.74 Volts Max @ 2.0 A, $T_J = 150^{\circ}C$)

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 70 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 5000 units per reel
- Polarity: Polarity Band Indicates Cathode Lead
- ESD Protection: Human Body Model > 4000 V (Class 3) Machine Model > 400 V (Class C)
- Marking: U5A, U5B

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage MURA205T3 MURA210T3	V _{RRM} V _{RWM} V _R	50 100	V
Average Rectified Forward Current @ $T_L = 155^{\circ}C$ @ $T_L = 135^{\circ}C$	I _{F(AV)}	1.0 2.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	50	A
Operating Junction Temperature Range	TJ	- 65 to +175	°C

ON Semiconductor[®]

http://onsemi.com

ULTRAFAST RECTIFIERS 2 AMPERES 50-100 VOLTS

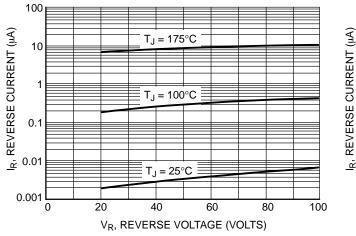
ORDERING INFORMATION

Device	Package	Shipping
MURA205T3	SMA	5000/Tape & Reel
MURA210T3	SMA	5000/Tape & Reel

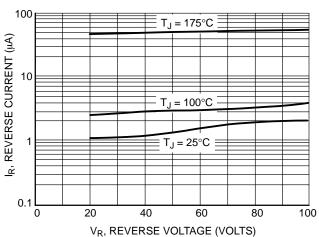
MURA205T3, MURA210T3

THERMAL CHARACTERISTICS

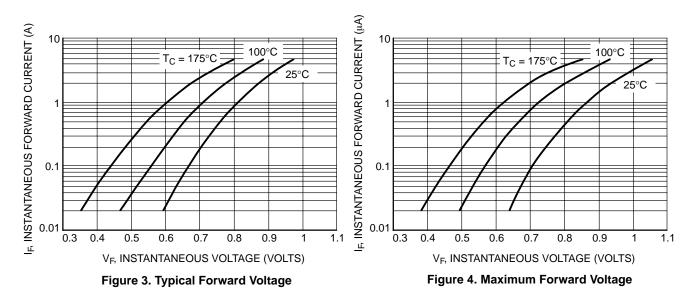
Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Lead (Note 1)	Psi _{JL} (Note 2)	24	°C/W
Thermal Resistance, Junction to Ambient (Note 1)	$R_{ extsf{ heta}JA}$	216	


ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 3) ($i_F = 2.0 \text{ A}, T_J = 25^{\circ}\text{C}$) ($i_F = 2.0 \text{ A}, T_J = 150^{\circ}\text{C}$)	VF	0.94 0.74	Volts
Maximum Instantaneous Reverse Current (Note 3) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 150^{\circ}C$)	i _R	2.0 50	μΑ
Maximum Reverse Recovery Time (i _F = 1.0 A, di/dt = 50 A/µs)	t _{rr}	30	ns


1. Rating applies when surface mounted on the minimum pad size recommended, PC Board FR-4.

2. In compliance with JEDEC 51, these values (historically represented by $R_{\theta,L}$) are now referenced as Psi_{JL} .


3. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

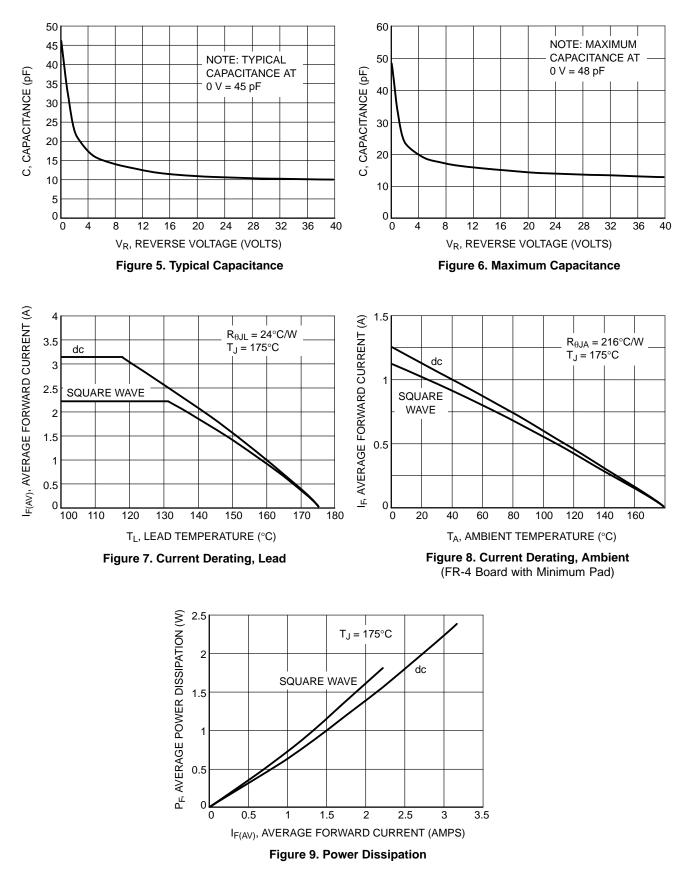


Figure 2. Maximum Reverse Current

MURA205T3, MURA210T3

MURA215T3, MURA220T3

Preferred Devices

Surface Mount Ultrafast Power Rectifiers

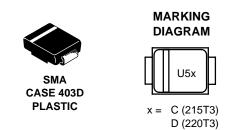
Ideally suited for high voltage, high frequency rectification, or as free wheeling and protection diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- High Temperature Glass Passivated Junction
- Low Forward Voltage Drop (0.77 Volts Max @ 2.0 A, $T_J = 150^{\circ}C$)

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 70 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 5000 units per reel
- Polarity: Polarity Band Indicates Cathode Lead
- ESD Protection: Human Body Model > 4000 V (Class 3) Machine Model > 400 V (Class C)
- Marking: U5C, U5D

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage MURA215T3 MURA220T3	V _{RRM} V _{RWM} V _R	150 200	V
Average Rectified Forward Current @ $T_L = 155^{\circ}C$ @ $T_L = 135^{\circ}C$	I _{F(AV)}	1.0 2.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	40	A
Operating Junction Temperature Range	TJ	- 65 to +175	°C

ON Semiconductor®

http://onsemi.com

ULTRAFAST RECTIFIERS 2 AMPERES 100-200 VOLTS

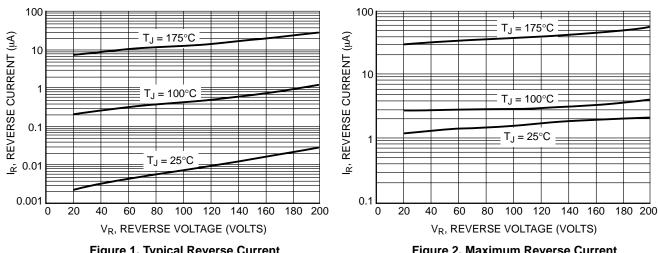
ORDERING INFORMATION

Device	Package	Shipping
MURA215T3	SMA	5000/Tape & Reel
MURA220T3	SMA	5000/Tape & Reel

MURA215T3, MURA220T3

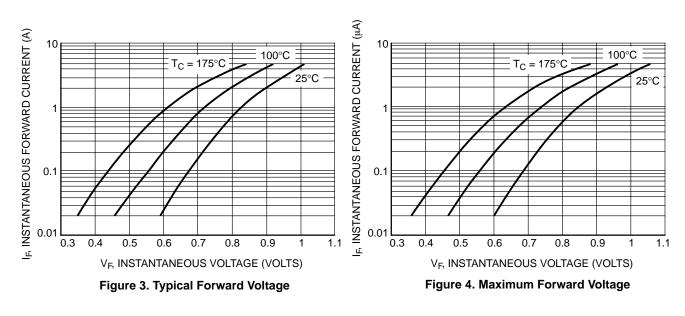
THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Lead ($T_L = 25^{\circ}C$) (Note 1)	Psi _{JL} (Note 2)	24	°C/W
Thermal Resistance, Junction to Ambient (Note 1)	$R_{\theta JA}$	216	

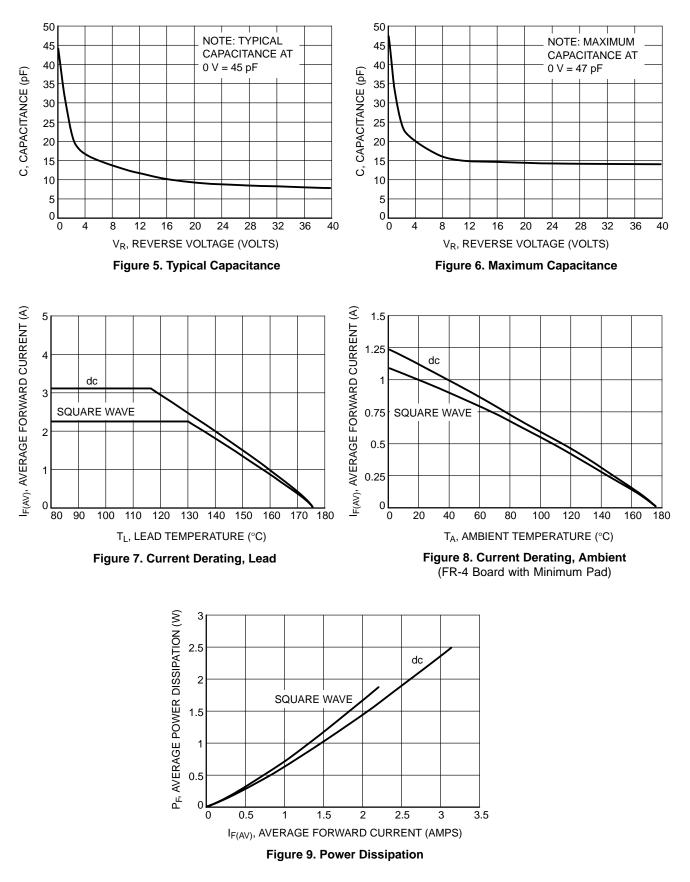

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 3) ($i_F = 2.0 \text{ A}, T_J = 25^{\circ}\text{C}$) ($i_F = 2.0 \text{ A}, T_J = 150^{\circ}\text{C}$)	VF	0.95 0.77	Volts
Maximum Instantaneous Reverse Current (Note 3) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 150^{\circ}C$)	i _R	2.0 50	μΑ
Maximum Reverse Recovery Time (i _F = 1.0 A, di/dt = 50 A/μs)	t _{rr}	35	ns

1. Rating applies when surface mounted on the minimum pad size recommended, PC Board FR-4.


In compliance with JEDEC 51, these values (historically represented by $R_{\theta,JL}$) are now referenced as Psi_{JL}. 2.

3. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.



MURA215T3, MURA220T3

MURA230T3, MURA240T3

Preferred Devices

Surface Mount Ultrafast Power Rectifiers

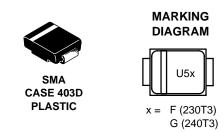
Ideally suited for high voltage, high frequency rectification, or as free wheeling and protection diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- High Temperature Glass Passivated Junction
- Low Forward Voltage Drop (0.95 Volts Max @ 2.0 A, $T_J = 150^{\circ}C$)

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 70 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 5000 units per reel
- Polarity: Polarity Band Indicates Cathode Lead
- ESD Protection: Human Body Model > 4000 V (Class 3) Machine Model > 400 V (Class C)
- Marking: U5F, U5G

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage MURA230T3 MURA240T3	V _{RRM} V _{RWM} V _R	300 400	V
Average Rectified Forward Current @ $T_L = 150^{\circ}C$ @ $T_L = 125^{\circ}C$	I _{F(AV)}	1.0 2.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	35	A
Operating Junction Temperature Range	TJ	- 65 to +175	°C

ON Semiconductor®

http://onsemi.com

ULTRAFAST RECTIFIERS 2 AMPERES 300-400 VOLTS

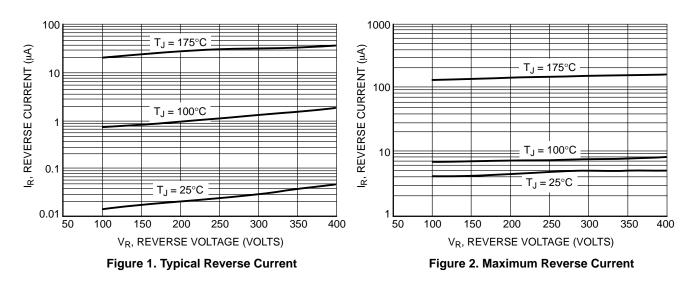
ORDERING INFORMATION

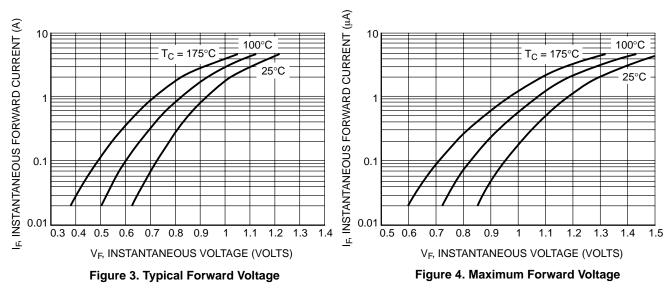
Device	Package	Shipping
MURA230T3	SMA	5000/Tape & Reel
MURA240T3	SMA	5000/Tape & Reel

MURA230T3, MURA240T3

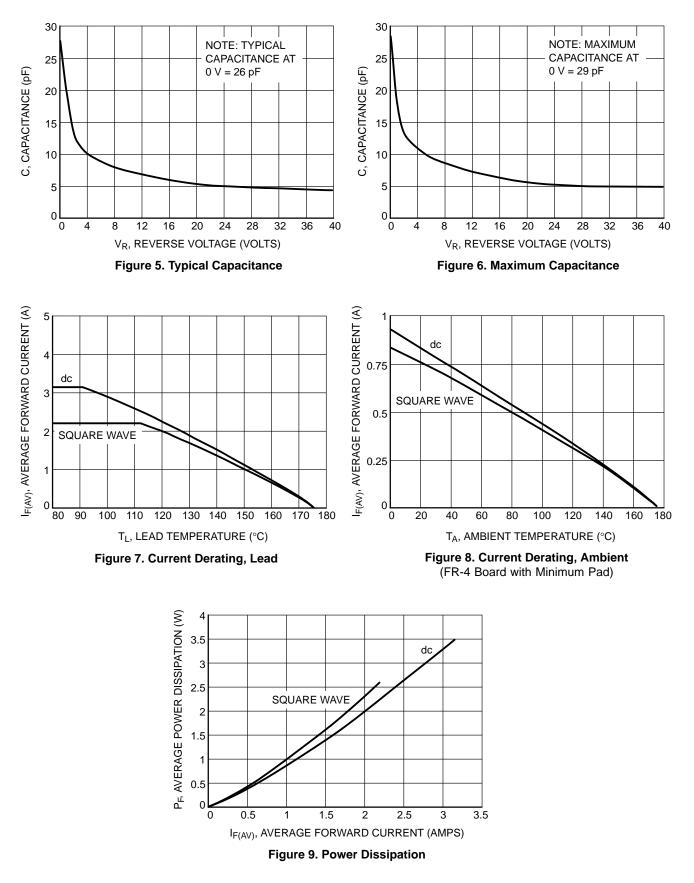
THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Lead ($T_L = 25^{\circ}C$) (Note 1)	Psi _{JL} (Note 2)	24	°C/W
Thermal Resistance, Junction to Ambient (Note 1)	$R_{\theta JA}$	216	


ELECTRICAL CHARACTERISTICS


Maximum Instantaneous Forward Voltage (Note 3) ($i_F = 2.0 \text{ A}, T_J = 25^{\circ}\text{C}$) ($i_F = 2.0 \text{ A}, T_J = 150^{\circ}\text{C}$)	VF	1.30 1.05	Volts
Maximum Instantaneous Reverse Current (Note 3) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 150^{\circ}C$)	i _R	5.0 150	μΑ
Maximum Reverse Recovery Time (i _F = 1.0 A, di/dt = 50 A/µs)	t _{rr}	65	ns

1. Rating applies when surface mounted on the minimum pad size recommended, PC Board FR-4.


2. In compliance with JEDEC 51, these values (historically represented by $R_{\theta,L}$) are now referenced as Psi_{JL} .

3. Pulse Test: Pulse Width = $300 \,\mu$ s, Duty Cycle $\leq 2.0\%$.

MURA230T3, MURA240T3

MURA260T3

Preferred Device

Surface Mount Ultrafast Power Rectifier

Ideally suited for high voltage, high frequency rectification, or as free wheeling and protection diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- High Temperature Glass Passivated Junction
- Low Forward Voltage Drop (1.2 Volts Max @ 2.0 A, $T_J = 150^{\circ}C$)

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 70 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 5000 units per reel
- Polarity: Polarity Band Indicates Cathode Lead
- ESD Protection: Human Body Model > 4000 V (Class 3) Machine Model > 400 V (Class C)
- Marking: U5J

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	600	V
Average Rectified Forward Current @ $T_L = 145^{\circ}C$ @ $T_L = 110^{\circ}C$	I _{F(AV)}	1.0 2.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	30	A
Operating Junction Temperature Range	Τ _J	- 65 to +175	°C

ON Semiconductor®

http://onsemi.com

ULTRAFAST RECTIFIER 2 AMPERES 600 VOLTS

U5J = Device Code

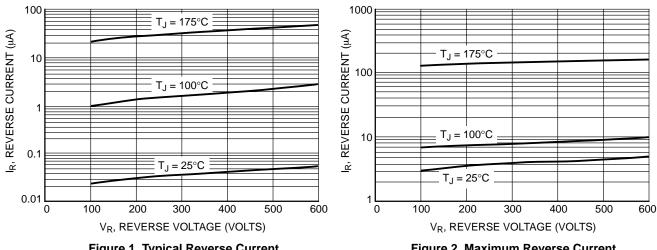
ORDERING INFORMATION

Device	Package	Shipping
MURA260T3	SMA	5000/Tape & Reel

MURA260T3

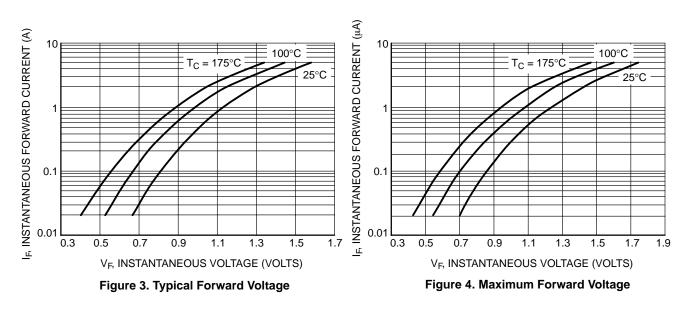
THERMAL CHARACTERISTICS

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Lead ($T_L = 25^{\circ}C$) (Note 1)	Psi _{JL} (Note 2)	24	°C/W
Thermal Resistance, Junction to Ambient (Note 1)	`R _{θJA} ´	216	

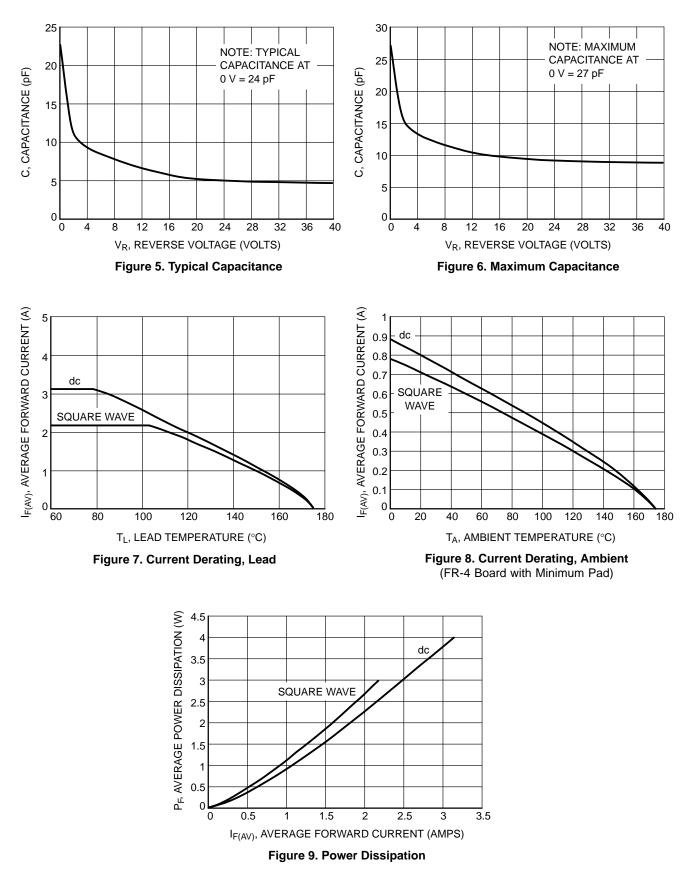

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 3) ($i_F = 2.0 \text{ A}, T_J = 25^{\circ}\text{C}$) ($i_F = 2.0 \text{ A}, T_J = 150^{\circ}\text{C}$)	VF	1.45 1.20	Volts
Maximum Instantaneous Reverse Current (Note 3) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 150^{\circ}C$)	i _R	5.0 150	μΑ
Maximum Reverse Recovery Time (i _F = 1.0 A, di/dt = 50 A/µs)	t _{rr}	75	ns

1. Rating applies when surface mounted on the minimum pad size recommended, PC Board FR-4.


In compliance with JEDEC 51, these values (historically represented by $R_{\theta,JL}$) are now referenced as Psi_{JL}. 2.

3. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.



MURA260T3

Preferred Devices

Surface Mount Ultrafast Power Rectifiers

MURS105T3, MURS110T3, MURS115T3, MURS120T3, MURS140T3, MURS160T3

Ideally suited for high voltage, high frequency rectification, or as free wheeling and protection diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- High Temperature Glass Passivated Junction
- Low Forward Voltage Drop (0.71 to 1.05 Volts Max @ 1.0 A, $T_J = 150^{\circ}C$)

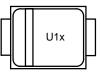
Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 95 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 2500 units per reel
- Polarity: Polarity Band Indicates Cathode Lead
- Marking: U1A, U1B, U1C, U1D, U1G, U1J

MAXIMUM RATINGS

Please See the Table on the Following Page

ON Semiconductor[™]


http://onsemi.com

ULTRAFAST RECTIFIERS 1.0 AMPERE 50-600 VOLTS

SMB CASE 403A

MARKING DIAGRAM

U1x= Device Code x = Specific Device Code A, B, C, D, G or J

ORDERING INFORMATION

See detailed ordering and shipping information in the table on page 375 of this data sheet.

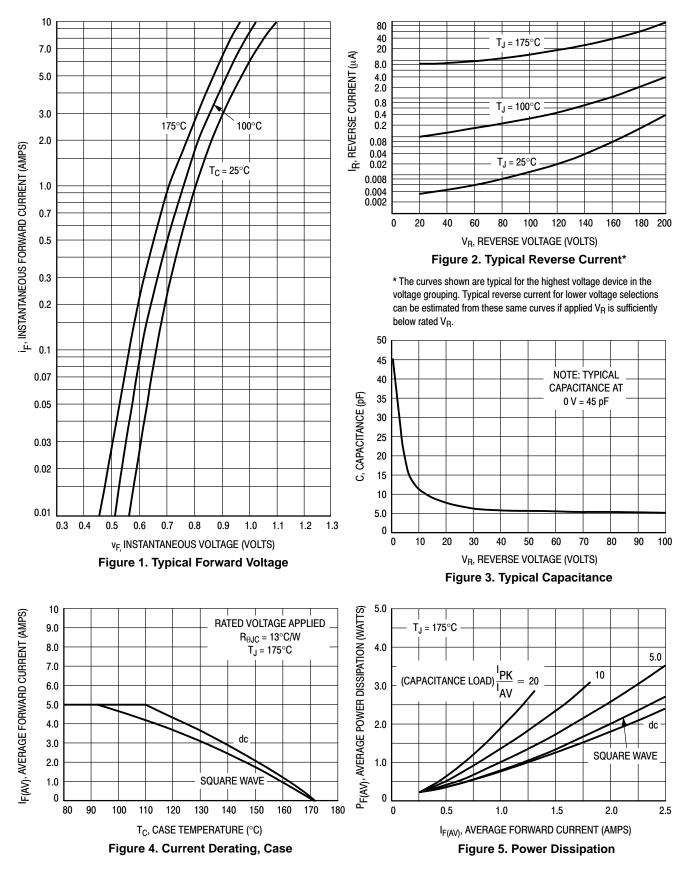
DEVICE MARKING INFORMATION

See general marking information in the device marking table on page 375 of this data sheet.

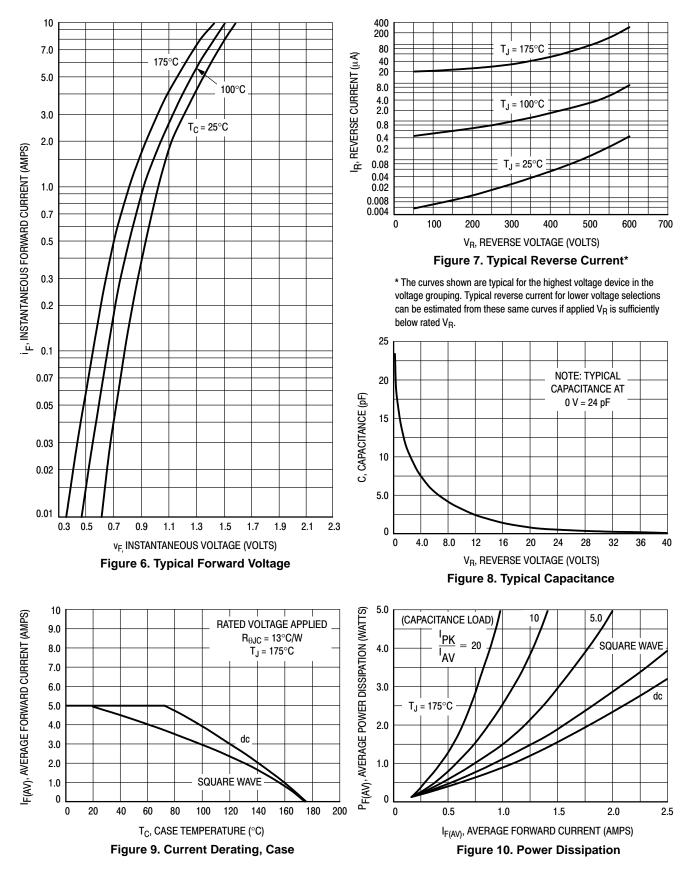
MAXIMUM RATINGS

			MURS					
Rating	Symbol	105T3	110T3	115T3	120T3	140T3	160T3	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	400	600	Volts
Average Rectified Forward Current	I _{F(AV)}		1.0 @ T _L = 155°C 2.0 @ T _L = 145°C		1.0 @ T _L 2.0 @ T _L		Amps	
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	40		3	5	Amps		
Operating Junction Temperature	Τ _J			-65 t	o +175	•		°C

THERMAL CHARACTERISTICS


Thermal Resistance, Junction to Lead $(T_L = 25^{\circ}C)$	R _{θJL}	13		°C/W				
ELECTRICAL CHARACTERISTICS								
$\label{eq:maximum lnstantaneous Forward Voltage (Note 1)} \begin{array}{l} (i_F = 1.0 \text{ A}, \text{T}_J = 25^\circ\text{C}) \\ (i_F = 1.0 \text{ A}, \text{T}_J = 150^\circ\text{C}) \end{array}$	v _F	0.875 0.71	1.25 1.05	Volts				
Maximum Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 150^{\circ}C$)	i _R	2.0 50	5.0 150	μΑ				
$\begin{array}{l} \mbox{Maximum Reverse Recovery Time} \\ (i_F = 1.0 \mbox{ A, di/dt} = 50 \mbox{ A/}\mu s) \\ (i_F = 0.5 \mbox{ A, i}_R = 1.0 \mbox{ A, I}_R \mbox{ to } 0.25 \mbox{ A}) \end{array}$	t _{rr}	35 25	75 50	ns				
Maximum Forward Recovery Time (i _F = 1.0 A, di/dt = 100 A/μs, Rec. to 1.0 V)	t _{fr}	25	50	ns				

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.


DEVICE MARKING AND ORDERING INFORMATION

Device	Marking	Package	Shipping
MURS105T3	U1A	SMB	2500 Units/Tape & Reel
MURS110T3	U1B	SMB	2500 Units/Tape & Reel
MURS115T3	U1C	SMB	2500 Units/Tape & Reel
MURS120T3	U1D	SMB	2500 Units/Tape & Reel
MURS140T3	U1G	SMB	2500 Units/Tape & Reel
MURS160T3	U1J	SMB	2500 Units/Tape & Reel

MURS105T3, MURS110T3, MURS115T3, MURS120T3

MURS140T3, MURS160T3

MURS220T3

Preferred Device

Surface Mount Ultrafast Power Rectifiers

Ideally suited for high voltage, high frequency rectification, or as free wheeling and protection diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- High Temperature Glass Passivated Junction
- Low Forward Voltage Drop (0.77 Volts Max @ 2.0 A, T_J = 150°C)

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 95 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 2500 units per reel
- Polarity: Polarity Band Indicates Cathode Lead
- Marking: U2D

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	V
Average Rectified Forward Current	I _{F(AV)}	2.0 @ T _L = 145°C	A
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	40	A
Operating Junction Temperature Range	TJ	-65 to +175	°C

ON Semiconductor[™]

http://onsemi.com

ULTRAFAST RECTIFIERS 2 AMPERES 200 VOLTS

U2D

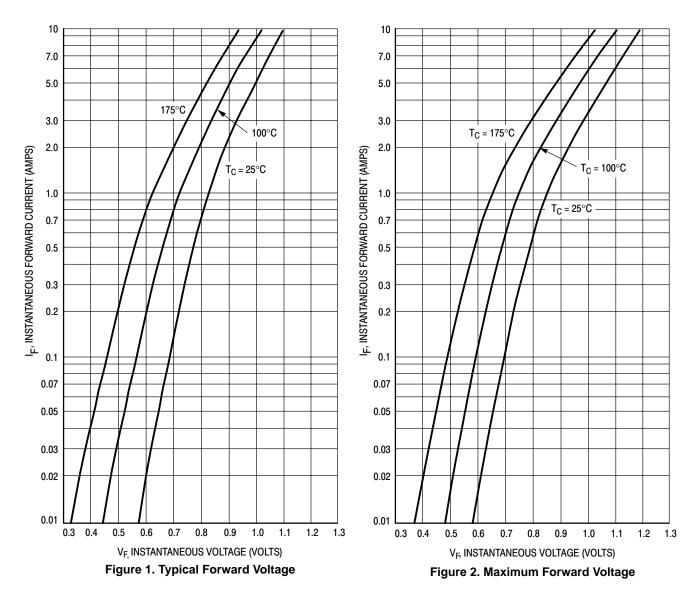
SMB CASE 403A

U2D = Specific Device Code

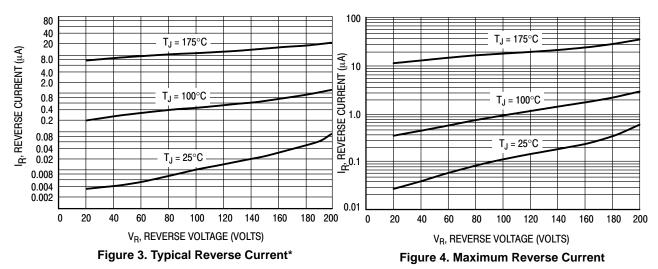
ORDERING INFORMATION

Device	Package	Shipping
MURS220T3	SMB	2500/Tape & Reel

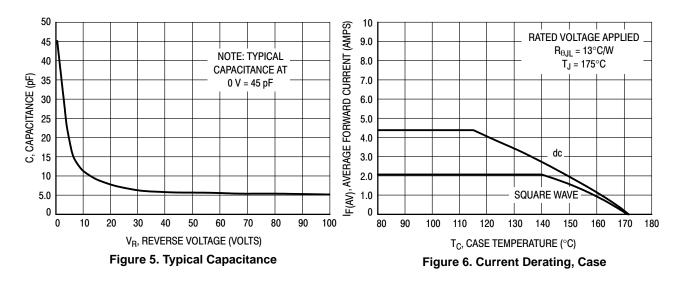
MURS220T3

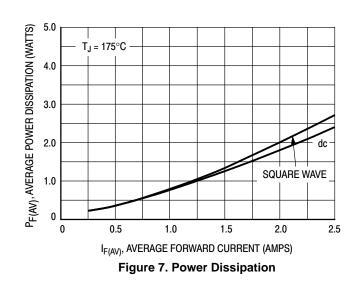

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Lead $(T_L = 25^{\circ}C)$	$R_{ extsf{ heta}JL}$	13	°C/W


ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Maximum Instantaneous Forward Voltage (Note 1.) ($i_F = 2.0 \text{ A}, T_J = 25^{\circ}\text{C}$) ($i_F = 2.0 \text{ A}, T_J = 150^{\circ}\text{C}$)	VF	0.95 0.77	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 150^{\circ}C$)	i _R	2.0 50	μΑ
Maximum Reverse Recovery Time ($i_F = 1.0 \text{ A}, \text{ di/dt} = 50 \text{ A/}\mu\text{s}$) ($i_F = 0.5 \text{ A}, i_R = 1.0 \text{ A}, I_R \text{ to } 0.25 \text{ A}$)	t _{rr}	35 25	ns
Maximum Forward Recovery Time (i _F = 1.0 A, di/dt = 100 A/μs, Rec. to 1.0 V)	t _{fr}	25	ns


1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.



MURS220T3

* The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if applied V_R is sufficiently below rated V_R .

MURS230T3, MURS240T3

Preferred Devices

Surface Mount Ultrafast Power Rectifiers

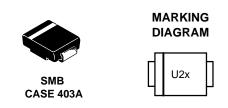
Ideally suited for high voltage, high frequency rectification, or as free wheeling and protection diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- High Temperature Glass Passivated Junction
- Low Forward Voltage Drop (0.95 Volts Max @ 2.0 A, $T_J = 150^{\circ}C$)

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 95 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 2500 units per reel
- Polarity: Polarity Band Indicates Cathode Lead
- Marking: U2F, U2G

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse VoltageWorking Peak Reverse VoltageDC Blocking VoltageMURS230T3MURS240T3	V _{RRM} V _{RWM} V _R	300 400	V
Average Rectified Forward Current	I _{F(AV)}	1.0 @ T _L = 150°C 2.0 @ T _L = 125°C	A
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	35	A
Operating Junction Temperature Range	Τ _J	-65 to +175	°C

ON Semiconductor[™]

http://onsemi.com

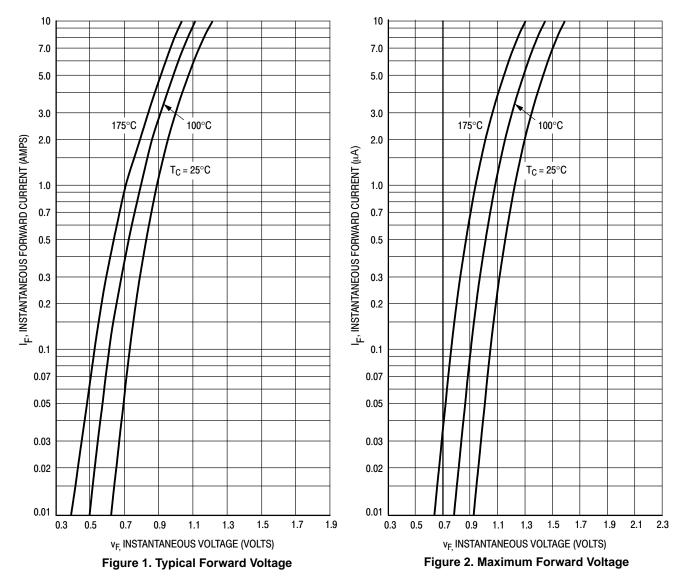
ULTRAFAST RECTIFIERS 2 AMPERES 300-400 VOLTS

x = F (230T3) G (240T3)

ORDERING INFORMATION

Device	Package	Shipping
MURS230T3	SMB	2500/Tape & Reel
MURS240T3	SMB	2500/Tape & Reel

MURS230T3, MURS240T3


THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance, Junction to Lead $(T_L = 25^{\circ}C)$	$R_{ extsf{ heta}JL}$	13	°C/W

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 1.)	٧ _F		Volts
$(i_F = 2.0 \text{ A}, T_J = 25^{\circ}\text{C})$ $(i_F = 2.0 \text{ A}, T_J = 150^{\circ}\text{C})$		1.30 1.05	
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 150^{\circ}C$)	i _R	5.0 150	μΑ
Maximum Reverse Recovery Time ($i_F = 1.0 \text{ A}, \text{ di/dt} = 50 \text{ A/}\mu\text{s}$) ($i_F = 0.5 \text{ A}, i_R = 1.0 \text{ A}, I_R \text{ to } 0.25 \text{ A}$)	t _{rr}	65 50	ns
Maximum Forward Recovery Time (i _F = 1.0 A, di/dt = 100 A/μs, Rec. to 1.0 V)	t _{fr}	50	ns

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MURS230T3, MURS240T3

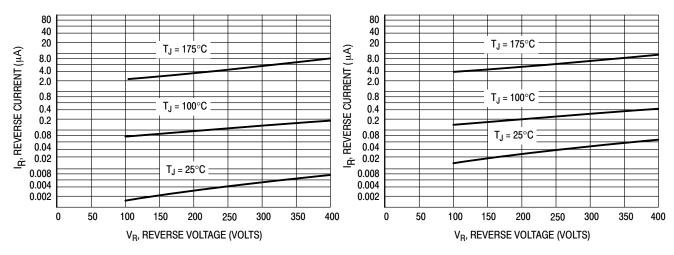
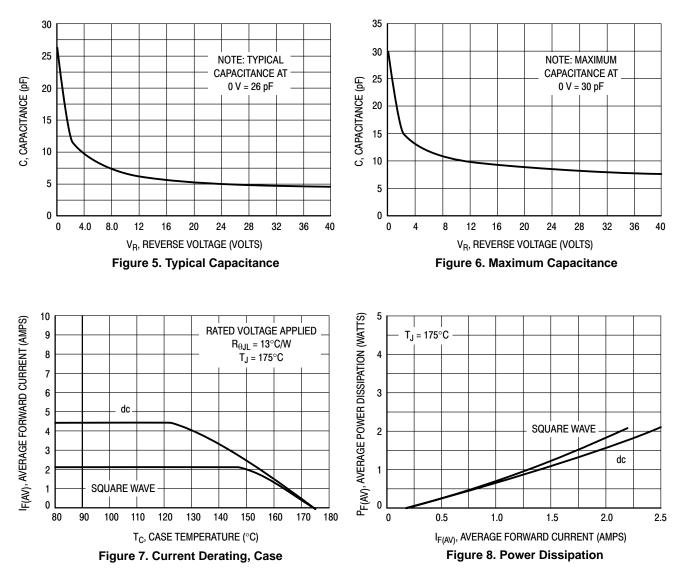



Figure 4. Maximum Reverse Current*

* The curves shown are typical for the highest voltage device in the voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if applied V_R is sufficiently below rated V_R .

MURS260T3

Preferred Device

Surface Mount Ultrafast Power Rectifiers

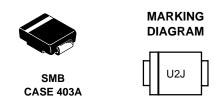
Ideally suited for high voltage, high frequency rectification, or as free wheeling and protection diodes in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- High Temperature Glass Passivated Junction
- Low Forward Voltage Drop (1.20 Volts Max @ 2.0 A, $T_J = 150^{\circ}C$)

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 95 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 12 mm Tape and Reel, 2500 units per reel
- Polarity: Polarity Band Indicates Cathode Lead
- Marking: U2J

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	600	Volts
Average Rectified Forward Current	I _{F(AV)}	2.0 @ T _L = 125°C	Amps
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	35	Amps
Operating Junction Temperature	Τ _J	- 65 to +175	°C

ON Semiconductor[™]

http://onsemi.com

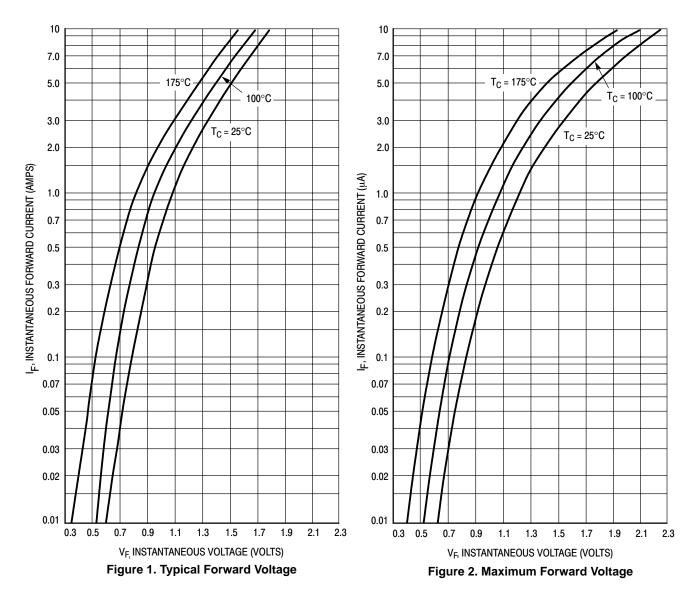
ULTRAFAST RECTIFIERS 2 AMPERES 600 VOLTS

U2J = Specific Device Code

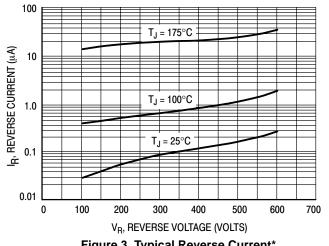
ORDERING INFORMATION

Device	Package	Shipping
MURS260T3	SMB	2500/Tape & Reel

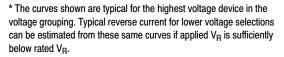
MURS260T3


THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Lead $(T_L = 25^{\circ}C)$	$R_{ extsf{ heta}JL}$	13	°C/W


ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Maximum Instantaneous Forward Voltage (Note 1.) ($i_F = 2.0 \text{ A}, T_J = 25^{\circ}\text{C}$) ($i_F = 2.0 \text{ A}, T_J = 150^{\circ}\text{C}$)	VF	1.45 1.20	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 150^{\circ}C$)	İR	5.0 150	μΑ
Maximum Reverse Recovery Time ($i_F = 1.0 \text{ A}, \text{ di/dt} = 50 \text{ A/}\mu\text{s}$) ($i_F = 0.5 \text{ A}, i_R = 1.0 \text{ A}, I_R \text{ to } 0.25 \text{ A}$)	t _{rr}	75 50	ns
Maximum Forward Recovery Time (i _F = 1.0 A, di/dt = 100 A/μs, Rec. to 1.0 V)	t _{fr}	50	ns


1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MURS260T3

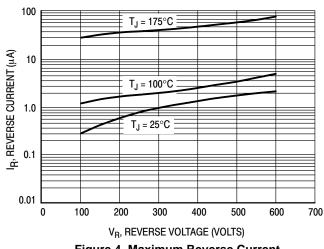
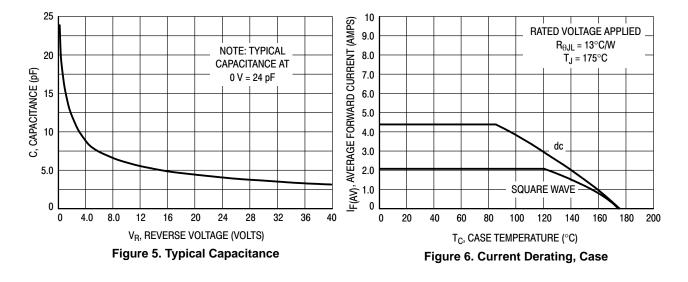
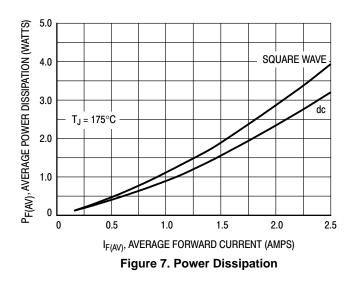




Figure 4. Maximum Reverse Current

MURS320T3, MURS340T3, MURS360T3

Preferred Devices

Surface Mount Ultrafast Power Rectifiers

... employing state-of-the-art epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for high voltage, high frequency rectification, or as free wheeling and protection diodes, in surface mount applications where compact size and weight are critical to the system.

- Small Compact Surface Mountable Package with J-Bend Leads
- Rectangular Package for Automated Handling
- Highly Stable Oxide Passivated Junction
- Low Forward Voltage Drop (0.71 to 1.05 Volts Max @ 3.0 A, T_J = 150°C)

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 217 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped in 16 mm Tape and Reel, 2500 units per reel
- Polarity: Notch in Plastic Body Indicates Cathode Lead
- Marking: U3D, U3G, U3J

MAXIMUM RATINGS

Please See the Table on the Following Page

ON Semiconductor®

http://onsemi.com

ULTRAFAST RECTIFIERS 3.0 AMPERES 200-600 VOLTS

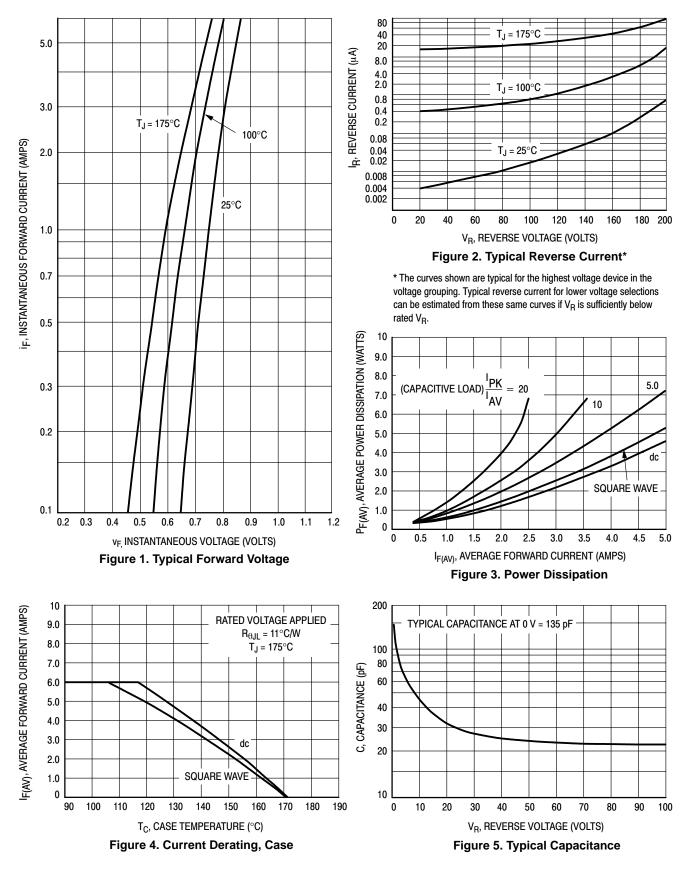
SMC CASE 403 PLASTIC

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
MURS320T3	SMC	2500/Tape & Reel
MURS340T3	SMC	2500/Tape & Reel
MURS360T3	SMC	2500/Tape & Reel

MURS320T3, MURS340T3, MURS360T3


MAXIMUM RATINGS

Rating	Symbol	MURS320T3	MURS340T3	MURS360T3	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	400	600	Volts
Average Rectified Forward Current	I _{F(AV)}	3.0 @ T _L = 140°C 4.0 @ T _L = 130°C	-	3.0 @ T _L = 130°C 4.0 @ T _L = 115°C	Amps
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}		75		Amps
Operating Junction Temperature	TJ		-65 to +175		°C
THERMAL CHARACTERISTICS		•			
Thermal Resistance, Junction to Lead	$R_{\theta JL}$	11			°C/W
ELECTRICAL CHARACTERISTICS		·			
	VF	0.875 0.89 0.71	1.25 1.28 1.05	1.25 1.28 1.05	Volts
Maximum Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $T_J = 25^{\circ}C$) (Rated dc Voltage, $T_J = 150^{\circ}C$)	i _R	5.0 150	10 250	10 250	μΑ
Maximum Reverse Recovery Time ($i_F = 1.0 \text{ A}$, di/dt = 50 A/µs) ($i_F = 0.5 \text{ A}$, $i_R = 1.0 \text{ A}$, I_{REC} to 0.25 A)	t _{rr}	35 25	75 50	75 50	ns
Maximum Forward Recovery Time $(i_F = 1.0 \text{ A}, \text{ di/dt} = 100 \text{ A}/\mu\text{s}, \text{ Recovery to } 1.0 \text{ V})$	t _{fr}	25	50	50	ns

1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.

MURS320T3, MURS340T3, MURS360T3

MURS320T3

MURS320T3, MURS340T3, MURS360T3

400 200 5.0 T_J = 175°C 80 I_R, REVERSE CURRENT (µA) 40 20 3.0 8.0 4.0 2.0 T_J = 175°C T_J = 100°C 100°C 2.0 0.8 0.4 0.2 25°C 0.08 T_J = 25°C 0.04 0.02 1.0 0.008 0.7 0.004 0 100 200 300 400 700 500 600 0.5 V_R, REVERSE VOLTAGE (VOLTS) Figure 7. Typical Reverse Current* * The curves shown are typical for the highest voltage device in the 0.3 voltage grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if V_R is sufficiently below 0.2 rated V_B. PF(AV), AVERAGE POWER DISSIPATION (WATTS) 10 9.0 0.1 8.0 7.0 0.07 SQUARE WAVE 6.0 dc (CAPACITIVE LOADS) 5.0 0.05 4.0 <u> PK</u> = 20 10 5.0 3.0 Ά٧ 0.03 2.0 0.02 1.0 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 v_E INSTANTANEOUS VOLTAGE (VOLTS) IF(AV), AVERAGE FORWARD CURRENT (AMPS) Figure 6. Typical Forward Voltage **Figure 8. Power Dissipation** 10 100 9.0 90 8.0 80 TYPICAL CAPACITANCE AT 0 V = 75 pF 7.0 C, CAPACITANCE (pF) 70 60 6.0 5.0 50 4.0 40 dc 3.0 30 SQUARE WAVE 2.0 20 1.0 10 0 0 70 80 90 100 110 120 130 140 150 160 170 0 10 20 30 40 50 60 70 80 90 100

i_F, INSTANTANEOUS FORWARD CURRENT (AMPS)

I_{F(AV)}, AVERAGE FORWARD CURRENT (AMPS)

MURS340T3, MURS360T3

http://onsemi.com 390 V_R, REVERSE VOLTAGE (VOLTS)

Figure 10. Typical Capacitance

T_C, CASE TEMPERATURE (°C)

Figure 9. Current Derating, Case

MURD620CT

Preferred Device

SWITCHMODE™ Power Rectifier

DPAK Surface Mount Package

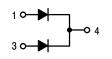
... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 Nanosecond Recovery Time
- Low Forward Voltage Drop
- Low Leakage

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 75 units per plastic tube
- Available in 16 mm Tape and Reel, 2500 units per reel, by adding a "T4" suffix to the part number
- Marking: U620T

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	V
Average Rectified Forward Current (Rated V_R , $T_C = 140$ °C) Per Diode Per Device	I _{F(AV)}	3.0 6.0	A
$\begin{array}{l} \mbox{Peak Repetitive Forward Current} \\ \mbox{(Rated V}_R, \mbox{Square Wave,} \\ \mbox{20 kHz}, \mbox{T}_C = 145^\circ\mbox{C}) & \mbox{Per Diode} \end{array}$	l _F	6.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, 60 Hz)	I _{FSM}	50	A
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +175	°C

ON Semiconductor®

http://onsemi.com

ULTRAFAST RECTIFIER 6.0 AMPERES 200 VOLTS

CASE 369A PLASTIC

MARKING DIAGRAM

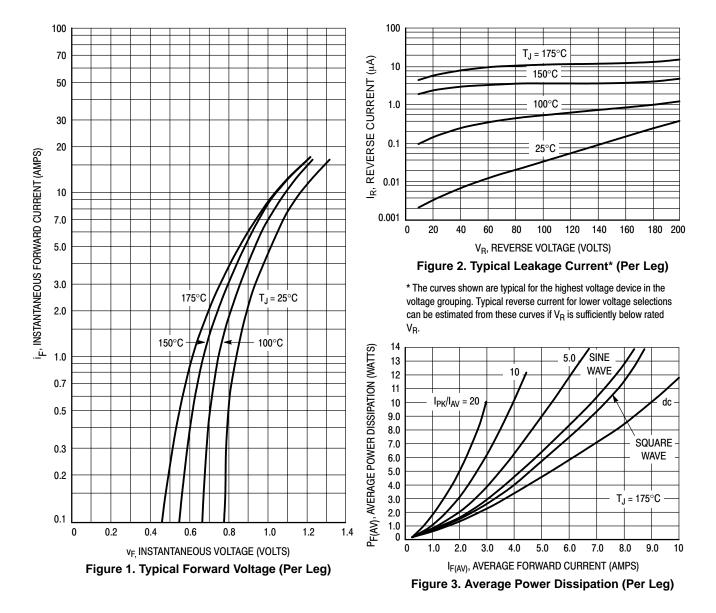
U620T = Device Code

ORDERING INFORMATION

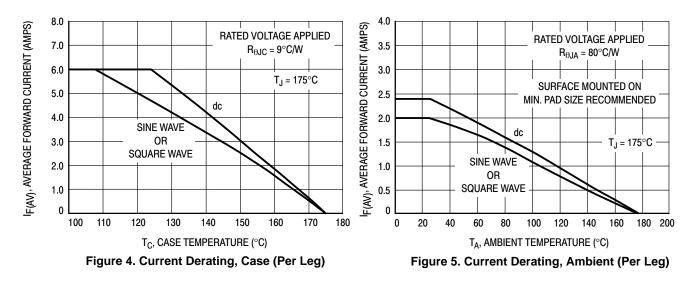
Device	Package	Shipping		
MURD620CT	DPAK	75 Units/Rail		
MURD620CTT4	DPAK	2500/Tape & Reel		

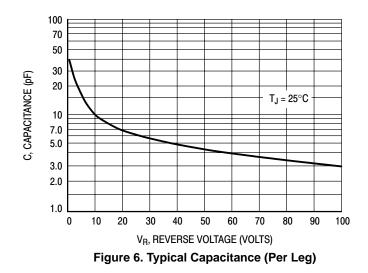
MURD620CT

THERMAL CHARACTERISTICS (Per Diode)


Rating	Symbol	Value	Unit
Thermal Resistance, Junction to Case	R _{θJC}	9	°C/W
Junction to Ambient (Note 1)	R _{θJA}	80	

ELECTRICAL CHARACTERISTICS (Per Diode)


Maximum Instantaneous Forward Voltage Drop (Note 2)	VF		Volts
(i _F = 3 Amps, T _C = 25°C)		1	
$(i_F = 3 \text{ Amps}, T_C = 125^{\circ}C)$		0.96	
$(i_F = 6 \text{ Amps}, T_C = 25^{\circ}C)$		1.2	
$(i_F = 6 \text{ Amps}, T_C = 125^{\circ}C)$		1.13	
Maximum Instantaneous Reverse Current (Note 2)	i _R		μA
$(T_J = 25^{\circ}C, Rated dc Voltage)$		5	
$(T_J = 125^{\circ}C, Rated dc Voltage)$		250	
Maximum Reverse Recovery Time	t _{rr}		ns
(I _F = 1 Amp, di/dt = 50 Amps/µs, V _R = 30 V, T _J = 25°C)		35	
(I _F = 0.5 Amp, i _R = 1 Amp, I _{REC} = 0.25 A, V _R = 30 V, T _J = 25°C)		25	


1. Rating applies when surface mounted on the minimum pad sizes recommended.

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MURD620CT

MURD320

Preferred Device

SWITCHMODE™ Power Rectifier

DPAK Surface Mount Package

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 Nanosecond Recovery Time
- Low Forward Voltage Drop
- Low Leakage

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 75 units per plastic tube
- Available in 16 mm Tape and Reel, 2500 units per reel, by adding a "T4" suffix to the part number
- Marking: U320

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	V
Average Rectified Forward Current (Rated V _R , T _C = 158°C)	I _{F(AV)}	3.0	A
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz, T _C = 158°C)	I _{FRM}	6.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, 60 Hz)	I _{FSM}	75	A
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +175	°C

ON Semiconductor[™]

http://onsemi.com

ULTRAFAST RECTIFIER 3.0 AMPERES 200 VOLTS

DPAK CASE 369A PLASTIC

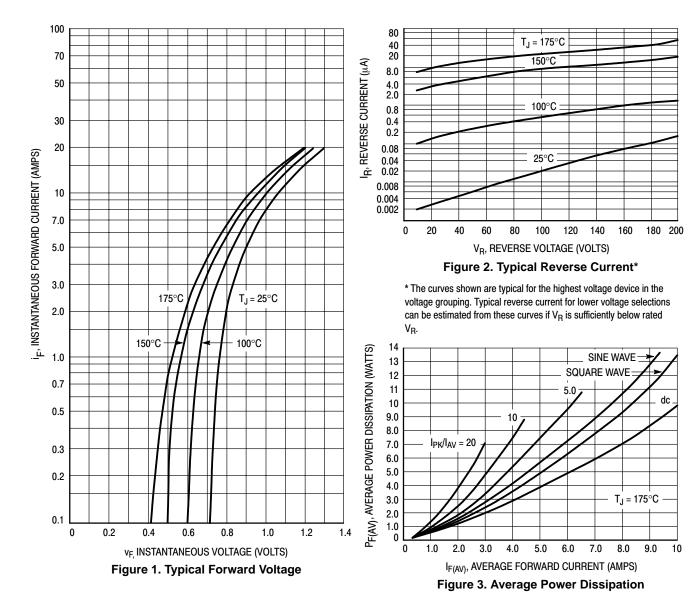
MARKING DIAGRAM

U320 = Device Code

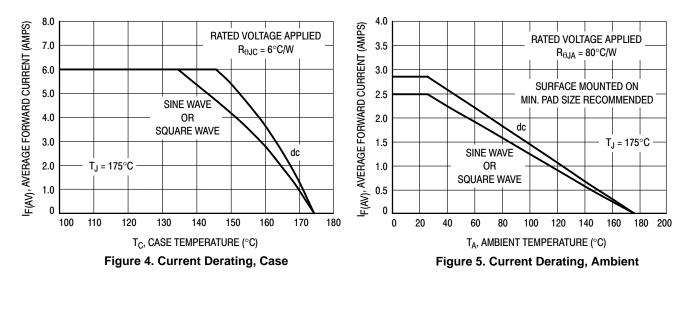
ORDERING INFORMATION

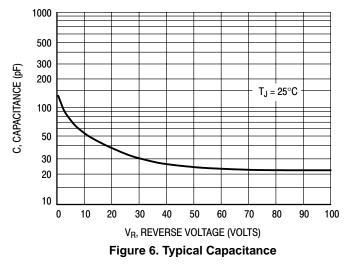
Device	Package	Shipping		
MURD320	DPAK	75 Units/Rail		
MURD320T4	DPAK	2500/Tape & Reel		

THERMAL CHARACTERISTICS


Rating	Symbol	Value	Unit
Thermal Resistance, Junction to Case	R _{θJC}	6 80	°C/W
Junction to Ambient (Note 1.)	$R_{ extsf{ heta}JA}$	60	

ELECTRICAL CHARACTERISTICS


Maximum Instantaneous Forward Voltage Drop (Note 2.) ($i_F = 3 \text{ Amps}, T_J = 25^{\circ}\text{C}$) ($i_F = 3 \text{ Amps}, T_J = 125^{\circ}\text{C}$)	VF	0.95 0.75	Volts
Maximum Instantaneous Reverse Current (Note 2.) $(T_J = 25^{\circ}C, Rated dc Voltage)$ $(T_J = 125^{\circ}C, Rated dc Voltage)$	i _R	5 500	μΑ
Maximum Reverse Recovery Time $(I_F = 1 \text{ Amp, di/dt} = 50 \text{ Amps/}\mu s, V_R = 30 \text{ V, } T_J = 25^{\circ}\text{C})$ $(I_F = 0.5 \text{ Amp, i}_R = 1 \text{ Amp, } I_{REC} = 0.25 \text{ A, } V_R = 30 \text{ V, } T_J = 25^{\circ}\text{C})$	t _{rr}	35 25	ns


1. Rating applies when surface mounted on the minimum pad sizes recommended.

2. Pulse Test: Pulse Width = $300 \ \mu$ s, Duty Cycle $\leq 2.0\%$.

MURD320

MURHB840CT

Preferred Device

MEGAHERTZ™ Power Rectifier

D²PAK Power Surface Mount Package

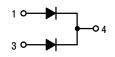
Designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Package Designed for Power Surface Mount Applications
- Ultrafast 28 Nanosecond Recovery Times
- 175°C Operating Junction Temperature
- Epoxy Meets UL94, V₀ @ 1/8"
- High Temperature Glass Passivated Junction
- High Voltage Capability
- Low Leakage Specified @ 150°C Case Temperature
- Short Heat Sink Tab Manufactured Not Sheared!
- Similar in Size to Industrial Standard TO-220 Package

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.7 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Available in 24 mm Tape and Reel, 800 units per reel by adding a "T4" suffix to the part number
- Marking: UH840

MAXIMUM RATINGS (Per Leg)


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	400	V
Average Rectified Forward Current (Rated V_R , T_C = 120°C) Total Device	I _{F(AV)}	4.0 8.0	A
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz, T _C = 120°C)	I _{FM}	8.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	100	A
Controlled Avalanche Energy	W _{AVAL}	20	mJ
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +175	°C

ON Semiconductor"

http://onsemi.com

ULTRAFAST RECTIFIER 8.0 AMPERES 400 VOLTS

MARKING DIAGRAM

UH840 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MURHB840CT	D ² PAK	50 Units/Rail
MURHB840CTT4	D ² PAK	800/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

MURHB840CT

THERMAL CHARACTERISTICS (Per Leg)

Rating	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	3.0	°C/W
Maximum Thermal Resistance, Junction to Ambient (Note 1.)	R_{\thetaJA}	50	°C/W

ELECTRICAL CHARACTERISTICS (Per Leg)

, -			
Characteristic	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (Note 2.) $(i_F = 4.0 \text{ Amps}, T_C = 150^{\circ}\text{C})$ $(i_F = 4.0 \text{ Amps}, T_C = 25^{\circ}\text{C})$	۷F	1.9 2.2	Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, $T_C = 150^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	500 10	μΑ
Maximum Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amps/μs)	t _{rr}	28	ns

See Chapter 7 for mounting conditions 1.

2. Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤2.0%

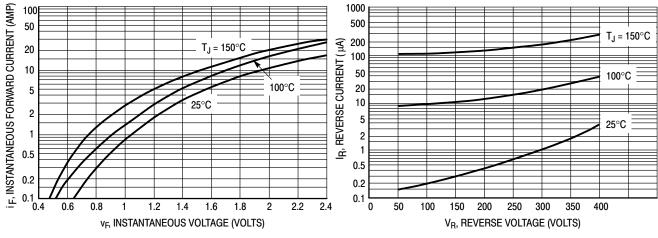
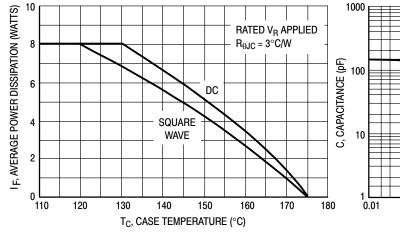
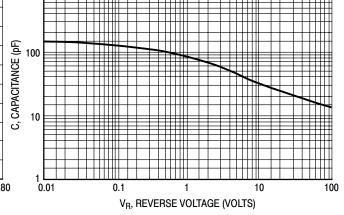




Figure 2. Typical Reverse Current, Per Leg

MURHB840CT



Figure 5. Forward Power Dissipation, Per Leg

MURHB860CT

Preferred Device

MEGAHERTZ™ Power Rectifier

D²PAK Power Surface Mount Package

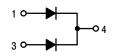
Designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Package Designed for Power Surface Mount Applications
- Ultrafast 35 Nanosecond Recovery Times
- 175°C Operating Junction Temperature
- Epoxy Meets UL94, V_O @ 1/8"
- High Temperature Glass Passivated Junction
- High Voltage Capability to 600 Volts
- Low Leakage Specified @ 150°C Case Temperature
- Short Heat Sink Tab Manufactured Not Sheared!
- Similar in Size to Industry Standard TO-220 Package

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.7 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Available in 24 mm Tape and Reel, 800 units per reel by adding a "T4" suffix to the part number
- Marking: UH860

MAXIMUM RATINGS (Per Leg)


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	600	V
Average Rectified Forward Current (Rated V_R , T_C = 120°C) Total Device	I _{F(AV)}	4.0 8.0	A
Peak Repetitive Forward Current (Rated V_R , Square Wave, 20 kHz, $T_C = 120^{\circ}C$)	I _{FM}	8.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	100	A
Operating Junction and Storage Temperature Range	TJ, T _{stg}	-65 to +175	°C

ON Semiconductor"

http://onsemi.com

ULTRAFAST RECTIFIER 8.0 AMPERES 600 VOLTS

STYLE 3

MARKING DIAGRAM

UH860 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MURHB860CT	D ² PAK	50 Units/Rail
MURHB860CTT4	D ² PAK	800/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

MURHB860CT

THERMAL CHARACTERISTICS (Per Leg)

Rating	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	3.0	°C/W
Maximum Thermal Resistance, Junction to Ambient	R_{\thetaJA}	50	°C/W

ELECTRICAL CHARACTERISTICS (Per Leg)

Characteristic	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (Note 1.) $(i_F = 4.0 \text{ Amps}, T_C = 150^{\circ}\text{C})$ $(i_F = 4.0 \text{ Amps}, T_C = 25^{\circ}\text{C})$	۷ _F	2.5 2.8	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 150^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	500 10	μA
Maximum Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amps/μs)	t _{rr}	35	ns

1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle ${\leq}2.0\%$

MURB1620CT

Preferred Device

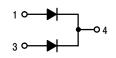
SWITCHMODE™ Power Rectifier

D²PAK Power Surface Mount Package

Designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Package Designed for Power Surface Mount Applications
- Ultrafast 35 Nanosecond Recovery Times
- 175°C Operating Junction Temperature
- Epoxy Meets UL94, V_O @ 1/8"
- High Temperature Glass Passivated Junction
- Low Leakage Specified @ 150°C Case Temperature
- Short Heat Sink Tab Manufactured Not Sheared!
- Similar in Size to Industrial Standard TO-220 Package
- Mechanical Characteristics
- Case: Epoxy, Molded
- Weight: 1.7 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Available in 24 mm Tape and Reel, 800 units per reel by adding a "T4" suffix to the part number
- Marking: U1620

MAXIMUM RATINGS (Per Leg)


(• ,			
Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	V
Average Rectified Forward Current (Rated V_R , T_C = 150°C) Total Device	I _{F(AV)}	8.0 16	A
Peak Repetitive Forward Current (Rated V_R , Square Wave, 20 kHz, $T_C = 150^{\circ}C$)	I _{FM}	16	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	IFSM	100	A
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +175	°C

ON Semiconductor**

http://onsemi.com

ULTRAFAST RECTIFIER 16 AMPERES 200 VOLTS

STYLE 3

MARKING DIAGRAM

U1620 = Device Code

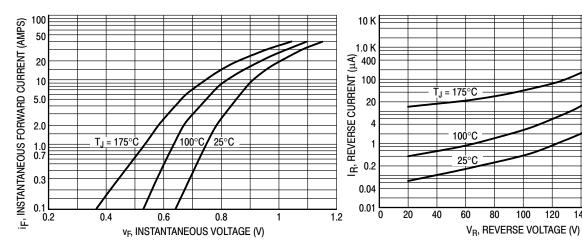
ORDERING INFORMATION

Device	Package	Shipping
MURB1620CT	D ² PAK	50 Units/Rail
MURB1620CTT4	D ² PAK	800/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

MURB1620CT

THERMAL CHARACTERISTICS (Per Leg)


Rating	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Case	$R_{ extsf{ heta}JC}$	3	°C/W
Maximum Thermal Resistance, Junction to Ambient (Note 1.)	$R_{ extsf{ heta}JA}$	50	°C/W
Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	TL	260	°C

ELECTRICAL CHARACTERISTICS (Per Leg)

Characteristic	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (Note 2.) ($i_F = 8 \text{ Amp}, T_C = 150^{\circ}\text{C}$) ($i_F = 8 \text{ Amp}, T_C = 25^{\circ}\text{C}$)	VF	0.895 0.975	Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, $T_C = 150^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	250 5	μΑ
Maximum Reverse Recovery Time (I _F = 1 Amp, di/dt = 50 Amp/μs) (I _F = 0.5 Amp, i _R = 1 Amp, I _{REC} = 0.25 Amp)	t _{rr}	35 25	ns

1. See Chapter 7 for mounting conditions

2. Pulse Test: Pulse Width = $300 \mu s$, Duty Cycle $\leq 2.0\%$

100

120

140

160

180 200

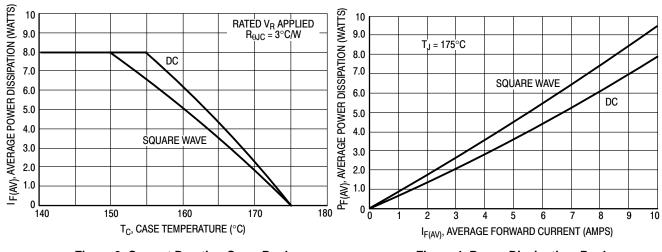
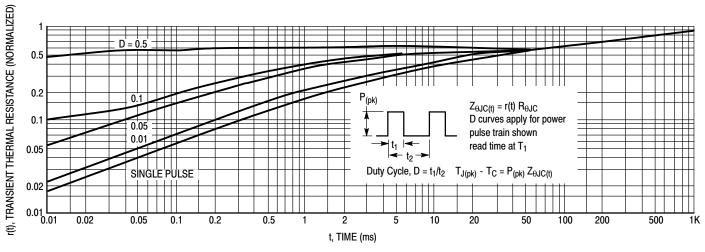



Figure 3. Current Derating Case, Per Leg

MURB1620CT

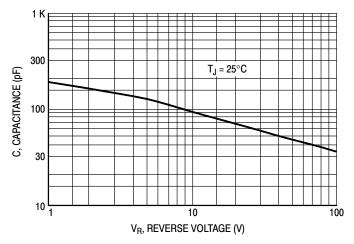


Figure 6. Typical Capacitance, Per Leg

MURB1660CT

Preferred Device

SWITCHMODE™ Power Rectifier

D²PAK Power Surface Mount Package

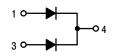
Designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Package Designed for Power Surface Mount Applications
- Ultrafast 60 Nanosecond Recovery Times
- 175°C Operating Junction Temperature
- Epoxy Meets UL94, V_O @ 1/8"
- High Temperature Glass Passivated Junction
- High Voltage Capability to 600 V
- Low Leakage Specified @ 150°C Case Temperature
- Short Heat Sink Tab Manufactured Not Sheared!
- Similar in Size to Industrial Standard TO-220 Package

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.7 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Available in 24 mm Tape and Reel, 800 units per reel by adding a "T4" suffix to the part number
- Marking: U1660T

MAXIMUM RATINGS (Per Leg)


Rating	Symbol	Value	Unit			
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	600	V			
Average Rectified Forward Current (Rated V_R , T_C = 150°C) Total Device	I _{F(AV)}	8.0 16	A			
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz, T _C = 150°C)	I _{FM}	16	A			
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	IFSM	100	A			
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +175	°C			

ON Semiconductor"

http://onsemi.com

ULTRAFAST RECTIFIER 16 AMPERES 600 VOLTS

MARKING DIAGRAM

U1660T = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MURB1660CT	D ² PAK	50 Units/Rail
MURB1660CTT4	D ² PAK	800/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

MURB1660CT

THERMAL CHARACTERISTICS (Per Leg)

Rating	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Case	$R_{ extsf{ heta}JC}$	2	°C/W
Maximum Thermal Resistance, Junction to Ambient (Note 1.)	$R_{ extsf{ heta}JA}$	50	°C/W
Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	TL	260	°C

ELECTRICAL CHARACTERISTICS (Per Leg)

Characteristic	Symbol	Мах	Unit
Maximum Instantaneous Forward Voltage (Note 2.) ($i_F = 8 \text{ Amp}, T_C = 150^{\circ}\text{C}$)	v _F	1.20	Volts
(i _F = 8 Amp, T _C = 25°C) Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, T _C = 150°C) (Rated dc Voltage, T _C = 25°C)	i _R	1.50 500 10	μΑ
Maximum Reverse Recovery Time (I _F = 1 Amp, di/dt = 50 Amp/μs) (I _F = 0.5 Amp, i _R = 1 Amp, I _{REC} = 0.25 Amp)	t _{rr}	60 50	ns

1. See Chapter 7 for mounting conditions

2. Pulse Test: Pulse Width = $300 \,\mu$ s, Duty Cycle $\leq 2.0\%$

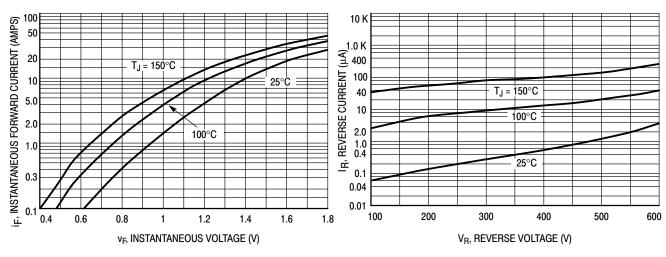


Figure 2. Typical Reverse Current, Per Leg

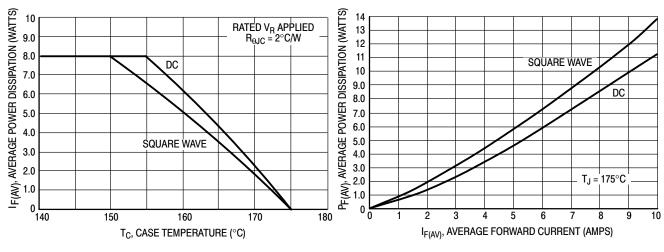
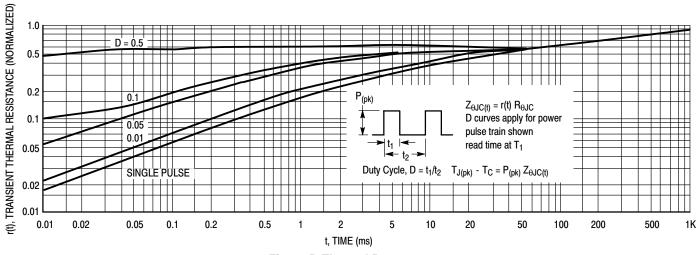



Figure 3. Current Derating, Case, Per Leg

MURB1660CT

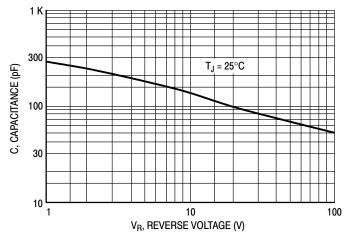


Figure 6. Typical Capacitance, Per Leg

Preferred Devices

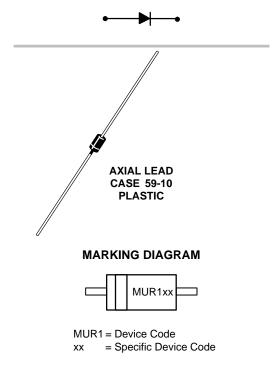
SWITCHMODE[™] Power Rectifiers

MUR105, MUR110, MUR115, MUR120, MUR130, MUR140, MUR160

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 25, 50 and 75 Nanosecond Recovery Times
- 175°C Operating Junction Temperature
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 600 Volts

Mechanical Characteristics:


- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 1000 per bag
- Available Tape and Reeled, 5000 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode Indicated by Polarity Band
- Marking: MUR105, MUR110, MUR115, MUR120, MUR130, MUR140, MUR160

MAXIMUM RATINGS

Please See the Table on the Following Page

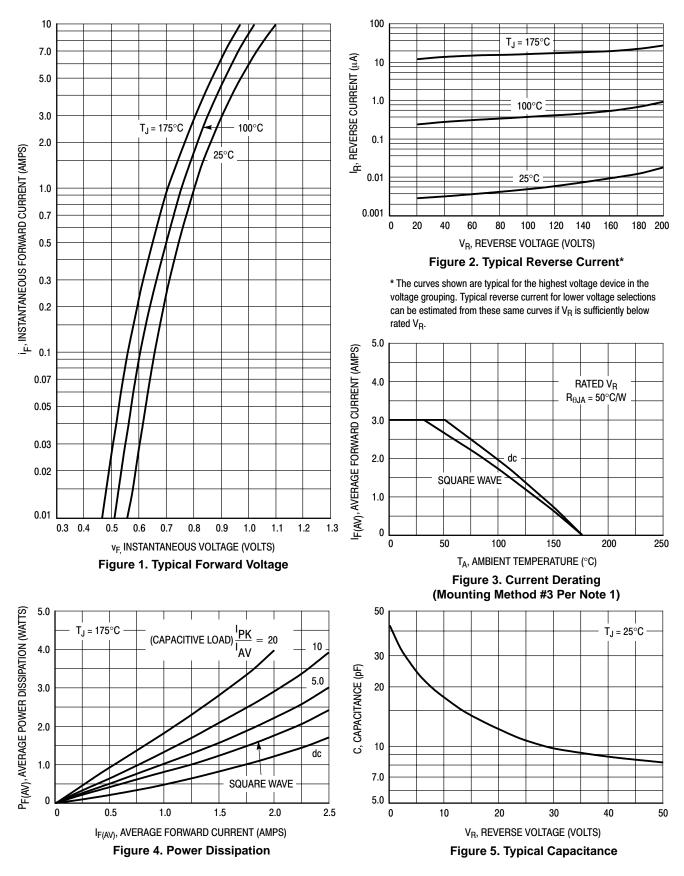
ULTRAFAST RECTIFIERS 1.0 AMPERE 50-600 VOLTS

ORDERING INFORMATION

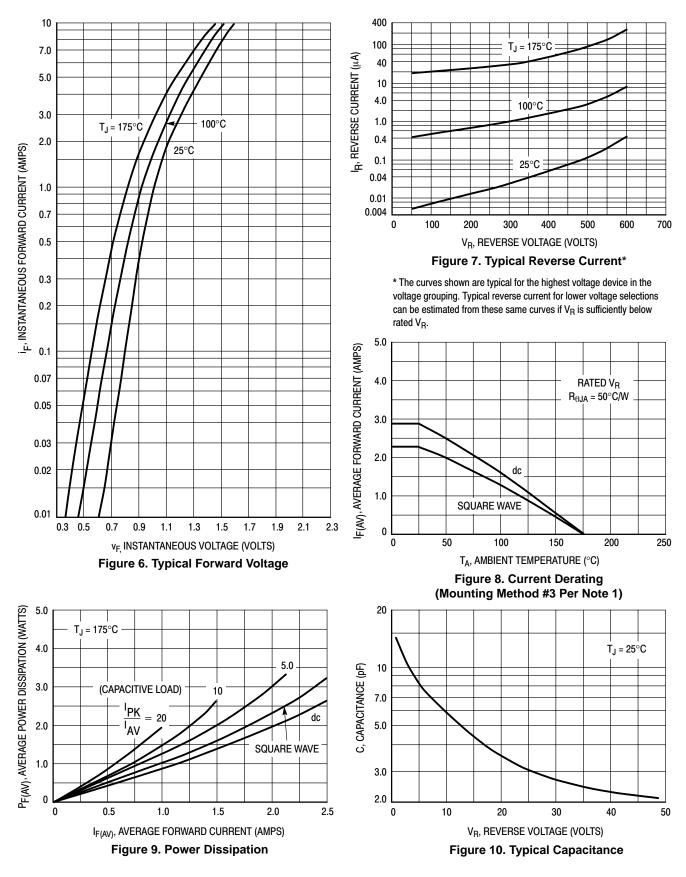
See detailed ordering and shipping information in the package dimensions section on page 409 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

MAXIMUM RATINGS


		MUR							
Rating	Symbol	105	110	115	120	130	140	160	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	300	400	600	Volts
Average Rectified Forward Current (Square Wave Mounting Method #3 Per Note 1.)	I _{F(AV)}		1.0 @ T _A	= 130°C	;	1.0 (@ T _A = 1	20°C	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	I _{FSM}				35				Amps
Operating Junction Temperature and Storage Temperature	T _J , T _{stg}			-	65 to +1	75			°C
THERMAL CHARACTERISTICS									
Maximum Thermal Resistance, Junction to Ambient	R_{\thetaJA}			S	ee Note	1.			°C/W
ELECTRICAL CHARACTERISTICS									
Maximum Instantaneous Forward Voltage (Note 1) ($i_F = 1.0 \text{ Amp}, T_J = 150^{\circ}\text{C}$) ($i_F = 1.0 \text{ Amp}, T_J = 25^{\circ}\text{C}$)	VF		0.7 0.8	/10 875			1.05 1.25		Volts
Maximum Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $T_J = 150^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	i _R	50 150 2.0 5.0				μΑ			
	t _{rr}	35 75 25 50				ns			
Maximum Forward Recovery Time ($I_F = 1.0 \text{ A}$, di/dt = 100 A/µs, I_{REC} to 1.0 V)	t _{fr}		2	5			50		ns

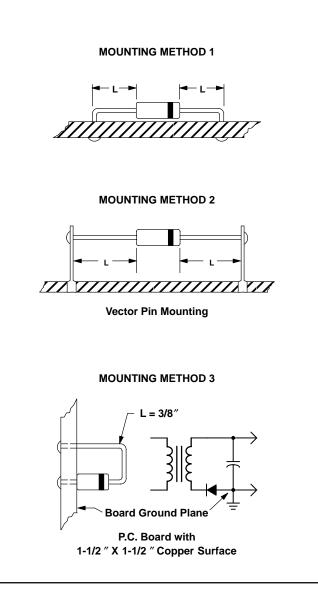
1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.


ORDERING INFORMATION

Device	Marking	Package	Shipping
MUR105	MUR105	Axial Lead	1000 Units/Bag
MUR105RL	MUR105	Axial Lead	5000 Units/Tape & Reel
MUR110	MUR110	Axial Lead	1000 Units/Bag
MUR110RL	MUR110	Axial Lead	5000 Units/Tape & Reel
MUR115	MUR115	Axial Lead	1000 Units/Bag
MUR115RL	MUR115	Axial Lead	5000 Units/Tape & Reel
MUR120	MUR120	Axial Lead	1000 Units/Bag
MUR120RL	MUR120	Axial Lead	5000 Units/Tape & Reel
MUR130	MUR130	Axial Lead	1000 Units/Bag
MUR130RL	MUR130	Axial Lead	5000 Units/Tape & Reel
MUR140	MUR140	Axial Lead	1000 Units/Bag
MUR140RL	MUR140	Axial Lead	5000 Units/Tape & Reel
MUR160	MUR160	Axial Lead	1000 Units/Bag
MUR160RL	MUR160	Axial Lead	5000 Units/Tape & Reel

MUR105, MUR110, MUR115, MUR120

MUR130, MUR140, MUR160



NOTE 1. — AMBIENT MOUNTING DATA

Data shown for thermal resistance junction to ambient $(R_{\theta JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR $\textbf{R}_{\theta \textbf{JA}}$ IN STILL AIR

Mounti	Mounting			Lead Length, L		
Metho	d	1/8	1/4	1/2	Units	
1		52	65	72	°C/W	
2	R_{\thetaJA}	67	80	87	°C/W	
3			50		°C/W	

MUR1100E is a Preferred Device

SWITCHMODE™ Power Rectifiers

Ultrafast "E" Series with High Reverse Energy Capability

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

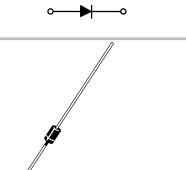
- 10 mjoules Avalanche Energy Guaranteed
- Excellent Protection Against Voltage Transients in Switching Inductive Load Circuits
- Ultrafast 75 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 1000 Volts

Mechanical Characteristics:

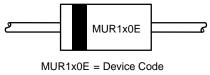
- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 1000 per bag
- Available Tape and Reeled, 5000 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode Indicated by Polarity Band
- Marking: MUR180E, MUR1100E

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage MUR180E MUR1100E	V _{RRM} V _{RWM} V _R	800 1000	V
Average Rectified Forward Current (Note 1.) (Square Wave Mounting Method #3 Per Note 3.)	I _{F(AV)}	1.0 @ T _A = 95°C	A
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	I _{FSM}	35	A
Operating Junction Temperature and Storage Temperature Range	T _J , T _{stg}	- 65 to +175	°C


1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.

ON Semiconductor®


http://onsemi.com

ULTRAFAST RECTIFIERS 1.0 AMPERES 800-1000 VOLTS

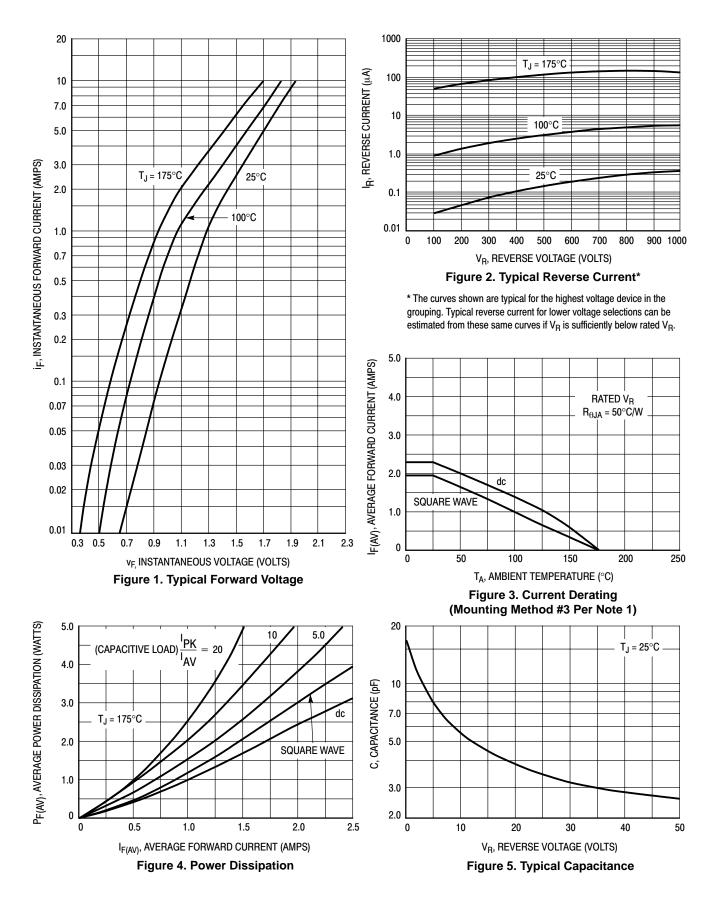
AXIAL LEAD CASE 059-10 PLASTIC

MARKING DIAGRAM

x = 8 or 10

ORDERING INFORMATION

Device	Package	Shipping
MUR180E	Axial Lead	1000 Units/Bag
MUR180ERL	Axial Lead	5000/Tape & Reel
MUR1100E	Axial Lead	1000 Units/Bag
MUR1100ERL	Axial Lead	5000/Tape & Reel


Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Ambient	R _{0JA}	See Note 3.	°C/W
ELECTRICAL CHARACTERISTICS			-
Maximum Instantaneous Forward Voltage (Note 2.) ($i_F = 1.0 \text{ Amp}, T_J = 150^{\circ}\text{C}$) ($i_F = 1.0 \text{ Amp}, T_J = 25^{\circ}\text{C}$)	VF	1.50 1.75	Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, $T_J = 100^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	i _R	600 10	μΑ
Maximum Reverse Recovery Time ($I_F = 1.0 \text{ Amp}, \text{ di/dt} = 50 \text{ Amp/}\mu\text{s}$) ($I_F = 0.5 \text{ Amp}, i_R = 1.0 \text{ Amp}, I_{REC} = 0.25 \text{ Amp}$)	t _{rr}	100 75	ns
Maximum Forward Recovery Time $(I_F = 1.0 \text{ Amp}, \text{ di/dt} = 100 \text{ Amp/}\mu\text{s}, \text{ Recovery to } 1.0 \text{ V})$	t _{fr}	75	ns
Controlled Avalanche Energy (See Test Circuit in Figure 6)	W _{AVAL}	10	mJ

2. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.

ELECTRICAL CHARACTERISTICS

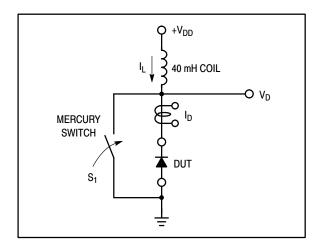


Figure 6. Test Circuit

The unclamped inductive switching circuit shown in Figure 6 was used to demonstrate the controlled avalanche capability of the new "E" series Ultrafast rectifiers. A mercury switch was used instead of an electronic switch to simulate a noisy environment when the switch was being opened.

When S_1 is closed at t_0 the current in the inductor I_L ramps up linearly; and energy is stored in the coil. At t_1 the switch is opened and the voltage across the diode under test begins to rise rapidly, due to di/dt effects, when this induced voltage reaches the breakdown voltage of the diode, it is clamped at BV_{DUT} and the diode begins to conduct the full load current which now starts to decay linearly through the diode, and goes to zero at t_2 .

By solving the loop equation at the point in time when S_1 is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy transferred is equal to the energy stored in the inductor plus a finite amount of energy from the V_{DD} power supply while the diode is in breakdown (from t_1 to t_2) minus any losses due to finite

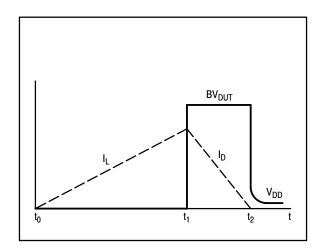


Figure 7. Current-Voltage Waveforms

component resistances. Assuming the component resistive elements are small Equation (1) approximates the total energy transferred to the diode. It can be seen from this equation that if the V_{DD} voltage is low compared to the breakdown voltage of the device, the amount of energy contributed by the supply during breakdown is small and the total energy can be assumed to be nearly equal to the energy stored in the coil during the time when S₁ was closed, Equation (2).

The oscilloscope picture in Figure 8, shows the information obtained for the MUR8100E (similar die construction as the MUR1100E Series) in this test circuit conducting a peak current of one ampere at a breakdown voltage of 1300 volts, and using Equation (2) the energy absorbed by the MUR8100E is approximately 20 mjoules.

Although it is not recommended to design for this condition, the new "E" series provides added protection against those unforeseen transient viruses that can produce unexplained random failures in unfriendly environments.

$$W_{AVAL} \approx \frac{1}{2} LI_{LPK}^{2} \left(\frac{BV_{DUT}}{BV_{DUT} - V_{DD}} \right)$$

EQUATION (2):

$$W_{AVAL} \approx \frac{1}{2} LI_{LPK}^2$$

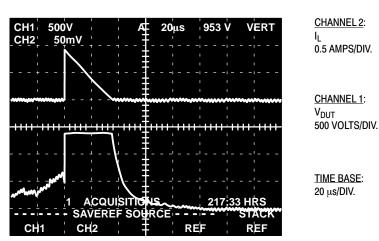
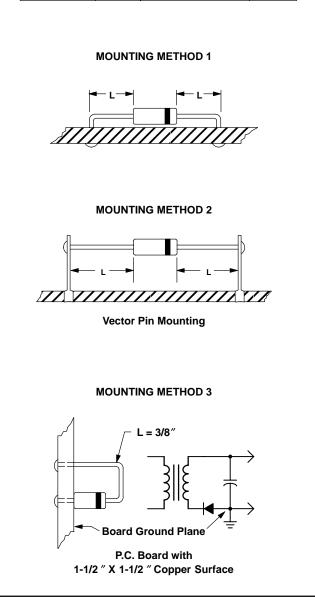



Figure 8. Current-Voltage Waveforms

NOTE 3. — AMBIENT MOUNTING DATA

Data shown for thermal resistance junction to ambient $(R_{\theta JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

Mounti	Lead Length, L				
Method		1/8	1/4	1/2	Units
1		52	65	72	°C/W
2	R_{\thetaJA}	67	80	87	°C/W
3			50		°C/W

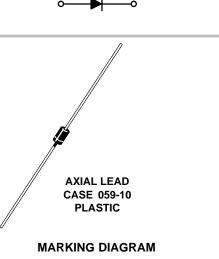
Preferred Device

SWITCHMODE™ Power Rectifier

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 25 Nanosecond Recovery Times
- 175°C Operating Junction Temperature
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction

Mechanical Characteristics


- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 1000 per bag
- Available Tape and Reeled, 5000 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode Indicated by Polarity Band
- Marking: MUR220

ON Semiconductor®

http://onsemi.com

MUR220 = Device Code

ORDERING INFORMATION

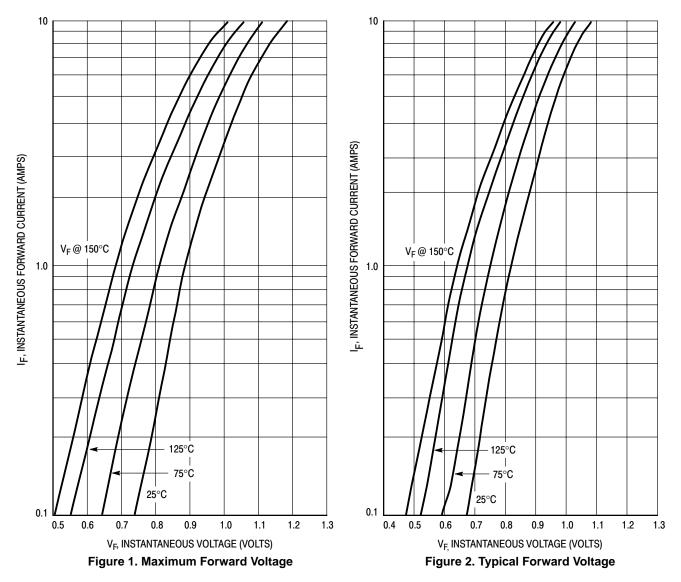
Device	Package	Shipping
MUR220	Axial Lead	1000 Units/Bag
MUR220RL	Axial Lead	5000/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	Volts
Average Rectified Forward Current (Note 1.) (Square Wave Mounting Method #3 Per Note 3.)	I _{F(AV)}	2.0 @ T _A = 90°C	Amps
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	I _{FSM}	35	Amps
Operating Junction Temperature and Storage Temperature Range	T _J , T _{stg}	- 65 to +175	°C

1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.

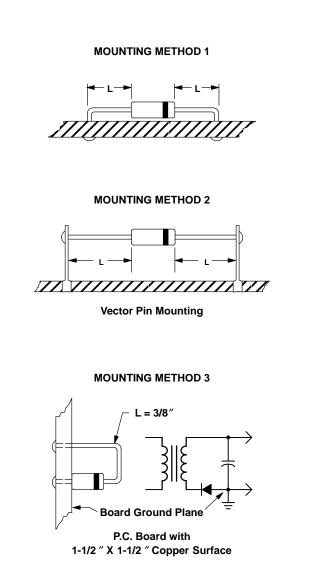

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Ambient	R_{\thetaJA}	See Note 3.	°C/W

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 2.) ($I_F = 2.0 \text{ Amp}, T_J = 150^{\circ}\text{C}$) ($I_F = 2.0 \text{ Amp}, T_J = 25^{\circ}\text{C}$)	VF	0.75 0.95	Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, $T_J = 150^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	i _R	50 2.0	μΑ
Maximum Reverse Recovery Time $(I_F = 1.0 \text{ Amp, di/dt} = 50 \text{ Amp/}\mu s)$ $(I_F = 0.5 \text{ Amp, } I_R = 1.0 \text{ Amp, } I_{REC} = 0.25 \text{ A})$	t _{rr}	35 25	ns
Maximum Forward Recovery Time $(I_F = 1.0 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}, I_{REC} \text{ to } 1.0 \text{ V})$	t _{fr}	25	ns

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.



NOTE 3. - AMBIENT MOUNTING DATA

Data shown for thermal resistance junction to ambient $(R_{\theta JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR $\textbf{R}_{\theta \textbf{J} \textbf{A}}$ IN STILL AIR

Mounti	Mounting		Lead Length, L		
Metho	d	1/8	1/4	1/2	Units
1		52	65	72	°C/W
2	R_{\thetaJA}	67	80	87	°C/W
3			50		°C/W

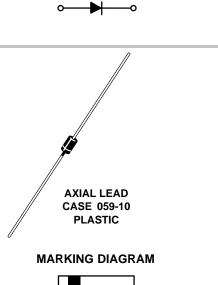
Preferred Device

SWITCHMODE™ Power Rectifier

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast Recovery Times
- 175°C Operating Junction Temperature
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction

Mechanical Characteristics


- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 1000 per bag
- Available Tape and Reeled, 5000 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode Indicated by Polarity Band
- Marking: MUR240

ON Semiconductor®

http://onsemi.com

MUR240 MUR240

ORDERING INFORMATION

Device	Package Shipping	
MUR240	Axial Lead	1000 Units/Bag
MUR240RL	Axial Lead	5000/Tape & Reel

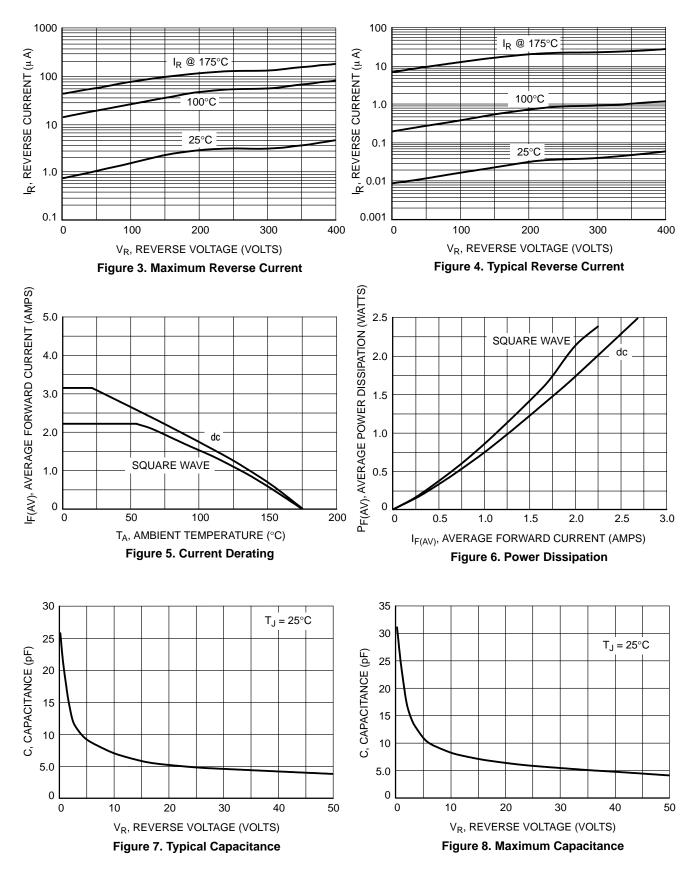
Preferred devices are recommended choices for future use and best overall value.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	400 -	V
Average Rectified Forward Current (Note 1.) (Square Wave Mounting Method #3 Per Note 3.)	I _{F(AV)}	2.0 @ T _A = 85°C	A
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	I _{FSM}	35	A
Operating Junction Temperature and Storage Temperature Range	T _J , T _{stg}	- 65 to +175	°C

1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.

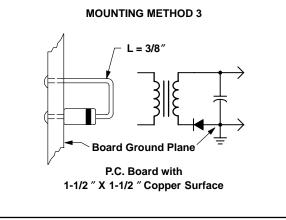
THERMAL CHARACTERISTICS


Characteristic	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Ambient	R_{\thetaJA}	See Note 3.	°C/W

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 2.) ($I_F = 2.0 \text{ Amp}, T_J = 150^{\circ}\text{C}$) ($I_F = 2.0 \text{ Amp}, T_J = 25^{\circ}\text{C}$)	V _F	1.05 1.30	Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, $T_J = 150^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	I _R	150 5.0	μΑ
Maximum Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amp/μs)	t _{rr}	65	ns
Maximum Forward Recovery Time $(I_F = 1.0 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s})$	t _{rr}	50	ns

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.



NOTE 3. - AMBIENT MOUNTING DATA

Data shown for thermal resistance junction to ambient $(R_{\theta JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

Mounting Lead Length, L						
Method	1/8 1/4 1/2			Units		
1	52	65	72	°C/W		
2 R ₀ ,	_{JA} 67	80	87	°C/W		
3		50		°C/W		
21111				V		

Vector Pin Mounting

http://onsemi.com 425

Preferred Device

SWITCHMODE™ Power Rectifier

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 50 Nanosecond Recovery Times
- 175°C Operating Junction Temperature
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 1000 per bag
- Available Tape and Reeled, 5000 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode Indicated by Polarity Band
- Marking: MUR260

ON Semiconductor®

http://onsemi.com

MUR260 MUR260

ORDERING INFORMATION

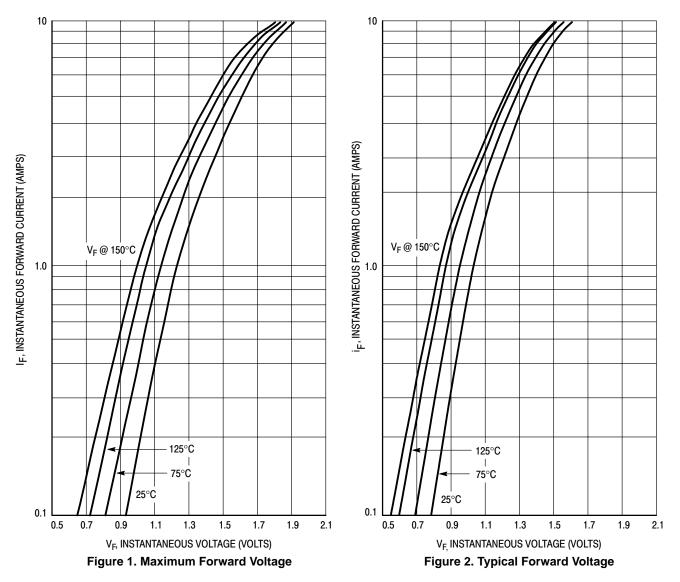
Device	Package	Shipping
MUR260	Axial Lead	1000 Units/Bag
MUR260RL	Axial Lead	5000/Tape & Reel

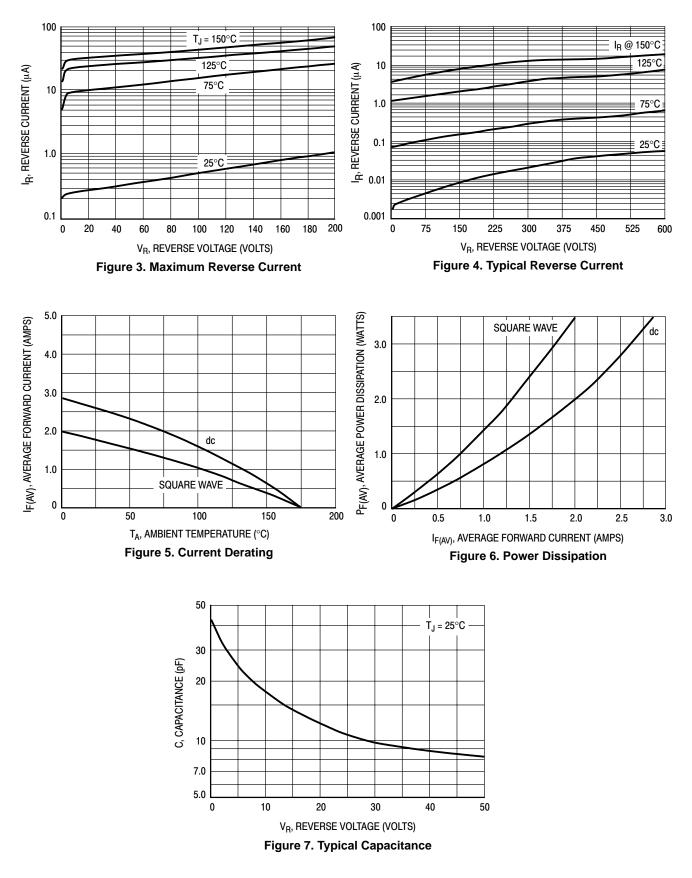
Preferred devices are recommended choices for future use and best overall value.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	600 -	Volts
Average Rectified Forward Current (Note 1.) (Square Wave Mounting Method #3 Per Note 3.)	I _{F(AV)}	2.0 @ T _A = 60°C	Amps
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	I _{FSM}	35	Amps
Operating Junction Temperature and Storage Temperature Range	T _J , T _{stg}	- 65 to +175	°C

1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.

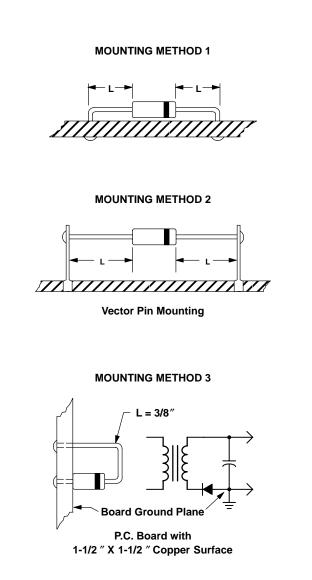

THERMAL CHARACTERISTICS


Characteristic	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Ambient	R_{\thetaJA}	See Note 3.	°C/W

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 2.) ($I_F = 2.0 \text{ Amp}, T_J = 150^{\circ}\text{C}$) ($I_F = 2.0 \text{ Amp}, T_J = 25^{\circ}\text{C}$)	VF	1.15 1.35	Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, $T_J = 150^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	i _R	150 5.0	μΑ
	t _{rr}	75 50	ns
Maximum Forward Recovery Time $(I_F = 1.0 \text{ A}, \text{ di/dt} = 100 \text{ A}/\mu \text{s}, I_{REC} \text{ to } 1.0 \text{ V})$	t _{fr}	50	ns

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.



NOTE 3. — AMBIENT MOUNTING DATA

Data shown for thermal resistance junction to ambient $(R_{\theta JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR $\textbf{R}_{\theta \textbf{J} \textbf{A}}$ IN STILL AIR

Mounti	Mounting		Lead Length, L		
Method		1/8	1/4	1/2	Units
1		52	65	72	°C/W
2	$R_{\theta JA}$	67	80	87	°C/W
3			50		°C/W

MUR2100E

Preferred Device

SWITCHMODE™ Power Rectifier

Ultrafast "E" Series with High Reverse Energy Capability

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- 20 mjoules Avalanche Energy Guaranteed
- Excellent Protection Against Voltage Transients in Switching Inductive Load Circuits
- Ultrafast 75 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 1000 per bag
- Available Tape and Reeled, 5000 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode Indicated by Polarity Band
- Marking: MUR2100E

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	1000	Volts
Average Rectified Forward Current (Note 1.) (Square Wave Mounting Method #3 Per Note 3.)	I _{F(AV)}	2.0 @ T _A = 35°C	Amps
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	I _{FSM}	35	Amps
Operating Junction Temperature and Storage Temperature Range	T _J , T _{stg}	- 65 to +175	°C

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

ON Semiconductor®

http://onsemi.com

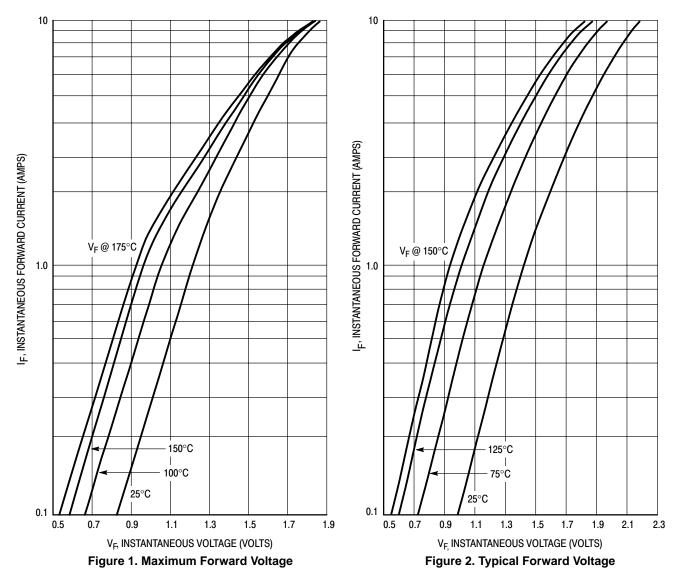
MUR2100E = Device Code

ORDERING INFORMATION

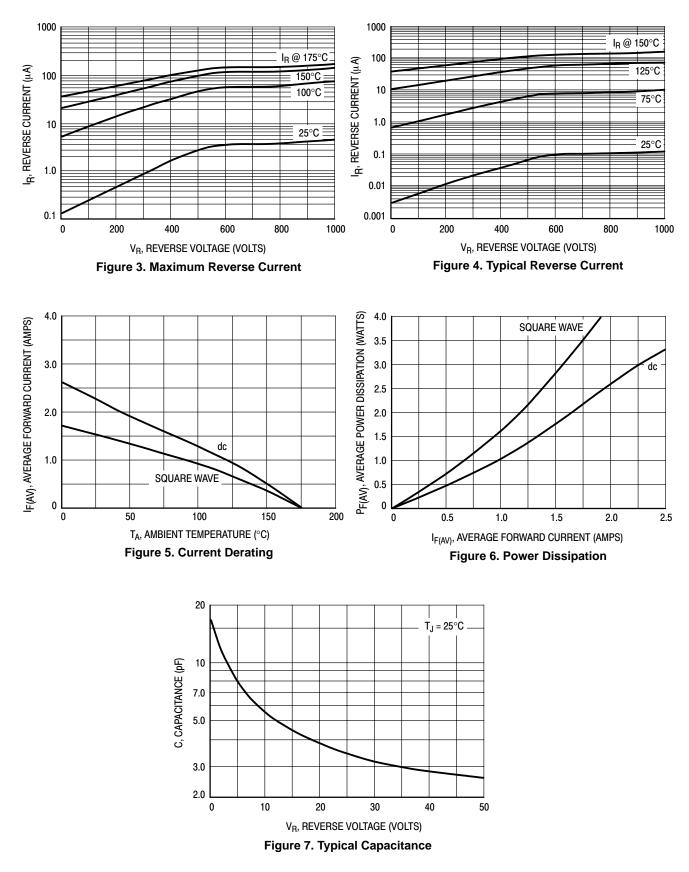
Device	Package	Shipping
MUR2100E	Axial Lead	1000 Units/Bag
MUR2100ERL	Axial Lead	5000/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

MUR2100E


THERMAL CHARACTERISTICS

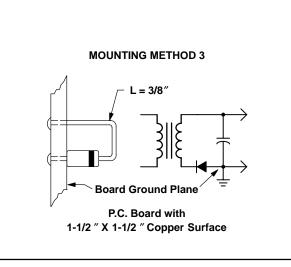
Characteristic	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Ambient	R_{\thetaJA}	See Note 3.	°C/W


ELECTRICAL	CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 2.) ($I_F = 2.0 \text{ Amp}, T_J = 150^{\circ}\text{C}$) ($I_F = 2.0 \text{ Amp}, T_J = 25^{\circ}\text{C}$)	VF	1.75 2.20	Volts
Maximum Instantaneous Reverse Current (Note 2.) (Rated dc Voltage, $T_J = 100^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	i _R	600 10	μΑ
Maximum Reverse Recovery Time $(I_F = 1.0 \text{ Amp, di/dt} = 50 \text{ Amp/}\mu\text{s})$ $(I_F = 0.5 \text{ Amp, } I_R = 1.0 \text{ Amp, } I_{REC} = 0.25 \text{ A})$	t _{rr}	100 75	ns
Maximum Forward Recovery Time (I _F = 1.0 A, di/dt = 100 A/µs, I _{REC} to 1.0 V)	t _{fr}	75	ns
Controlled Avalanche Energy (See Test Circuit in Figure 6)	W _{AVAL}	10	mJ

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MUR2100E



MUR2100E

NOTE 3. — AMBIENT MOUNTING DATA

Data shown for thermal resistance junction to ambient $(R_{\theta JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

Mour	nting	Lead Length, L			
Meth	nod	1/8	1/4	1/2	Units
1		52	65	72	°C/W
2	$R_{\theta JA}$	67	80	87	°C/W
3			50		°C/W
		NG MET			
277			<-L-		r

Vector Pin Mounting

http://onsemi.com 433

MUR420 and MUR460 are Preferred Devices

Switchmode[™] Power Rectifiers

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

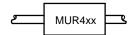
- Ultrafast 25, 50 and 75 Nanosecond Recovery Times
- 175°C Operating Junction Temperature
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 600 Volts
- Mechanical Characteristics:
- Case: Epoxy, Molded
- Weight: 1.1 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 5,000 per bag
- Available Tape and Reeled, 1500 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode indicated by Polarity Band
- Marking: MUR405, MUR410, MUR415, MUR420, MUR440, MUR460

MAXIMUM RATINGS

Please See the Table on the Following Page

ON Semiconductor[™]

http://onsemi.com


ULTRAFAST RECTIFIERS 4.0 AMPERES 50-600 VOLTS

CASE 267-05 (DO-201AD) STYLE 1

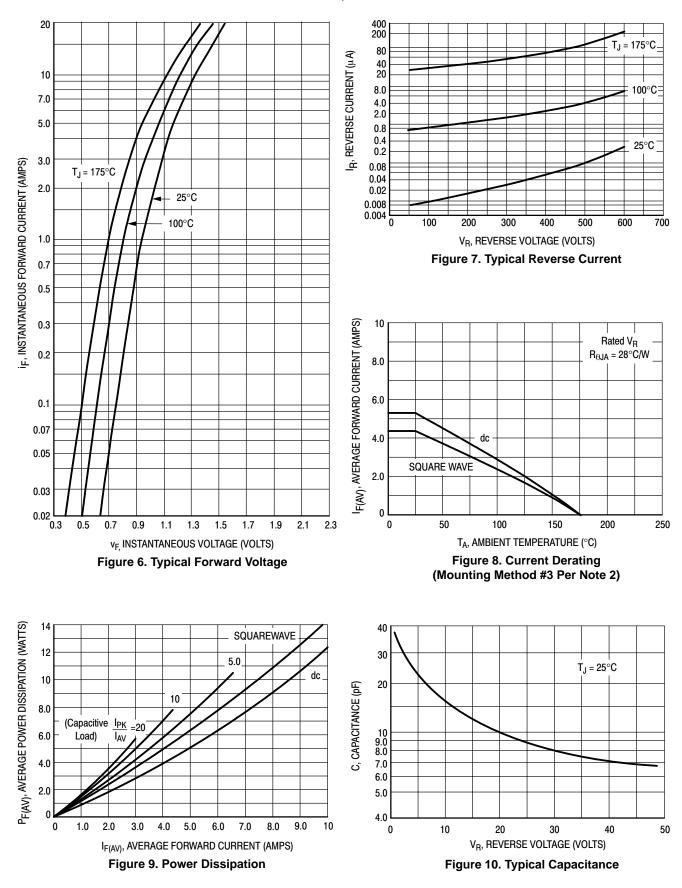
MARKING DIAGRAM

MUR4xx = Device Code xx = 05, 10, 15, 20, 40, 60

ORDERING INFORMATION

Device	Package	Shipping
MUR405	Axial Lead	5000 Units/Bag
MUR405RL	Axial Lead	1500/Tape & Reel
MUR410	Axial Lead	5000 Units/Bag
MUR410RL	Axial Lead	1500/Tape & Reel
MUR415	Axial Lead	5000 Units/Bag
MUR415RL	Axial Lead	1500/Tape & Reel
MUR420	Axial Lead	5000 Units/Bag
MUR420RL	Axial Lead	1500/Tape & Reel
MUR440	Axial Lead	5000 Units/Bag
MUR440RL	Axial Lead	1500/Tape & Reel
MUR460	Axial Lead	5000 Units/Bag
MUR460RL	Axial Lead	1500/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.


MAXIMUM RATINGS

				М	JR			
Rating	Symbol	405	410	415	420	440	460	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	400	600	Volts
Average Rectified Forward Current (Square Wave) (Mounting Method #3 Per Note 2)	I _{F(AV)}		4.0 @ T	_A = 80°C) @ 40°C	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions, half wave, single phase, 60 Hz)	I _{FSM}	125 70		0	Amps			
Operating Junction Temperature & Storage Temperature	T _J , T _{stg}			-65 to	o +175	•		°C
THERMAL CHARACTERISTICS								
Maximum Thermal Resistance, Junction to Ambient	$R_{\theta JA}$			See N	lote 2			°C/W
ELECTRICAL CHARACTERISTICS								
$\label{eq:constant} \begin{array}{l} \mbox{Maximum Instantaneous Forward Voltage (Note 1)} \\ (i_F = 3.0 \mbox{ Amps, } T_J = 150^\circ\mbox{C}) \\ (i_F = 3.0 \mbox{ Amps, } T_J = 25^\circ\mbox{C}) \\ (i_F = 4.0 \mbox{ Amps, } T_J = 25^\circ\mbox{C}) \end{array}$	VF		0.8	710 375 390		1.	05 25 28	Volts
Maximum Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $T_J = 150^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	i _R	150 250 5.0 10			μΑ			
Maximum Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amp/μs) (I _F = 0.5 Amp, i _R = 1.0 Amp, I _{REC} = 0.25 Amp)	t _{rr}			5 25		-	75 50	ns
Maximum Forward Recovery Time (I _F = 1.0 A, di/dt = 100 A/μs, Recovery to 1.0 V)	t _{fr}		2	25		5	50	ns

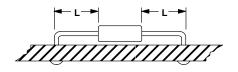
1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.

100 80 40 20 T_J = 175°C 70 I_R, REVERSE CURRENT (µ A) 8.0 50 4.0 2.0 100°C 0.8 30 0.4 0.2 20 0.08 0.04 0.02 i_F, INSTANTANEOUS FORWARD CURRENT (AMPS) 25°C 0.008 10 0.004 0.002 7.0 20 60 100 120 140 160 180 200 40 80 0 5.0 V_R, REVERSE VOLTAGE (VOLTS) Figure 2. Typical Reverse Current 3.0 2.0 25°C I_{F(AV)}, AVERAGE FORWARD CURRENT (AMPS) 10 T_J = 175°C 100°C Rated V_R 1.0 $R_{\theta JA}$ = 28°C/W 8.0 0.7 0.5 6.0 dc 0.3 4.0 SQUARE WAVE 0.2 2.0 0.1 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 0 50 100 150 200 250 T_A, AMBIENT TEMPERATURE (°C) v_E INSTANTANEOUS VOLTAGE (VOLTS) **Figure 3. Current Derating** Figure 1. Typical Forward Voltage (Mounting Method #3 Per Note 2) 10 200 PF(AV), AVERAGE POWER DISSIPATION (WATTS) 9.0 (Capacitive IPK =20 5.0 10 8.0 $T_J=25^\circ C$ Load) I_{AV} 100 90 80 7.0 C, CAPACITANCE (pF) 6.0 dc 70 5.0 60 4.0 50 SQUAREWAVE 3.0 40 2.0 30 1.0 0 20 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 0 50 10 20 30 40 0 IF(AV), AVERAGE FORWARD CURRENT (AMPS) V_R, REVERSE VOLTAGE (VOLTS) Figure 4. Power Dissipation Figure 5. Typical Capacitance

MUR405, MUR410, MUR415, MUR420

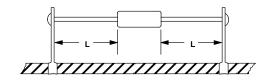
MUR440, MUR460

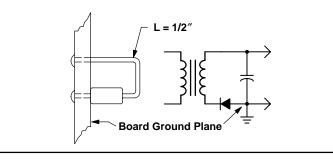
NOTE 2 — AMBIENT MOUNTING DATA


Data shown for thermal resistance junction-to-ambient $(R_{\theta JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR $\textbf{R}_{\theta \textbf{JA}}$ IN STILL AIR

Mounti	ng Lead Length, L (IN)			Mounting		
Metho	d	1/8	1/4	1/2	3/4	Units
1		50	51	53	55	°C/W
2	R _{0JA}	58	59	61	63	°C/W
3			2	.8		°C/W


MOUNTING METHOD 1


MOUNTING METHOD 2

Vector Push-In Terminals T-28

MOUNTING METHOD 3

P.C. Board with 1-1/2 " x 1-1/2 " Copper Surface

SWITCHMODE™ Power Rectifiers

Ultrafast "E" Series with High Reverse Energy Capability

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- 20 mJ Avalanche Energy Guaranteed
- Excellent Protection Against Voltage Transients in Switching Inductive Load Circuits
- Ultrafast 75 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 1000 Volts

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.1 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 5,000 per bag
- Available Tape and Reeled, 1500 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode indicated by Polarity Band
- Marking: MUR480E, MUR4100E

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage MUR480E MUR4100E	V _{RRM} V _{RWM} VR	800 1000	V
Average Rectified Forward Current (Square Wave) (Mounting Method #3 Per Note 2)	I _{F(AV)}	4.0 @ T _A = 35°C	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	70	A
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +175	°C

ON Semiconductor®

http://onsemi.com

ULTRAFAST RECTIFIER 4.0 AMPERES 800-1000 VOLTS

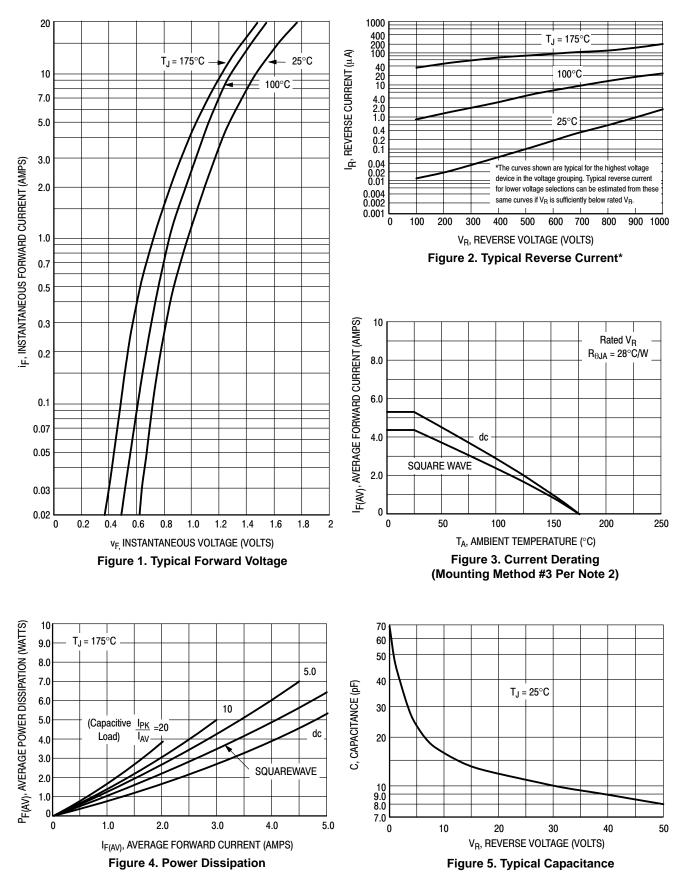
MARKING DIAGRAM

MUR4x0E = Device Codex = 8 or 10

ORDERING INFORMATION

Device	Package	Shipping
MUR480E	Axial Lead	5000 Units/Bag
MUR480ERL	Axial Lead	1500/Tape & Reel
MUR4100E	Axial Lead	5000 Units/Bag
MUR4100ERL	Axial Lead	1500/Tape & Reel

THERMAL CHARACTERISTICS


Rating	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Ambient	R_{\thetaJA}	See Note 2	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
	VF	1.53 1.75 1.85	Volts
Maximum Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $T_J = 150^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	i _R	900 25	μΑ
	t _{rr}	100 75	ns
Maximum Forward Recovery Time (I _F = 1.0 Amp, di/dt = 100 Amp/µs, Recovery to 1.0 V)	t _{fr}	75	ns
Controlled Avalanche Energy (See Test Circuit in Figure 6)	W _{AVAL}	20	mJ

1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.

MUR480E, MUR4100E

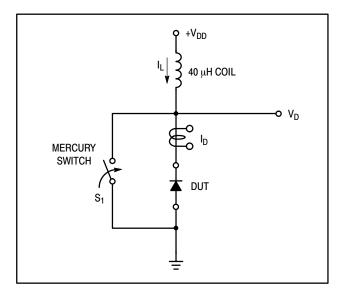


Figure 6. Test Circuit

The unclamped inductive switching circuit shown in Figure 6 was used to demonstrate the controlled avalanche capability of the new "E" series Ultrafast rectifiers. A mercury switch was used instead of an electronic switch to simulate a noisy environment when the switch was being opened.

When S_1 is closed at t_0 the current in the inductor I_L ramps up linearly; and energy is stored in the coil. At t_1 the switch is opened and the voltage across the diode under test begins to rise rapidly, due to di/dt effects, when this induced voltage reaches the breakdown voltage of the diode, it is clamped at BV_{DUT} and the diode begins to conduct the full load current which now starts to decay linearly through the diode, and goes to zero at t_2 .

By solving the loop equation at the point in time when S_1 is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy transferred is equal to the energy stored in the inductor plus a finite amount of energy from the V_{DD} power supply while the diode is in breakdown (from t_1 to t_2) minus any losses due to finite

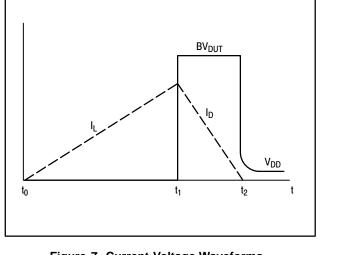


Figure 7. Current-Voltage Waveforms

component resistances. Assuming the component resistive elements are small Equation (1) approximates the total energy transferred to the diode. It can be seen from this equation that if the V_{DD} voltage is low compared to the breakdown voltage of the device, the amount of energy contributed by the supply during breakdown is small and the total energy can be assumed to be nearly equal to the energy stored in the coil during the time when S₁ was closed, Equation (2).

The oscilloscope picture in Figure 8, shows the information obtained for the MUR8100E (similar die construction as the MUR4100E Series) in this test circuit conducting a peak current of one ampere at a breakdown voltage of 1300 volts, and using Equation (2) the energy absorbed by the MUR8100E is approximately 20 mjoules.

Although it is not recommended to design for this condition, the new "E" series provides added protection against those unforeseen transient viruses that can produce unexplained random failures in unfriendly environments.

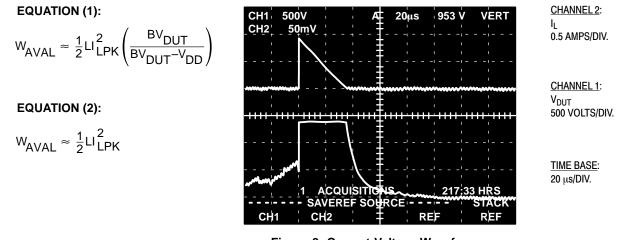
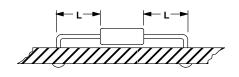


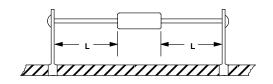
Figure 8. Current-Voltage Waveforms

NOTE 2 - AMBIENT MOUNTING DATA

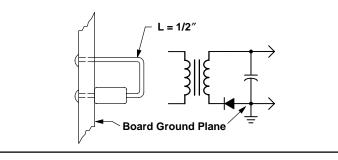

Data shown for thermal resistance junction-to-ambient $(R_{\theta JA})$ for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR $R_{\theta JA}$ IN STILL AIR

Moun	ting	Lead Length, L (IN)				
Meth	od	1/8	1/4	1/2	3/4	Units
1		50	51	53	55	°C/W
2	R _{0JA}	58	59	61	63	°C/W
3	_		2	28		°C/W


MOUNTING METHOD 1

P.C. Board Where Available Copper Surface area is small.


MOUNTING METHOD 2

Vector Push-In Terminals T-28

MOUNTING METHOD 3

P.C. Board with 1-1/2 " x 1-1/2 " Copper Surface

MUR620CT

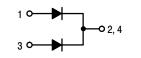
Preferred Device

SWITCHMODE™ Power Rectifier

... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Popular TO-220 Package
- **Mechanical Characteristics:**
- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: U620

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	V
Average Rectified Forward Voltage (Rated V_R , $T_C = 130^{\circ}C$) Per Diode Total Device	I _{F(AV)}	3.0 6.0	A
Peak Repetitive Forward Current per Diode Leg (Rated V_R , Square Wave, 20 kHz, $T_C = 130^{\circ}C$)	I _{FRM}	6.0	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	75	A
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +175	°C

ON Semiconductor[™]

http://onsemi.com

ULTRAFAST RECTIFIER 6.0 AMPERES 200 VOLTS

CASE 221A PLASTIC

MARKING DIAGRAM

U620 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MUR620CT	TO-220	50 Units/Rail

Preferred devices are recommended choices for future use and best overall value.

MUR620CT

THERMAL CHARACTERISTICS (Per Diode Leg)

Rating	Symbol	Typical	Maximum	Unit
Thermal Resistance, Junction to Case	$R_{ extsf{ heta}JC}$	5.0-6.0	7.0	°C/W

ELECTRICAL CHARACTERISTICS (Per D)iode Leg)
-----------------------------------	------------

Instantaneous Forward Voltage (Note 1.) ($i_F = 3.0 \text{ Amps}, T_C = 150^{\circ}\text{C}$) ($i_F = 3.0 \text{ Amps}, T_C = 25^{\circ}\text{C}$)	۷F	0.80 0.94	0.895 0.975	Volts
Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 150^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	2.0-10 0.01-3.0	250 5.0	μΑ
Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amps/µs)	t _{rr}	20-30	35	ns

1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.

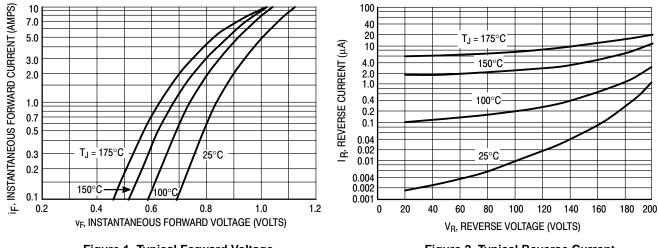


Figure 1. Typical Forward Voltage

Figure 2. Typical Reverse Current

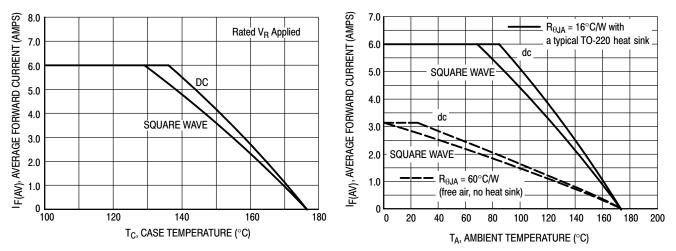


Figure 3. Total Device Current Derating, Case

Figure 4. Total Device Current Derating, Ambient

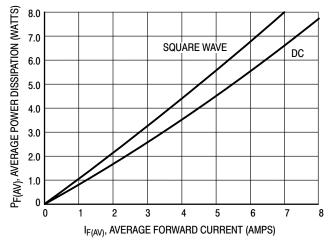


Figure 5. Power Dissipation

MURH840CT

Preferred Device

MEGAHERTZ™ Power Rectifier

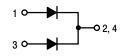
... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 28 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Popular TO-220 Package
- Epoxy Meets UL94, V_O @ 1/8"
- High Temperature Glass Passivated Junction
- High Voltage Capability to 400 Volts
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating @ Both Case and Ambient Temperatures

Mechanical Characteristics:

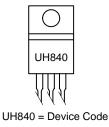
- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: UH840

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	400	V
Average Rectified Forward Current (Rated V_R , $T_C = 120^{\circ}C$) Per Leg Total Device	I _{F(AV)}	4.0 8.0	A
Peak Repetitive Forward Current per Diode Leg (Rated V_R , Square Wave, 20 kHz, $T_C = 120^{\circ}C$)	I _{FM}	16	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	100	A
Controlled Avalanche Energy	W _{AVAL}	20	mJ
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +175	°C

ON Semiconductor[™]

http://onsemi.com

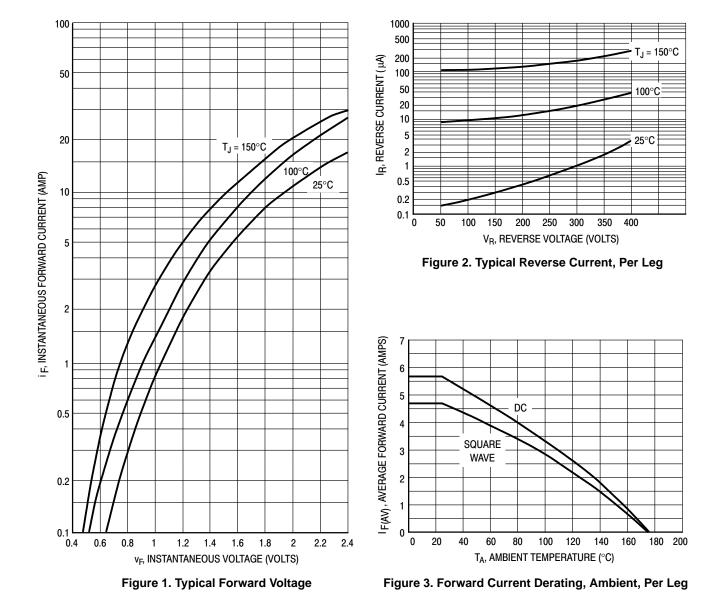

ULTRAFAST RECTIFIER 8.0 AMPERES 400 VOLTS

TO-220AB CASE 221A PLASTIC

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
MURH840CT	TO-220	50 Units/Rail


Preferred devices are recommended choices for future use and best overall value.

MURH840CT

THERMAL CHARACTERISTICS (Per Diode Leg)

Rating	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Case	R _{θJC}	3.0	°C/W
ELECTRICAL CHARACTERISTICS (Per Diode Leg)			
Maximum Instantaneous Forward Voltage (Note 1.) ($i_F = 4.0 \text{ Amps}, T_C = 150^{\circ}\text{C}$) ($i_F = 4.0 \text{ Amps}, T_C = 25^{\circ}\text{C}$)	VF	1.9 2.2	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 150^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	500 10	μΑ
Maximum Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amps/μs)	t _{rr}	28	ns

1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.

MURH840CT

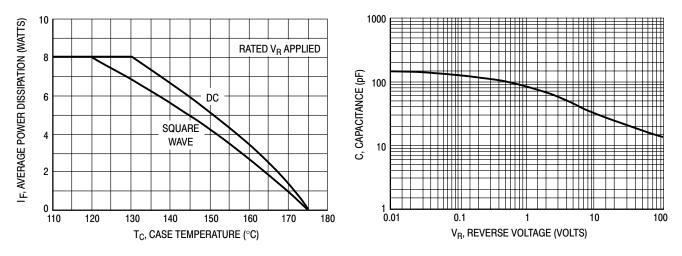


Figure 4. Current Derating, Case, Per Leg

Figure 5. Typical Capacitance, Per Leg

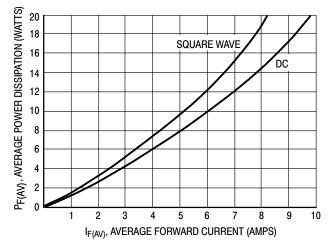


Figure 6. Forward Power Dissipation, Per Leg

MURH860CT

Preferred Device

MEGAHERTZ™ Power Rectifier

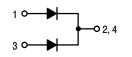
... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

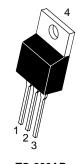
- Ultrafast 35 Nanosecond Recovery Times
- 175°C Operating Junction Temperature
- Popular TO-220 Package
- Epoxy Meets UL94, V_O @ 1/8"
- High Temperature Glass Passivated Junction
- High Voltage Capability to 600 Volts
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating @ Both Case and Ambient Temperatures

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: UH860

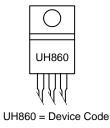
MAXIMUM RATINGS (Per Leg)


· •				
Rating	Symbol	Value	Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	600	V	
Average Rectified Forward Current (Rated V_R , $T_C = 120^{\circ}C$) Total Device	I _{F(AV)}	4.0 8.0	A	
Peak Repetitive Forward Current (Rated V_R , Square Wave, 20 kHz, $T_C = 120^{\circ}C$)	I _{FM}	16	A	
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	100	A	
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +175	°C	



ON Semiconductor"

http://onsemi.com

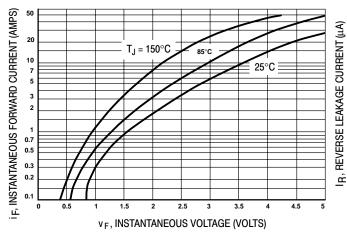

ULTRAFAST RECTIFIER 8.0 AMPERES 600 VOLTS

TO-220AB CASE 221A PLASTIC

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
MURH860CT	TO-220	50 Units/Rail


Preferred devices are recommended choices for future use and best overall value.

MURH860CT

THERMAL CHARACTERISTICS (Per Leg)

Rating	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Case	R _{θJC}	3.0	°C/W
ELECTRICAL CHARACTERISTICS (Per Leg)			
Maximum Instantaneous Forward Voltage (Note 1.) ($i_F = 4.0 \text{ Amps}, T_C = 150^{\circ}\text{C}$) ($i_F = 4.0 \text{ Amps}, T_C = 25^{\circ}\text{C}$)	VF	2.5 2.8	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 150^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	500 10	μΑ
Maximum Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amps/μs)	t _{rr}	35	ns

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%

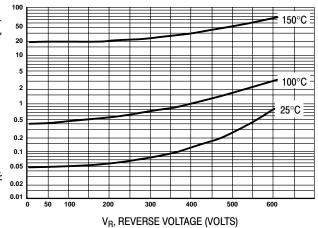


Figure 1. Typical Forward Voltage, Per Leg

Figure 2. Typical Reverse Leakage Current, Per Leg

RATED VOLTAGE APPLIED $R_{\theta JC} = 3^{\circ}C/W$

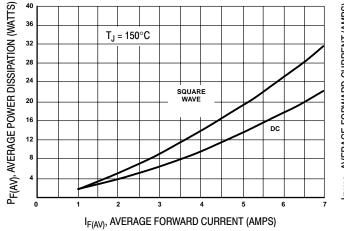


Figure 3. Typical Forward Dissipation, Per Leg

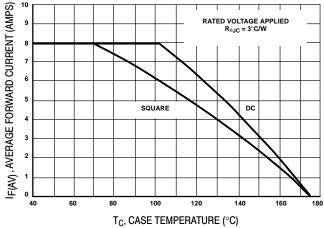
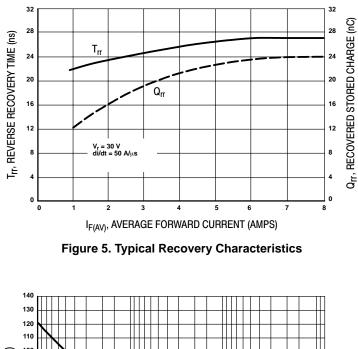



Figure 4. Typical Current Derating, Case, Per Leg

10

9

MURH860CT

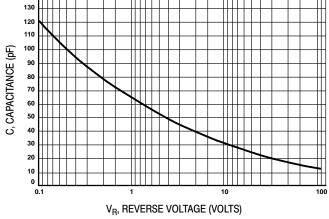


Figure 6. Typical Capacitance, Per Leg

SWITCHMODE™ Power Rectifiers

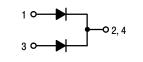
... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 and 60 Nanosecond Recovery Times
- 175°C Operating Junction Temperature
- Popular TO-220 Package
- Epoxy Meets UL94, V_O @ 1/8"
- High Temperature Glass Passivated Junction
- High Voltage Capability to 600 Volts
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating @ Both Case and Ambient Temperatures

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: U1610, U1615, U1620, U1640, U1660

MAXIMUM RATINGS


Please See the Table on the Following Page

ON Semiconductor"

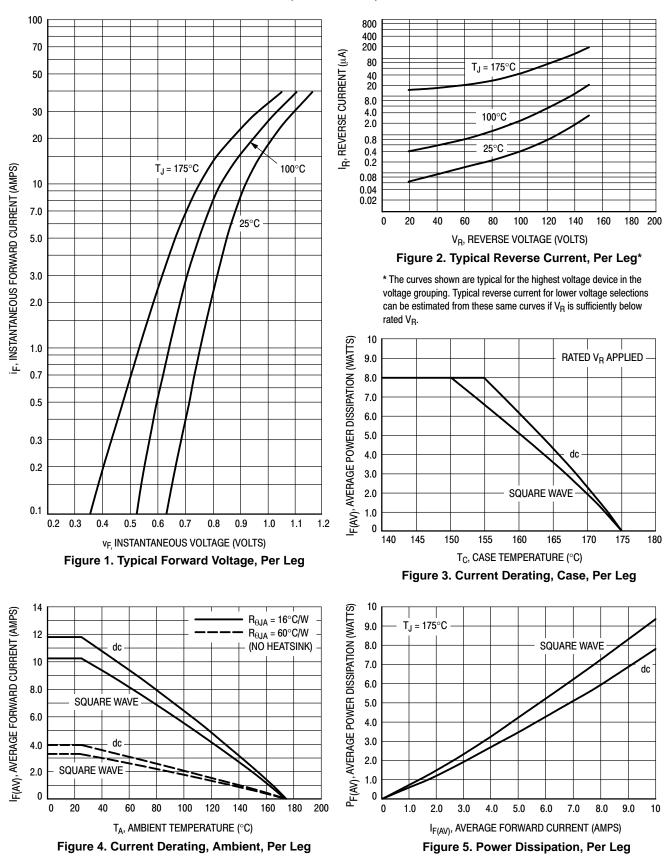
http://onsemi.com

ULTRAFAST RECTIFIERS 8.0 AMPERES 100-600 VOLTS

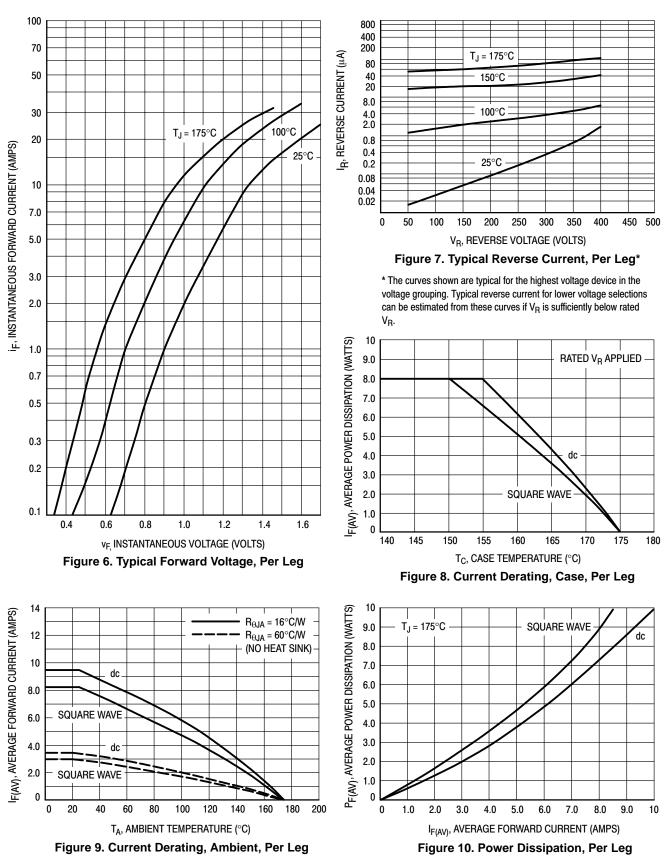
MARKING DIAGRAM

TO-220AB CASE 221A PLASTIC

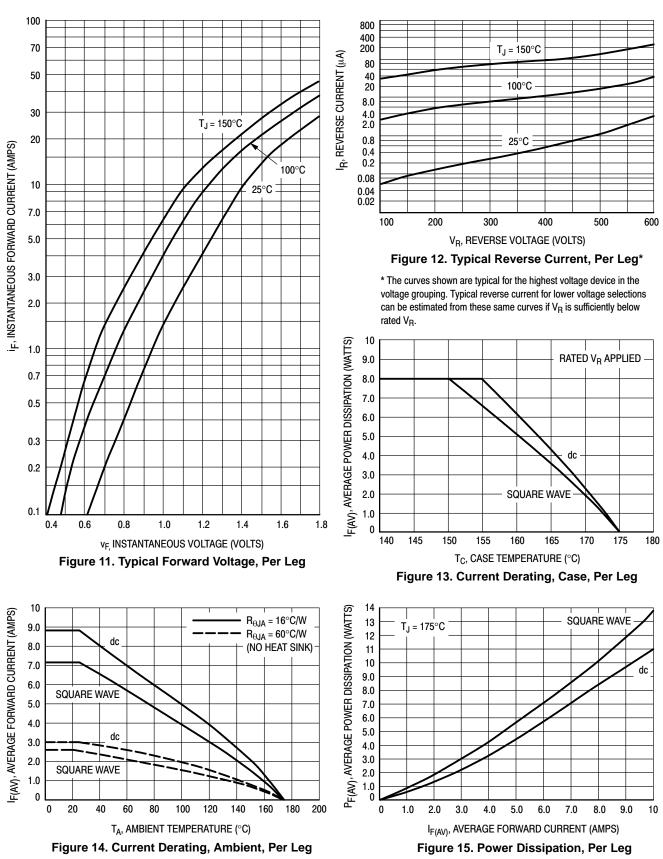
U16xx = Device Code xx = 10, 15, 20, 40 or 60

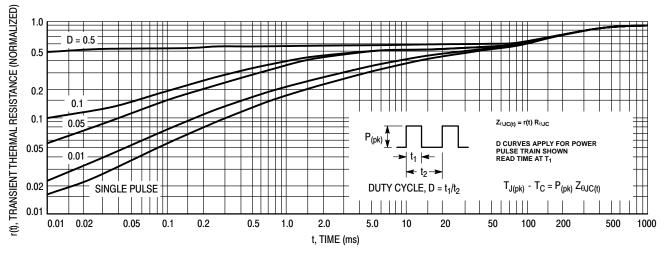

ORDERING INFORMATION

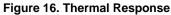
Device	Package	Shipping
MUR1610CT	TO-220	50 Units/Rail
MUR1615CT	TO-220	50 Units/Rail
MUR1620CT	TO-220	50 Units/Rail
MUR1640CT	TO-220	50 Units/Rail
MUR1660CT	TO-220	50 Units/Rail


MAXIMUM RATINGS

				MUR16			
Rating	Symbol	10CT	15CT	20CT	40CT	60CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	100	150	200	400	600	Volts
Average Rectified Forward CurrentPer LegTotal Device, (Rated V_R), $T_C = 150^{\circ}C$ Total Device	I _{F(AV)}			8.0 16			Amps
Peak Rectified Forward CurrentPer Diode Leg(Rated V_R , Square Wave, 20 kHz), $T_C = 150^{\circ}C$	I _{FM}			16			Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}			100			Amps
Operating Junction Temperature and Storage Temperature	T _J , T _{stg}	- 65 to +175			°C		
HERMAL CHARACTERISTICS (Per Diode Leg)							-
Maximum Thermal Resistance, Junction to Case	$R_{ extsf{ heta}JC}$		3.0		2	.0	°C/W
ELECTRICAL CHARACTERISTICS (Per Diode Leg)							
Maximum Instantaneous Forward Voltage (Note 1.) ($i_F = 8.0 \text{ Amps}, T_C = 150^{\circ}\text{C}$) ($i_F = 8.0 \text{ Amps}, T_C = 25^{\circ}\text{C}$)	VF		0.895 0.975		1.00 1.30	1.20 1.50	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 150^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	250 500 5.0 10			μA		
Maximum Reverse Recovery Time ($I_F = 1.0 \text{ Amp, di/dt} = 50 \text{ Amps/}\mu\text{s}$) ($I_F = 0.5 \text{ Amp, }I_R = 1.0 \text{ Amp, }I_{REC} = 0.25 \text{ Amp}$)	t _{rr}		35 25		-	0 0	ns


1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle $\leq 2.0\%$


MUR1610CT, MUR1615CT, MUR1620CT



MUR1640CT

MUR1660CT

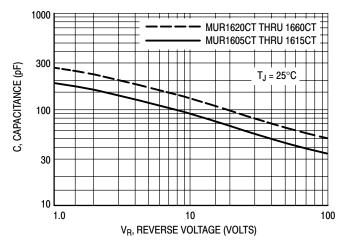


Figure 17. Typical Capacitance, Per Leg

MUR1620CTR

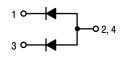
Preferred Device

SWITCHMODE™ Dual Ultrafast Power Rectifier

... designed for use in negative switching power supplies, inverters and as free wheeling diodes. Also, used in conjunction with common cathode dual Ultrafast Rectifiers, makes a single phase full-wave bridge. These state-of-the-art devices have the following features:

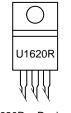
- Common Anode Dual Rectifier (8.0 A per Leg or 16 A per Package)
- Ultrafast 35 Nanosecond Reverse Recovery Times
- Exhibits Soft Recovery Characteristics
- High Temperature Glass Passivated Junction
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating @ Both Case and Ambient Temperatures
- Epoxy Meets UL94, V_O @ 1/8"
- Complement to MUR1620CT Common Cathode Device
- Mechanical Characteristics:
- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: U1620R

MAXIMUM RATINGS (Per Leg)


Rating	Symbol	Value	Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	V	
Average Rectified Forward Voltage (Rated V _R , T _C = 160°C) Per Leg Per Total Device	I _{F(AV)}	8.0 16	A	
$\begin{array}{l} \mbox{Peak Repetitive Surge Current} \\ (Rated V_R, Square Wave, \\ 20 \mbox{ kHz}, T_C = 140^{\circ} \mbox{C}) & \mbox{Per Diode} \end{array}$	I _{FM}	16	A	
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	100	A	
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +175	°C	

ON Semiconductor[™]

http://onsemi.com


ULTRAFAST RECTIFIER 16 AMPERES 200 VOLTS

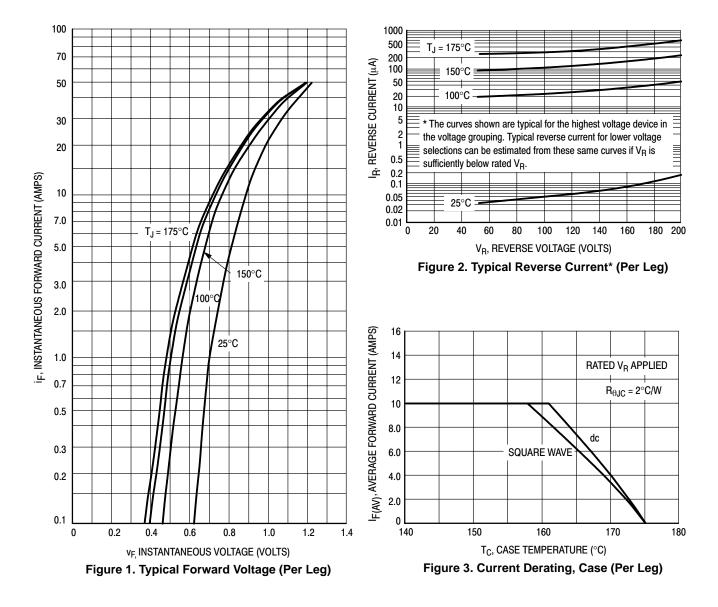
TO-220AB CASE 221A STYLE 7

MARKING DIAGRAM

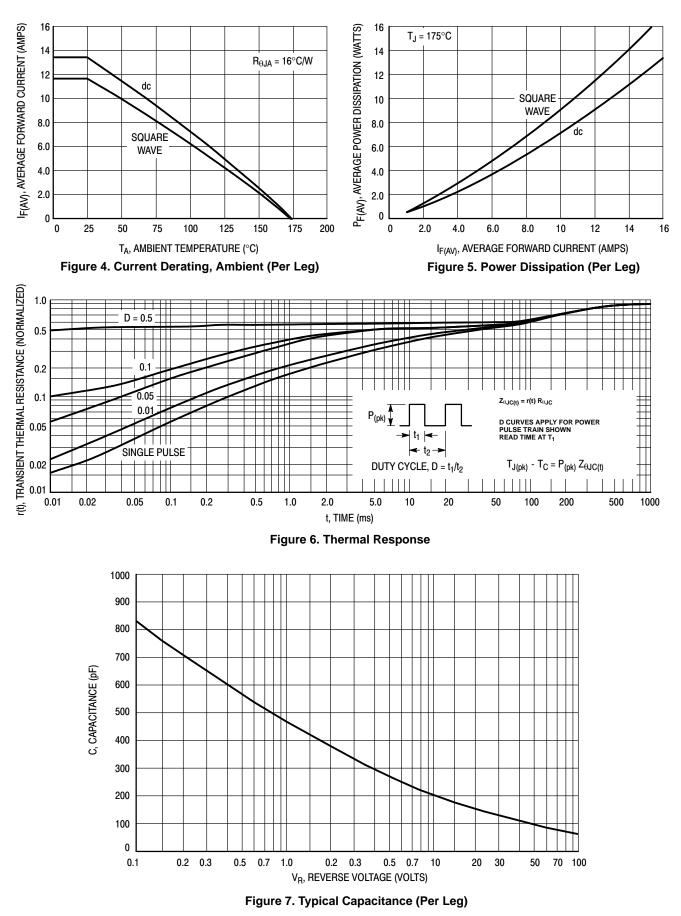
U1620R = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MUR1620CTR	TO-220	50 Units/Rail


Preferred devices are recommended choices for future use and best overall value.

MUR1620CTR


THERMAL CHARACTERISTICS (Per Leg)

Rating	Symbol	Value	Unit
Thermal Resistance — Junction to Case	$R_{\theta JC}$	2.0	°C/W
ELECTRICAL CHARACTERISTICS (Per Leg)			
Maximum Instantaneous Forward Voltage (Note 1.) ($i_F = 8.0 \text{ Amps}, T_C = 25^{\circ}C$) ($i_F = 8.0 \text{ Amps}, T_C = 150^{\circ}C$)	VF	1.2 1.1	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 25^{\circ}C$) (Rated dc Voltage, $T_C = 150^{\circ}C$)	i _R	5.0 500	μΑ
Maximum Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amps/μs) (I _F = 0.5 Amp, di/dt = 100 Amps/μs)	t _{rr}	85 35	ns

1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle \leq 10%.

MUR1620CTR

Preferred Devices

SWITCHMODE™ Power Rectifiers

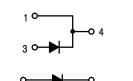
... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

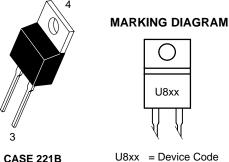
- Ultrafast 25, 50 and 75 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Popular TO-220 Package
- Epoxy Meets UL94, V_O @ 1/8"
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 600 Volts

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: U805, U810, U815, U820, U840, U860

MAXIMUM RATINGS


Please See the Table on the Following Page



ON Semiconductor"

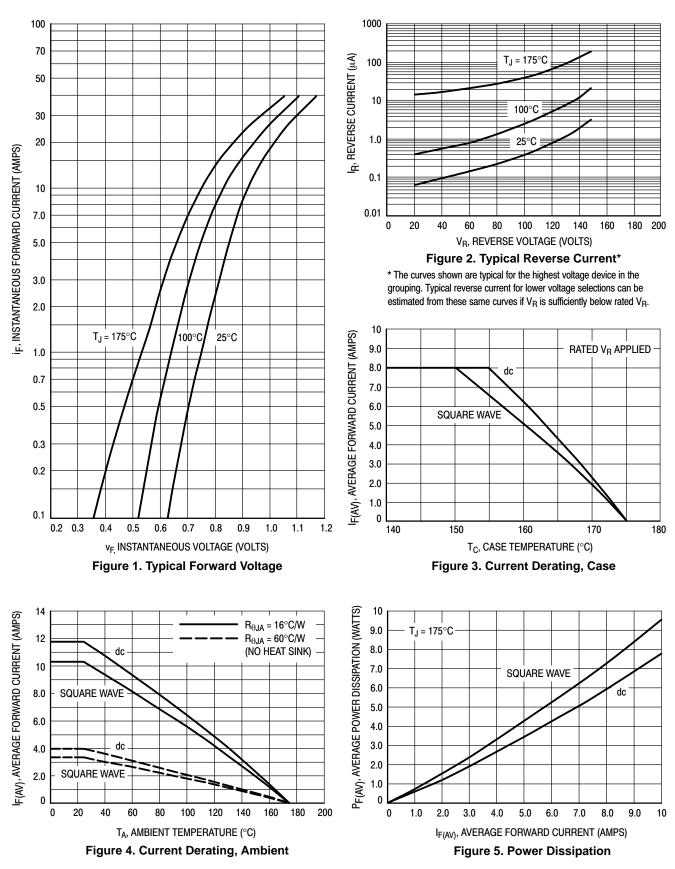
http://onsemi.com

ULTRAFAST RECTIFIERS 8.0 AMPERES 50-600 VOLTS

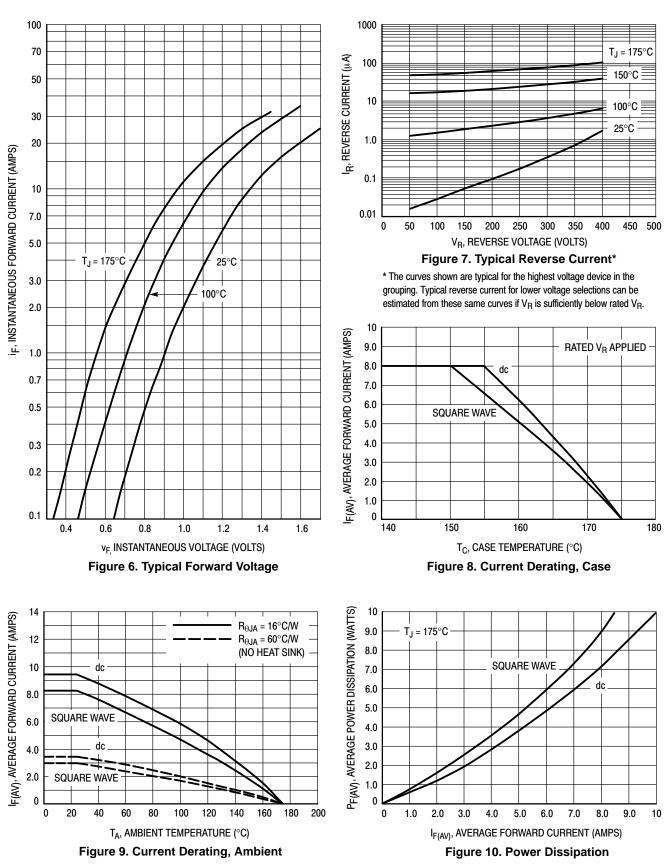
CASE 221B TO-220AC PLASTIC

U8xx = Device Code xx = 05, 10, 15, 20, 40 or 60

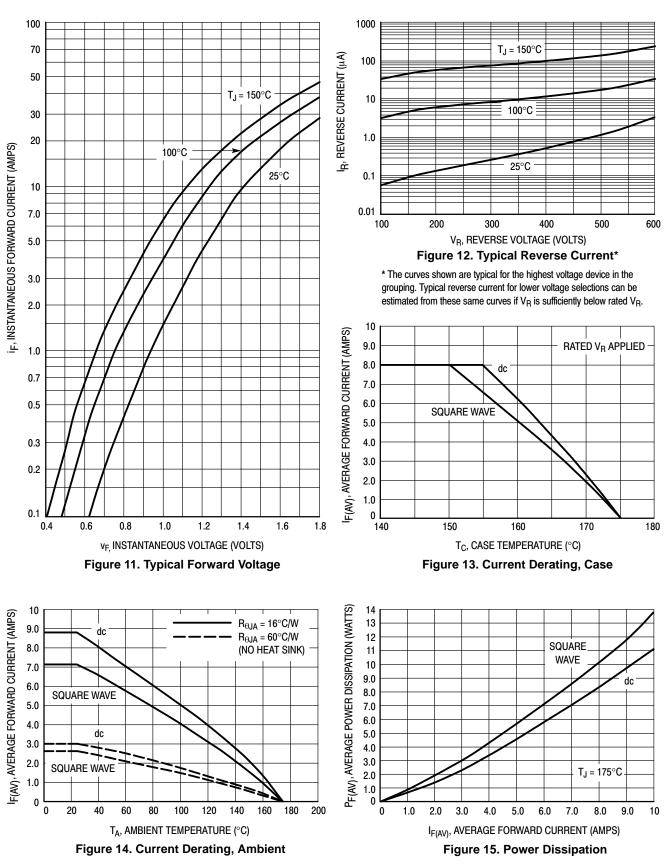
ORDERING INFORMATION

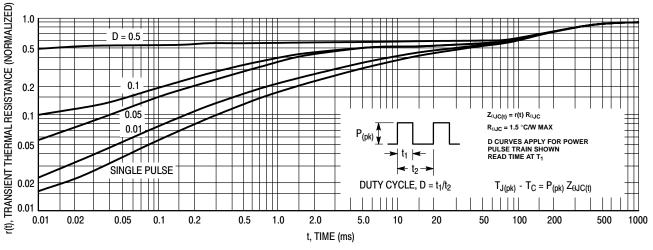

Device	Package Shipping	
MUR805	TO-220	50 Units/Rail
MUR810	TO-220	50 Units/Rail
MUR815	TO-220	50 Units/Rail
MUR820	TO-220	50 Units/Rail
MUR840	TO-220	50 Units/Rail
MUR860	TO-220	50 Units/Rail

Preferred devices are recommended choices for future use and best overall value.


MAXIMUM RATINGS

		MUR						
Rating	Symbol	805	810	815	820	840	860	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	400	600	Volts
Average Rectified Forward Current Total Device, (Rated V _R), T _C = 150°C	I _{F(AV)}	8.0					Amps	
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz), $T_C = 150^{\circ}C$	I _{FM}	16				Amps		
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	100				Amps		
Operating Junction Temperature and Storage Temperature Range	T _J , T _{stg}	-65 to +175				°C		
THERMAL CHARACTERISTICS								-
Maximum Thermal Resistance, Junction to Case	R_{\thetaJC}	3.0 2.0				°C/W		
ELECTRICAL CHARACTERISTICS								-
$\label{eq:maximum lnstantaneous Forward Voltage (Note 1.)} \\ (i_F = 8.0 \text{ Amps}, \text{ T}_{\text{C}} = 150^{\circ}\text{C}) \\ (i_F = 8.0 \text{ Amps}, \text{ T}_{\text{C}} = 25^{\circ}\text{C}) \\ \end{aligned}$	VF	0.895 0.975		1.00 1.30	1.20 1.50	Volts		
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_J = 150^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	İR	250 5.0			500 10		μA	
Maximum Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amps/μs) (I _F = 0.5 Amp, i _R = 1.0 Amp, I _{REC} = 0.25 Amp)	t _{rr}				60 60	ns		


1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.


MUR805, MUR810, MUR815, MUR820

MUR840

MUR860

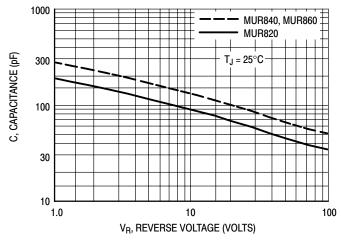


Figure 17. Typical Capacitance

Preferred Devices

SWITCHMODE™ Power Rectifiers

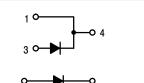
... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

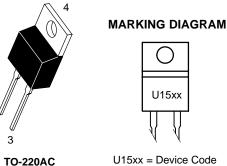
- Ultrafast 35 and 60 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Popular TO-220 Package
- High Voltage Capability to 600 Volts
- Low Forward Drop
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating Specified @ Both Case and Ambient Temperatures

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: U1510, U1515, U1520, U1540, U1560

MAXIMUM RATINGS


Please See the Table on the Following Page



ON Semiconductor[™]

http://onsemi.com

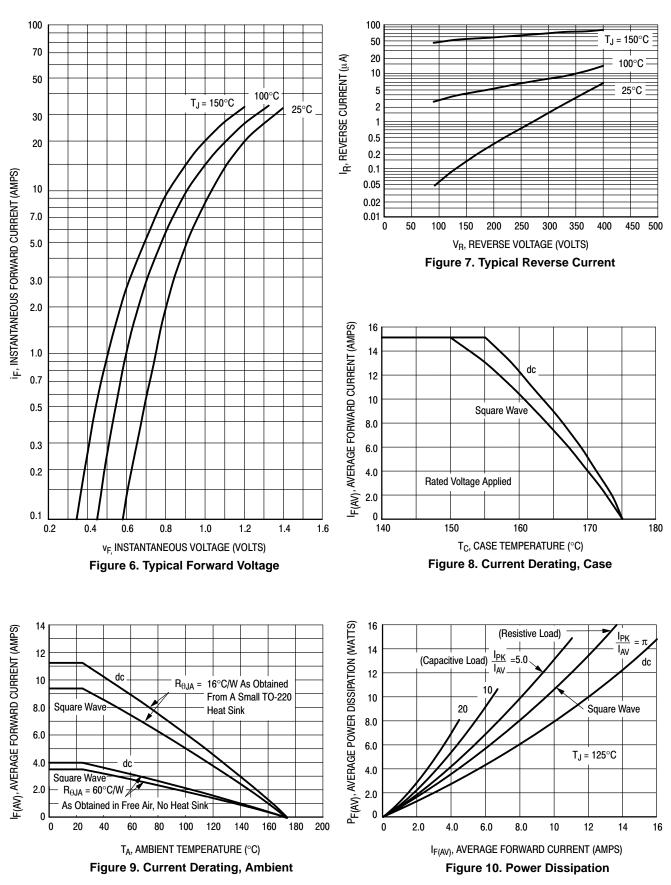
ULTRAFAST RECTIFIERS 15 AMPERES 100-600 VOLTS

TO-220AC CASE 221B PLASTIC

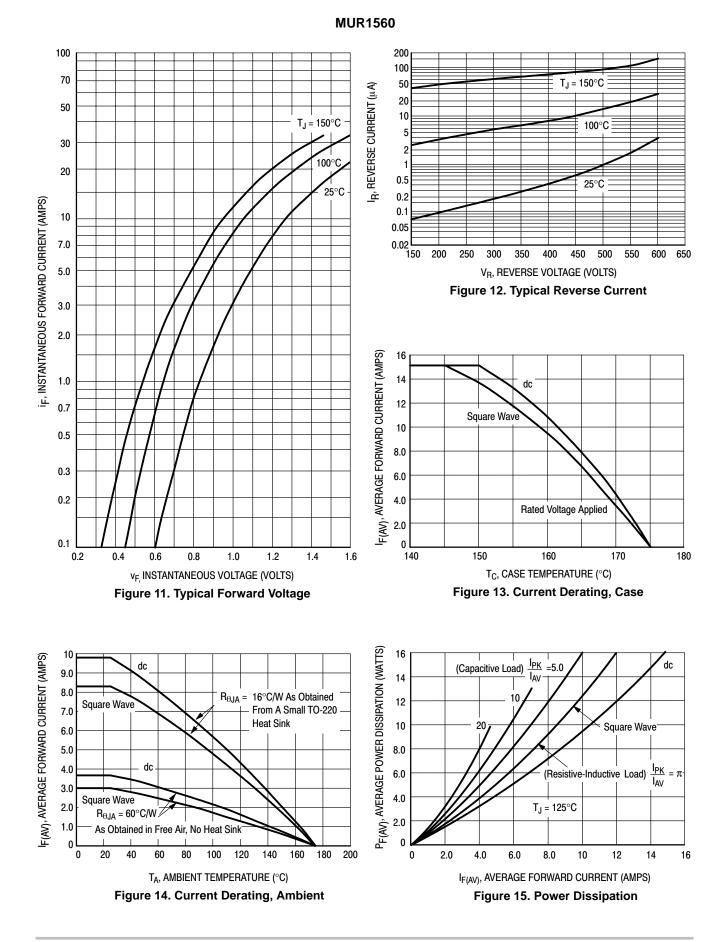
U15xx = Device Code xx = 10, 15, 20, 40 or 60

ORDERING INFORMATION

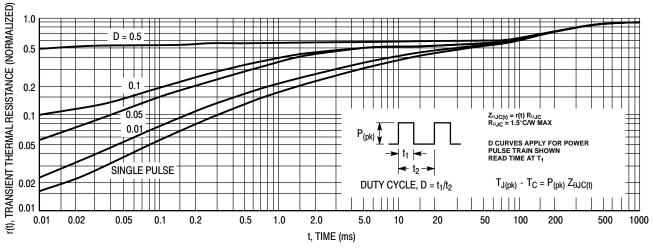
Device	Package	Shipping
MUR1510	TO-220	50 Units/Rail
MUR1515	TO-220	50 Units/Rail
MUR1520	TO-220	50 Units/Rail
MUR1540	TO-220	50 Units/Rail
MUR1560	TO-220	50 Units/Rail


MAXIMUM RATINGS

				MU	र		
Rating	Symbol	1510	1515	1520	1540	1560	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	100	150	200	400	600	Volts
Average Rectified Forward Current (Rated V _R)	I _{F(AV)}			5 = 150°C		15 @ T _C = 145°C	Amps
Peak Rectified Forward Current (Rated V _R , Square Wave, 20 kHz)	I _{FRM}		-	0 = 150°C		30 @ T _C = 145°C	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	200			200 150		Amps
Operating Junction Temperature and Storage Temperature Range	T _J , T _{stg}	-65 to +175				°C	
THERMAL CHARACTERISTICS	·						
Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.5				°C/W	
ELECTRICAL CHARACTERISTICS	·						
$\label{eq:maximum lnstantaneous Forward Voltage (Note 1.)} \\ (i_F = 15 \mbox{ Amps, } T_C = 150^\circ\mbox{C}) \\ (i_F = 15 \mbox{ Amps, } T_C = 25^\circ\mbox{C}) \\ \end{aligned}$	VF		0.85 1.05		1.12 1.25	1.20 1.50	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 150^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R		500 10		500 10	1000 10	μA
Maximum Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amps/μs)	t _{rr}		35			60	ns


1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

100 100 T_J = 150°C T_J = 150°C 50 100°C 70 20 I_R, REVERSE CURRENT (µA) 100°C 25°C 10 50 5 2 30 1 0.5 20 25°C 0.2 0.1 i_F, INSTANTANEOUS FORWARD CURRENT (AMPS) 0.05 10 0.02 7.0 0.01 20 60 0 40 80 100 120 140 160 180 200 5.0 V_R, REVERSE VOLTAGE (VOLTS) Figure 2. Typical Reverse Current 3.0 2.0 I_{F(AV)}, AVERAGE FORWARD CURRENT (AMPS) 16 14 1.0 dc 12 0.7 10 0.5 Square Wave 8.0 0.3 6.0 0.2 4.0 **Rated Voltage Applied** 2.0 0.1 0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 140 150 160 170 180 0.2 T_C, CASE TEMPERATURE (°C) v_E INSTANTANEOUS VOLTAGE (VOLTS) Figure 3. Current Derating, Case **Figure 1. Typical Forward Voltage** IF(AV), AVERAGE FORWARD CURRENT (AMPS) 14 16 PF(AV), AVERAGE POWER DISSIPATION (WATTS) (Resistive Load) $\frac{I_{PK}}{I_{AV}} = \pi$ 14 12 dc I_{PK} =5.0 (Capacitive Load) 12 10 $R_{\theta JA} = 16^{\circ}C/W$ As Obtained IAV dc From A Small TO-220 Square Wave 10 Heat Sink 8.0 10 8.0 20 6.0 6.0 Square Wave dc 4.0 4.0 Square Wave T_J = 125°C $R_{\theta JA} = 60^{\circ}C/W$ 2.0 2.0 As Obtained in Free Air, No Heat Sink 0 0 120 160 180 0 20 40 60 80 100 140 200 2.0 4.0 6.0 8.0 10 12 14 16 0 T_A, AMBIENT TEMPERATURE (°C) IF(AV), AVERAGE FORWARD CURRENT (AMPS) Figure 4. Current Derating, Ambient Figure 5. Power Dissipation


MUR1510, MUR1515, MUR1520

MUR1540

http://onsemi.com 472

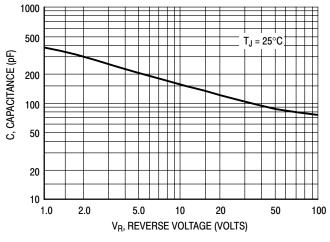


Figure 17. Typical Capacitance

MUR2020R

Preferred Device

SWITCHMODE™ Ultrafast Power Rectifier

... designed for use in negative switching power supplies, inverters and as free wheeling diode. Also, used in conjunction with a standard cathode dual Ultrafast Rectifier, makes a single phase full-wave bridge. These state-of-the-art devices have the following features:

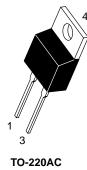
- Reverse Polarity Rectifier
- Ultrafast 95 Nanosecond Reverse Recovery Times
- Exhibits Soft Recovery Characteristics
- High Temperature Glass Passivated Junction
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating @ Case Temperature
- Epoxy Meets UL94, V_O @ 1/8"

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: U2020R

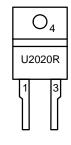
MAXIMUM RATINGS (Per Leg)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	Volts
Average Rectified Forward Voltage, (Rated V_R), T_C = 125°C	I _{F(AV)}	20	Amps
Peak Repetitive Forward Current (Rated V _R), T _C = 125°C	I _{FRM}	40	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	250	Amps
Operating Junction Temperature and Storage Temperature Range	T _J , T _{stg}	-65 to +175	°C



ON Semiconductor

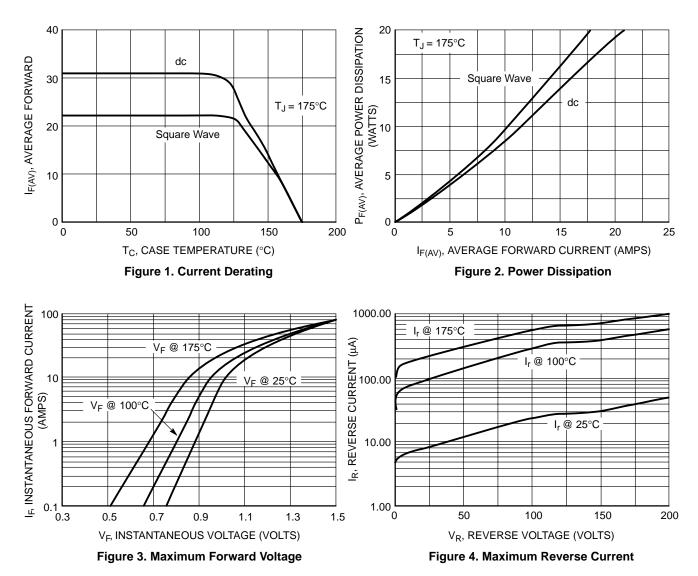
http://onsemi.com


ULTRAFAST RECTIFIER 20 AMPERES 200 VOLTS

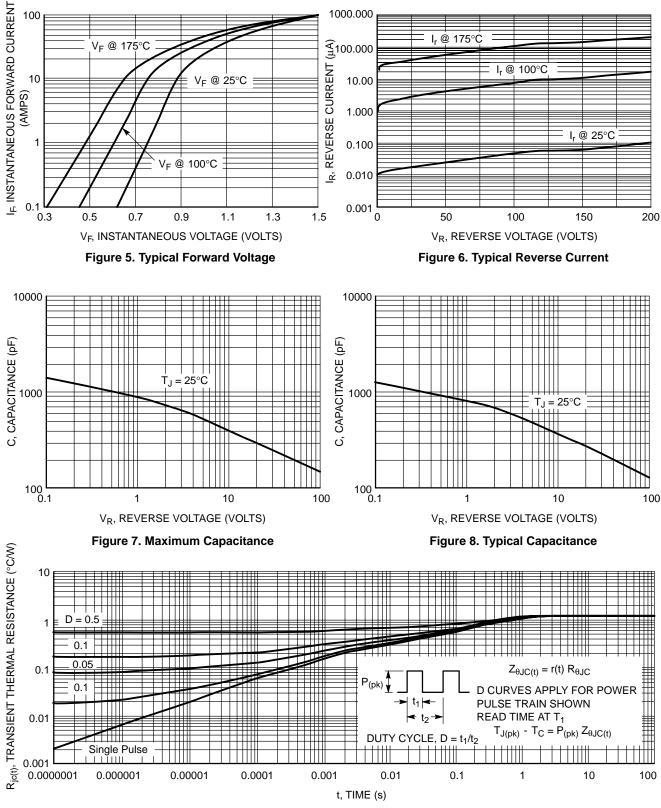
CASE 221B PLASTIC

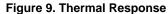
MARKING DIAGRAM

ORDERING INFORMATION


Device	Package	Shipping
MUR2020R	TO-220AC	50 Units/Rail

MUR2020R


THERMAL CHARACTERISTICS (Per Leg)


Characteristic	Symbol	Value	Unit
Thermal Resistance - Junction to Case	R _{θJC}	2.0	°C/W
ELECTRICAL CHARACTERISTICS (Per Leg)			
Maximum Instantaneous Forward Voltage (Note 1) ($I_F = 20 \text{ Amps}, T_C = 25^{\circ}C$) ($I_F = 20 \text{ Amps}, T_C = 150^{\circ}C$)	V _F	1.1 1.0	Volts
Maximum Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $T_C = 25^{\circ}C$) (Rated dc Voltage, $T_C = 150^{\circ}C$)	I _R	50 1	μA mA
Maximum Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amps/μs) (I _F = 1.0 Amp, di/dt = 100 Amps/μs)	t _{rr}	95 75	ns

1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle \leq 10%.

MUR2020R

MUR8100E is a Preferred Device

SWITCHMODE™ Power Rectifiers

Ultrafast "E" Series with High Reverse Energy Capability

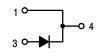
... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

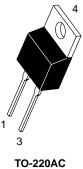
- 20 mjoules Avalanche Energy Guaranteed
- Excellent Protection Against Voltage Transients in Switching Inductive Load Circuits
- Ultrafast 75 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Popular TO-220 Package
- Epoxy Meets UL94, V_O @ 1/8"
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 1000 Volts

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: U880E, U8100E

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage MUR880E MUR8100E	V _{RRM} V _{RWM} V _R	800 1000	V
Average Rectified Forward Current (Rated V_R , $T_C = 150^{\circ}C$) Total Device	I _{F(AV)}	8.0	A
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz, T _C = 150°C)	I _{FM}	16	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	100	A
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-65 to +175	°C



ON Semiconductor[™]

http://onsemi.com

ULTRAFAST RECTIFIERS 8.0 AMPERES 800-1000 VOLTS

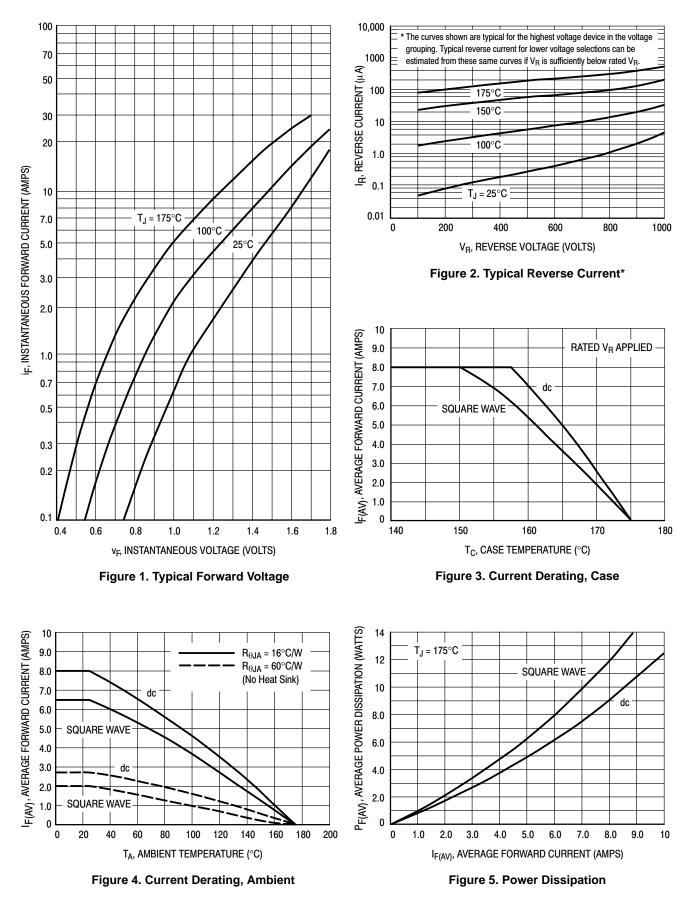
CASE 221B PLASTIC

MARKING DIAGRAM

U8x0E = Device Code x = 8 or 10

ORDERING INFORMATION

Device	Package	Shipping
MUR8100E	TO-220	50 Units/Rail
MUR880E	TO-220	50 Units/Rail


THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Case	R_{\thetaJC}	2.0	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	MUR880E	MUR8100E	Unit
Maximum Instantaneous Forward Voltage (Note 1.) ($i_F = 8.0 \text{ Amps}, T_C = 150^{\circ}\text{C}$) ($i_F = 8.0 \text{ Amps}, T_C = 25^{\circ}\text{C}$)	VF		.5 .8	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 100^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	-	00 25	μΑ
	t _{rr}	-	00 '5	ns
Controlled Avalanche Energy (See Test Circuit in Figure 6)	W _{AVAL}	2	0	mJ

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

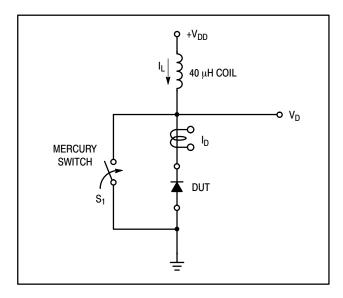


Figure 6. Test Circuit

The unclamped inductive switching circuit shown in Figure 6 was used to demonstrate the controlled avalanche capability of the new "E" series Ultrafast rectifiers. A mercury switch was used instead of an electronic switch to simulate a noisy environment when the switch was being opened.

When S_1 is closed at t_0 the current in the inductor I_L ramps up linearly; and energy is stored in the coil. At t_1 the switch is opened and the voltage across the diode under test begins to rise rapidly, due to di/dt effects, when this induced voltage reaches the breakdown voltage of the diode, it is clamped at BV_{DUT} and the diode begins to conduct the full load current which now starts to decay linearly through the diode, and goes to zero at t_2 .

By solving the loop equation at the point in time when S_1 is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy transferred is equal to the energy stored in the inductor plus a finite amount of energy from the V_{DD} power supply while the diode is in

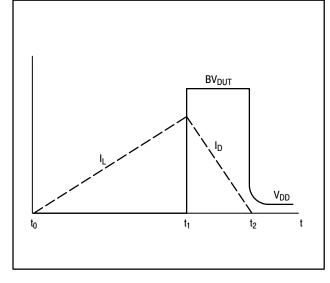


Figure 7. Current-Voltage Waveforms

breakdown (from t_1 to t_2) minus any losses due to finite component resistances. Assuming the component resistive elements are small Equation (1) approximates the total energy transferred to the diode. It can be seen from this equation that if the V_{DD} voltage is low compared to the breakdown voltage of the device, the amount of energy contributed by the supply during breakdown is small and the total energy can be assumed to be nearly equal to the energy stored in the coil during the time when S₁ was closed, Equation (2).

The oscilloscope picture in Figure 8, shows the MUR8100E in this test circuit conducting a peak current of one ampere at a breakdown voltage of 1300 volts, and using Equation (2) the energy absorbed by the MUR8100E is approximately 20 mjoules.

Although it is not recommended to design for this condition, the new "E" series provides added protection against those unforeseen transient viruses that can produce unexplained random failures in unfriendly environments.

$$W_{AVAL} \approx \frac{1}{2} LI_{LPK}^{2} \left(\frac{BV_{DUT}}{BV_{DUT} - V_{DD}} \right)$$

EQUATION (2):

$$W_{AVAL} \approx \frac{1}{2} LI_{LPK}^2$$

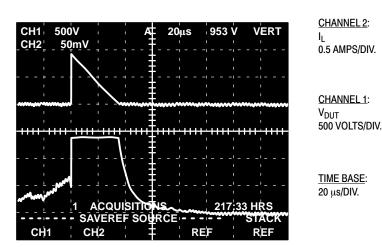
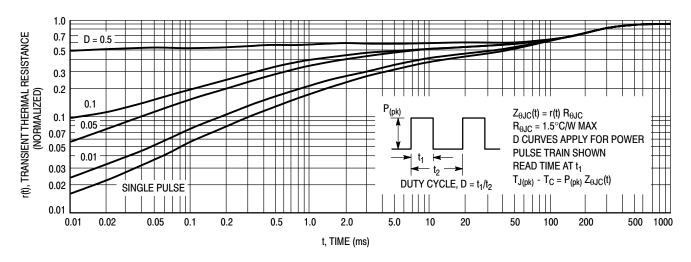



Figure 8. Current-Voltage Waveforms

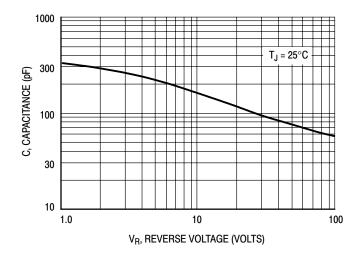


Figure 10. Typical Capacitance

MURF1620CT

Preferred Device

SWITCHMODE™ Power Rectifier

Designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

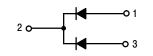
- Ultrafast 35 Nanosecond Recovery Times
- 150°C Operating Junction Temperature
- Epoxy Meets UL94, V_O @ 1/8"
- High Temperature Glass Passivated Junction
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating @ Both Case and Ambient Temperatures
- Electrically Isolated. No Isolation Hardware Required.
- UL Recognized File #E69369 (Note 1.)

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: U1620

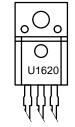
MAXIMUM RATINGS

Please See the Table on the Following Page


1. UL Recognized mounting method is per Figure 4

ON Semiconductor[™]

http://onsemi.com


ULTRAFAST RECTIFIER 16 AMPERES 200 VOLTS

ISOLATED TO-220 CASE 221D STYLE 3

MARKING DIAGRAM

U1620 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MURF1620CT	TO-220	50 Units/Rail

MURF1620CT

MAXIMUM RATINGS (Per Leg)

Rating		Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		V _{RRM} V _{RWM} V _R	200	Volts
Average Rectified Forward Current Total Device, (Rated V _R), T _C = 150°C	Total Device	I _{F(AV)}	8 16	Amps
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz), T _C = 150°C		I _{FM}	16	Amps
Non-repetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)		I _{FSM}	100	Amps
Operating Junction and Storage Temperature		T _J , T _{stg}	- 65 to +150	°C
RMS Isolation Voltage (t = 1 second, R.H. \leq 30%, T _A = 25°C) (Note 3.) Per F	Per Figure 3 igure 4 (Note 2.) Per Figure 5	V _{iso1} V _{iso2} V _{iso3}	4500 3500 1500	Volts

THERMAL CHARACTERISTICS (Per Leg)

Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	4.2	°C/W
Lead Temperature for Soldering Purposes: 1/8" from the Case for 5 seconds	ΤL	260	°C

ELECTRICAL CHARACTERISTICS (Per Leg)

Characteristic	Symbol	Value	Unit
Maximum Instantaneous Forward Voltage (Note 4.) ($i_F = 8.0 \text{ Amp}, T_C = 150^{\circ}\text{C}$) ($i_F = 8.0 \text{ Amp}, T_C = 25^{\circ}\text{C}$)	VF	0.895 0.975	Volts
Maximum Instantaneous Reverse Current (Note 4.) (Rated dc Voltage, $T_C = 150^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	İR	250 5.0	μΑ
Maximum Reverse Recovery Time $(I_F = 1.0 \text{ Amp, di/dt} = 50 \text{ Amp/}\mu s)$ $(I_F = 0.5 \text{ Amp, } i_R = 1.0 \text{ Amp, } I_{REC} = 0.25 \text{ Amp})$	t _{rr}	35 25	ns

2. UL Recognized mounting method is per Figure 4

3. Proper strike and creepage distance must be provided.

4. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

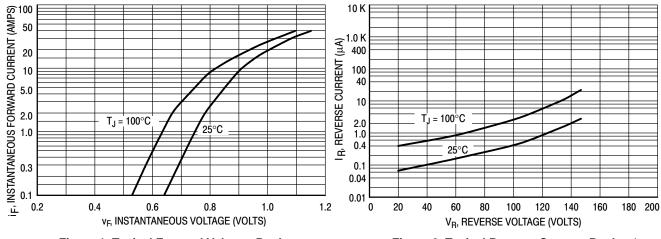


Figure 1. Typical Forward Voltage, Per Leg

Figure 2. Typical Reverse Current, Per Leg*

MURF1620CT

TEST CONDITIONS FOR ISOLATION TESTS*

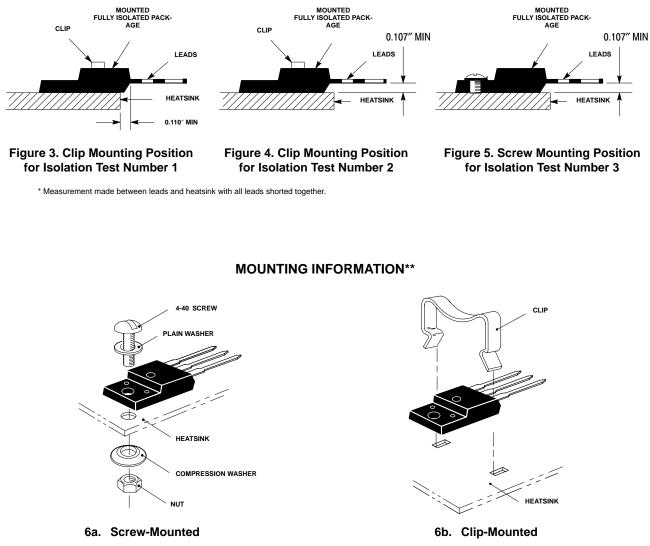


Figure 6. Typical Mounting Techniques

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in · lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.

Destructive laboratory tests show that using a hex head 4-40 screw, without washers, and applying a torque in excess of 20 in \cdot lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.

Additional tests on slotted 4-40 screws indicate that the screw slot fails between 15 to 20 in \cdot lbs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recommend exceeding 10 in \cdot lbs of mounting torque under any mounting conditions.

**For more information about mounting power semiconductors see Application Note AN1040.

MURF1660CT

Preferred Device

SWITCHMODE™ Power Rectifier

Designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

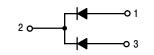
- Ultrafast 60 Nanosecond Recovery Times
- 150°C Operating Junction Temperature
- Epoxy Meets UL94, V_O @ 1/8"
- High Temperature Glass Passivated Junction
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating @ Both Case and Ambient Temperatures
- Electrically Isolated. No Isolation Hardware Required.
- UL Recognized File #E69369 (Note 1.)

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: U1660

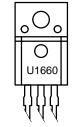
MAXIMUM RATINGS

Please See the Table on the Following Page


1. UL Recognized mounting method is per Figure 4

ON Semiconductor[™]

http://onsemi.com


ULTRAFAST RECTIFIER 16 AMPERES 600 VOLTS

ISOLATED TO-220 CASE 221D STYLE 3

MARKING DIAGRAM

U1660 = Device Code

ORDERING INFORMATION

Device	Package	Shipping
MURF1660CT	TO-220	50 Units/Rail

MURF1660CT

MAXIMUM RATINGS (Per Leg)

Rating		Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		V _{RRM} V _{RWM} V _R	600	Volts
Average Rectified Forward Current Total Device, (Rated V _R), T _C = 150°C	Per Diode Per Device	I _{F(AV)}	8 16	Amps
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz), T _C = 150°C		I _{FM}	16	Amps
Non-repetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)		I _{FSM}	100	Amps
Operating Junction and Storage Temperature		T _J , T _{stg}	- 65 to +150	°C
RMS Isolation Voltage (t = 1 second, R.H. \leq 30%, T _A = 25°C) (Note 3.) Per F	Per Figure 3 igure 4 (Note 2.) Per Figure 5	V _{iso1} V _{iso2} V _{iso3}	4500 3500 1500	Volts

THERMAL CHARACTERISTICS (Per Leg)

Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	3.0	°C/W
Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	ΤL	260	°C

ELECTRICAL CHARACTERISTICS (Per Leg)

Characteristic	Symbol	Value	Unit
Maximum Instantaneous Forward Voltage (Note 4.) ($i_F = 8.0 \text{ Amp}, T_C = 150^{\circ}\text{C}$) ($i_F = 8.0 \text{ Amp}, T_C = 25^{\circ}\text{C}$)	v _F	1.20 1.50	Volts
Maximum Instantaneous Reverse Current (Note 4.) (Rated dc Voltage, $T_C = 150^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	İR	500 10	μΑ
Maximum Reverse Recovery Time $(I_F = 1.0 \text{ Amp, di/dt} = 50 \text{ Amp/}\mu\text{s})$ $(I_F = 0.5 \text{ Amp, i}_R = 1.0 \text{ Amp, I}_{REC} = 0.25 \text{ Amp})$	t _{rr}	60 50	ns

2. UL Recognized mounting method is per Figure 4

3. Proper strike and creepage distance must be provided.

4. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

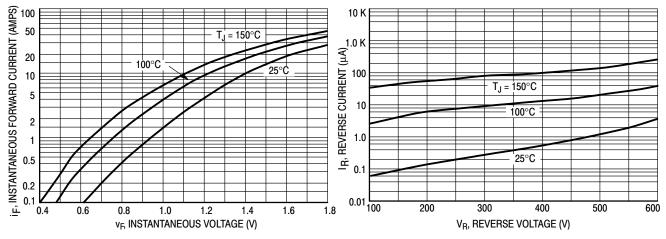


Figure 1. Typical Forward Voltage, Per Leg

Figure 2. Typical Reverse Current, Per Leg*

MURF1660CT

TEST CONDITIONS FOR ISOLATION TESTS*

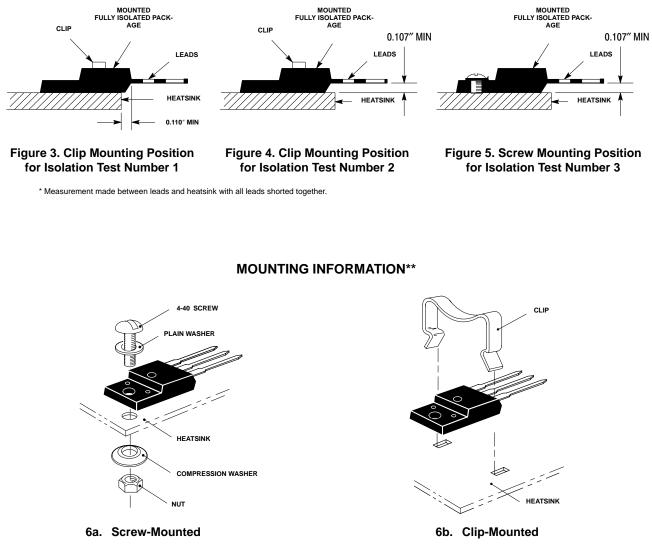


Figure 6. Typical Mounting Techniques

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in · lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.

Destructive laboratory tests show that using a hex head 4-40 screw, without washers, and applying a torque in excess of 20 in \cdot lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.

Additional tests on slotted 4-40 screws indicate that the screw slot fails between 15 to 20 in \cdot lbs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recommend exceeding 10 in \cdot lbs of mounting torque under any mounting conditions.

**For more information about mounting power semiconductors see Application Note AN1040.

MURHF860CT

Preferred Device

SWITCHMODE™ Power Rectifier

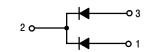
... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

- Ultrafast 35 Nanosecond Recovery Times
- 150°C Operating Junction Temperature
- Electrically Isolated. No Isolation Hardware Required.
- Epoxy Meets UL94, V_O @ 1/8"
- High Temperature Glass Passivated Junction
- High Voltage Capability to 600 Volts
- Low Leakage Specified @ 150°C Case Temperature

Mechanical Characteristics

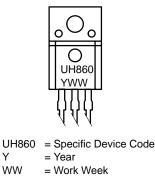
- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: UH860

MAXIMUM RATINGS (Per Leg)


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	600	V
Average Rectified Forward Current (Rated V_R , T_C = 120°C) Total Device	I _{F(AV)}	4.0 8.0	A
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz, T _C = 120°C)	I _{FM}	16	A
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	100	A
Operating Junction and Storage Temperature Range	TJ, T _{stg}	-65 to +150	°C

ON Semiconductor®

http://onsemi.com


ULTRAFAST RECTIFIER 8.0 AMPERES 600 VOLTS

ISOLATED TO-220 CASE 221D STYLE 4

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
MURHF860CT	TO-220	50 Units/Rail

MURHF860CT

THERMAL CHARACTERISTICS (Per Leg)

Characteristic	Symbol	Value	Unit
Maximum Thermal Resistance, Junction to Case	R _{θJC}	4.1	°C/W
ELECTRICAL CHARACTERISTICS (Per Leg)			
Maximum Instantaneous Forward Voltage (Note 1) ($i_F = 4.0 \text{ Amps}, T_C = 150^{\circ}\text{C}$) ($i_F = 4.0 \text{ Amps}, T_C = 25^{\circ}\text{C}$)	VF	2.5 2.8	Volts
Maximum Instantaneous Reverse Current (Note 1) (Rated dc Voltage, $T_C = 150^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$)	i _R	500 10	μΑ
Maximum Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amps/μs)	t _{rr}	35	ns

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%

Preferred Devices

SWITCHMODE™ Power Rectifiers

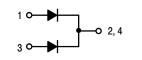
... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

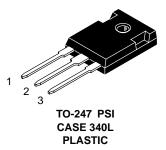
- Ultrafast 35 and 60 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Popular TO-247 Package
- High Voltage Capability to 600 Volts
- Low Forward Drop
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating Specified @ Both Case and Ambient Temperatures
- Epoxy Meets UL94, V_O @ 1/8"
- High Temperature Glass Passivated Junction

Mechanical Characteristics

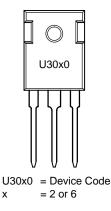
- Case: Epoxy, Molded
- Weight: 4.3 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 30 units per plastic tube
- Marking: U3020, U3060

MAXIMUM RATINGS


Please See the Table on the Following Page



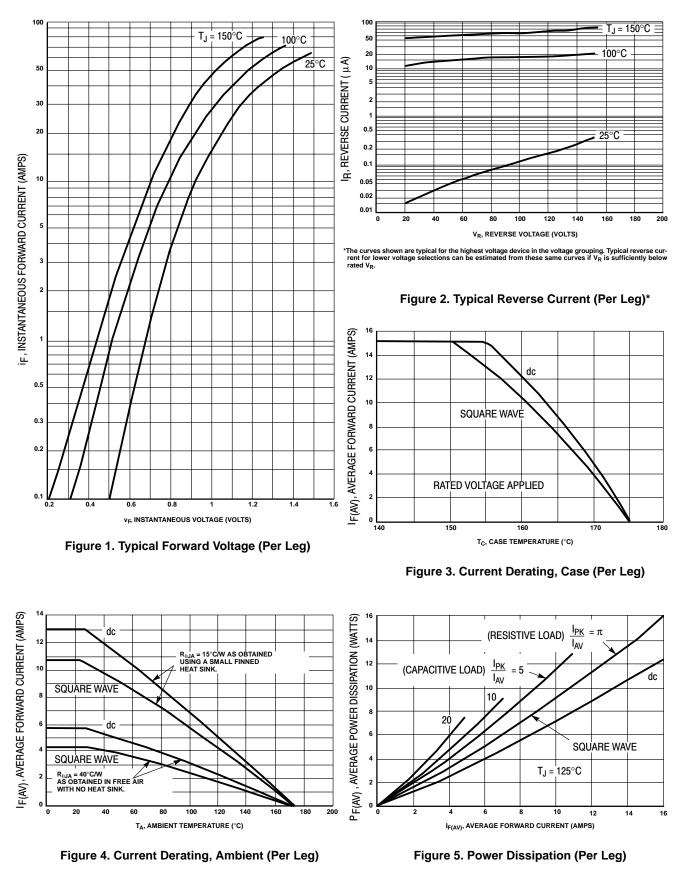
ON Semiconductor[™]


http://onsemi.com

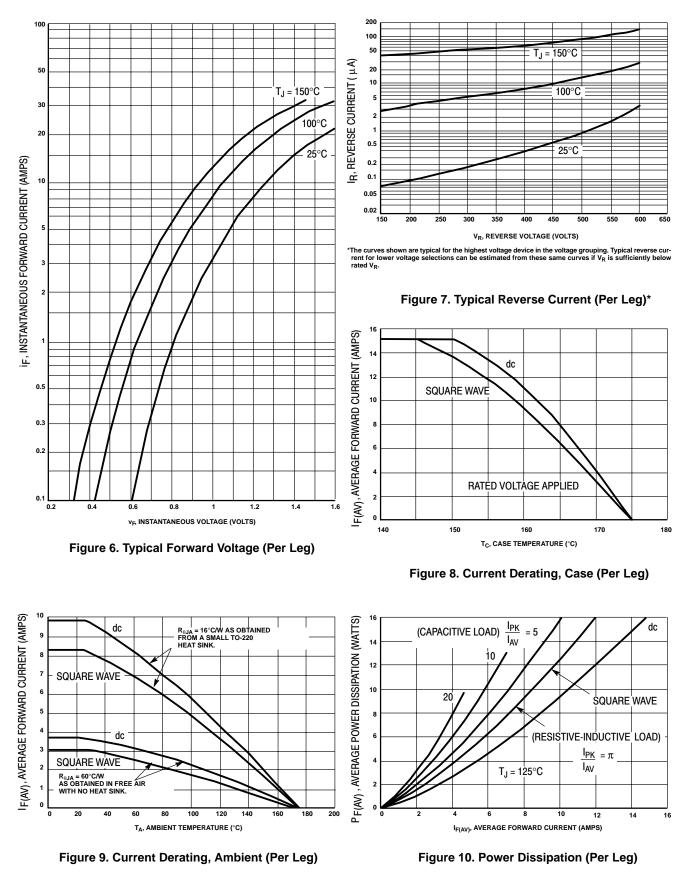
ULTRAFAST RECTIFIERS 30 AMPERES 200-600 VOLTS

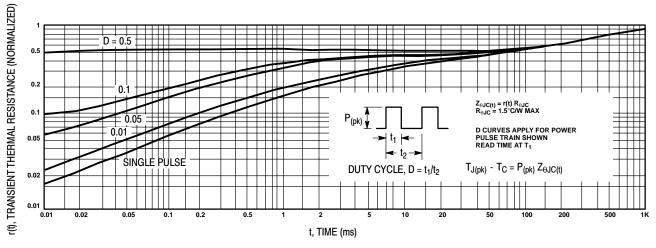
MARKING DIAGRAM

ORDERING INFORMATION


Device	Package	Shipping
MUR3020WT	TO-247	30 Units/Rail
MUR3060WT	TO-247	30 Units/Rail

MAXIMUM RATINGS (Per Leg)


Rating	Symbol	MUR3020WT	MUR3060WT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	600	Volts
Average Rectified Forward Current @ 145°C Total Device	I _{F(AV)}		5 30	Amps
Peak Repetitive Surge Current (Rated V _R , Square Wave, 20 kHz, T _C = 145°C)	I _{FM}	3	30	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	I _{FSM}	200	150	Amps
Operating Junction and Storage Temperature	T _J , T _{stg}	- 65 t	o +175	°C
THERMAL CHARACTERISTICS (Per Leg)		·		
Maximum Thermal Resistance — Junction to Case — Junction to Ambient	R _{θJC} R _{θJA}		.5 40	°C/W
ELECTRICAL CHARACTERISTICS (Per Leg)		·		
Maximum Instantaneous Forward Voltage (Note 1.) ($I_F = 15 \text{ Amp}, T_C = 150^{\circ}\text{C}$) ($I_F = 15 \text{ Amp}, T_C = 25^{\circ}\text{C}$)	VF	0.85 1.05	1.4 1.7	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated DC Voltage, $T_J = 150^{\circ}C$) (Rated DC Voltage, $T_J = 25^{\circ}C$)	i _R	500 10	1000 10	μΑ
Maximum Reverse Recovery Time (i _F = 1.0 A, di/dt = 50 Amps/μs)	t _{rr}	35	60	ns


1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MUR3020WT

MUR3060WT

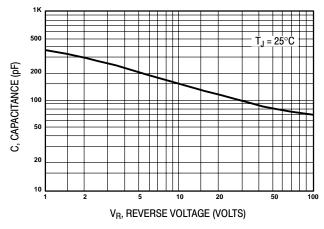


Figure 12. Typical Capacitance (Per Leg)

SWITCHMODE[™] Power Rectifiers

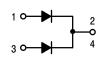
... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

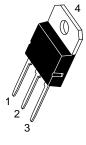
- Ultrafast 35 and 60 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- High Voltage Capability to 600 Volts
- Low Forward Drop
- Low Leakage Specified @ 150°C Case Temperature
- Current Derating Specified @ Both Case and Ambient Temperatures
- Epoxy Meets UL94, V_O @ 1/8"
- High Temperature Glass Passivated Junction

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 4.3 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 30 units per plastic tube
- Marking: U3020, U3040, U3060

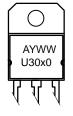
MAXIMUM RATINGS


Please See the Table on the Following Page



ON Semiconductor"

http://onsemi.com


ULTRAFAST RECTIFIERS 30 AMPERES 200-600 VOLTS

TO-218AC CASE 340D STYLE 2

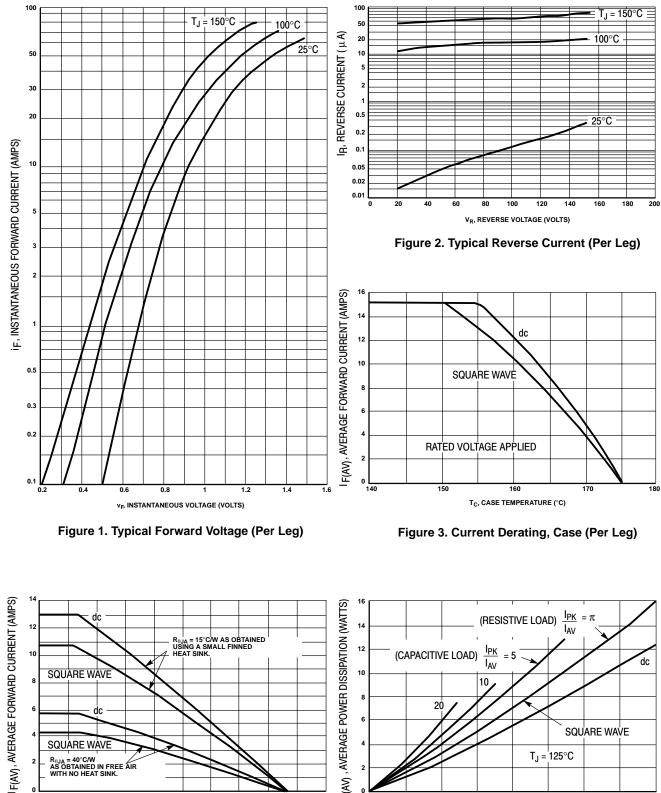
MARKING DIAGRAM

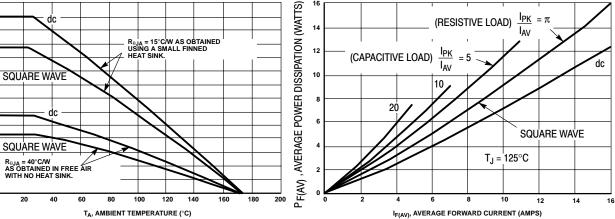
A = Assembly Location Y = Year WW = Work Week U30x0 = Device Code

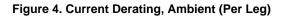
= 2, 4 or 6

х

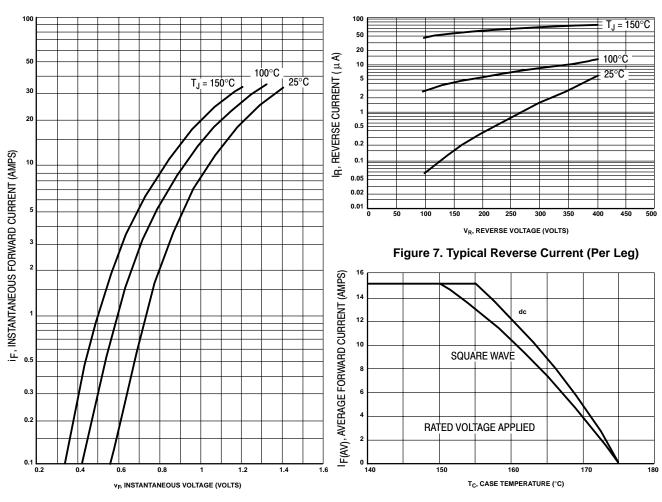
ORDERING INFORMATION


Device	Package	Shipping
MUR3020PT	SOT-93	30 Units/Rail
MUR3040PT	SOT-93	30 Units/Rail
MUR3060PT	SOT-93	30 Units/Rail


Rating	Symbol	MUR3020PT	MUR3040PT	MUR3060PT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	400	600	Volts
Average Rectified Forward Current (Rated V _R) Per Leg Per Device	I _{F(AV)}		; = 150°C ; = 150°C	15 @ T _C = 30 145°C	Amps
Peak Rectified Forward Current, Per Leg (Rated V _R , Square Wave, 20 kHz, T _C = 150°C)	I _{FRM}	-	80 = 150°C	30 @ T _C =145°C	Amps
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz) Per Leg	I _{FSM}	200	1	50	Amps
Operating Junction and Storage Temperature	T _J , T _{stg}		- 65 to +175		°C
THERMAL CHARACTERISTICS (Per Diode Leg)					
Maximum Thermal Resistance — Junction to Case — Junction to Ambient	R _{θJC} R _{θJA}		1.5 40		°C/W
ELECTRICAL CHARACTERISTICS (Per Diode Leg)					
Maximum Instantaneous Forward Voltage (Note 1.) ($I_F = 15 \text{ Amp}, T_C = 150^{\circ}\text{C}$) ($I_F = 15 \text{ Amp}, T_C = 25^{\circ}\text{C}$)	V _F	0.85 1.05	1.12 1.25	1.2 1.5	Volts
Maximum Instantaneous Reverse Current (Note 1.) (Rated DC Voltage, $T_J = 150^{\circ}C$) (Rated DC Voltage, $T_J = 25^{\circ}C$)	i _R	-	00	1000 10	μA
Maximum Reverse Recovery Time (i _F = 1.0 Amp, di/dt = 50 Amps/μs)	t _{rr}	35	6	60	ns


1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MAXIMUM RATINGS (Per Leg)



0

Figure 5. Power Dissipation (Per Leg)

MUR3040PT

Figure 8. Current Derating, Case (Per Leg)

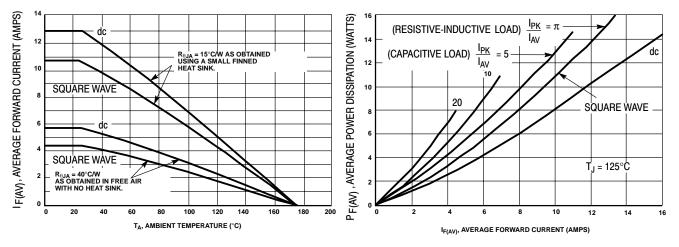
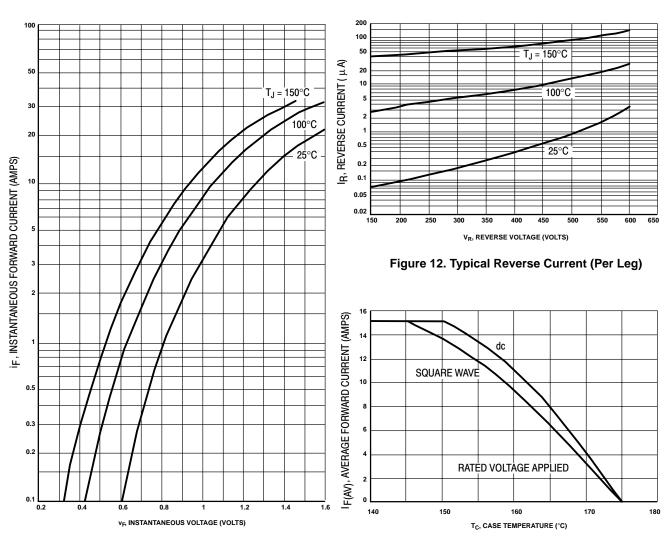



Figure 9. Current Derating, Ambient (Per Leg)

Figure 10. Power Dissipation (Per Leg)

MUR3060PT

Figure 11. Typical Forward Voltage (Per Leg)

Figure 13. Current Derating, Case (Per Leg)

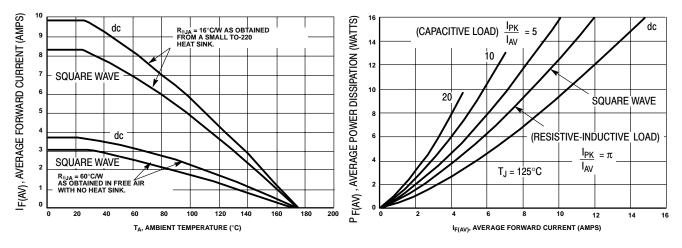
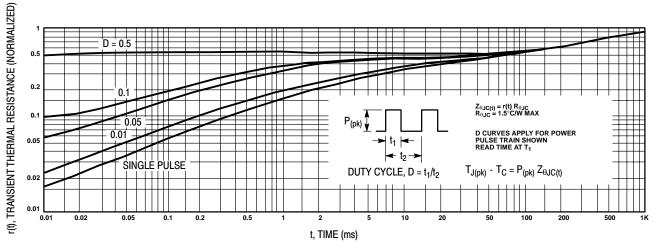
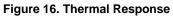




Figure 14. Current Derating, Ambient (Per Leg)

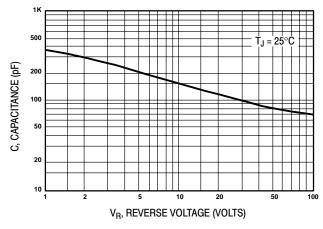


Figure 17. Typical Capacitance (Per Leg)

MURP20020CT, MURP20040CT

Preferred Devices

POWERTAP™ II Ultrafast SWITCHMODE™ Power Rectifiers

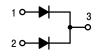
... designed for use in switching power supplies, inverters, and as free wheeling diodes. These state-of-the-art devices have the following features:

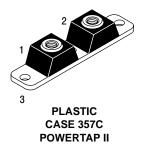
- Dual Diode Construction
- Low Leakage Current
- Low Forward Voltage
- 175°C Operating Junction Temperature
- Labor Saving POWERTAP Package

Mechanical Characteristics:

- Case: Epoxy, Molded with metal heatsink base
- Weight: 80 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant
- Top Terminal Torque: 25-40 lb-in max
- Base Plate Torques: See procedure given in the Package Outline Section
- Shipped 25 units per foam
- Marking: UP20020, UP20040

MAXIMUM RATINGS


Please See the Table on the Following Page



ON Semiconductor[™]

http://onsemi.com

ULTRAFAST RECTIFIERS 200 AMPERES 200-400 VOLTS

MARKING DIAGRAM

UP200x0 = Device Code x = 2 or 4 YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MURP20020CT	POWERTAP II	25 Units/Tray
MURP20040CT	POWERTAP II	25 Units/Tray

MURP20020CT, MURP20040CT

MAXIMUM RATINGS

Rating	Symbol	MURP20020CT	MURP20040CT	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	400	Volts
Average Rectified Forward Current (Rated V _R) Per Device Per Leg	I _{F(AV)}	200 (T _C = 130°C) 100 (T _C = 130°C)	200 (T _C = 100°C) 100 (T _C = 100°C)	Amps
Peak Repetitive Forward Current, Per Leg (Rated V_R , Square Wave, 20 kHz), T _C = 95°C	I _{FRM}	200	200	Amps
Nonrepetitive Peak Surge Current Per Leg (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	800	800	Amps
Operating Junction Temperature	TJ	- 55 to +175	- 55 to +175	°C
Storage Temperature	T _{stg}	- 55 to +150	- 55 to +150	°C
THERMAL CHARACTERISTICS (Per Leg)				
Rating	Symbol	Мах		Unit
Thermal Resistance, Junction to Case	R _{θJC}	0.45	0.45	°C/W
ELECTRICAL CHARACTERISTICS (Per Leg)				
Instantaneous Forward Voltage (Note 1.) ($i_F = 100 \text{ Amps}, T_C = +25^{\circ}C$) ($i_F = 200 \text{ Amps}, T_C = 25^{\circ}C$) ($i_F = 100 \text{ Amps}, T_C = 125^{\circ}C$)	v _F	1.00 1.10 0.95	1.30 1.75 1.15	Volts
Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_C = 125$ °C) (Rated dc Voltage, $T_C = 25$ °C)	i _R	1000 150	500 50	μΑ
Maximum Reverse Recovery Time (I _F = 1.0 Amp, di/dt = 50 Amps/µs)	t _{rr}	50	75	ns

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

CHAPTER 5 Standard and Fast Recovery Data Sheets

Surface Mount Standard Recovery Power Rectifier

SMB Power Surface Mount Package

Features mesa epitaxial construction with glass passivation. Ideally suited for high frequency switching power supplies; free wheeling diodes and polarity protection diodes.

- Compact Package with J-Bend Leads Ideal for Automated Handling
- Stable, High Temperature, Glass Passivated Junction

Mechanical Characteristics:

- Case: Molded Epoxy
- Epoxy Meets UL94, VO at 1/8"
- Weight: 95 mg (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Maximum Temperature of 260°C / 10 Seconds for Soldering
- Available in 12 mm Tape, 2500 Units per 13 inch Reel, Add "T3" Suffix to Part Number
- Polarity: Notch and/or band in Plastic Body Indicates Cathode Lead
- Marking: RGG

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	400	V
Average Rectified Forward Current (At Rated V _R , T _I = 118°C)	Ι _Ο	1.5	A
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz, T _I = 118°C)	I _{FRM}	3.0	A
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	I _{FSM}	50	A
Storage/Operating Case Temperature Range	T _{stg} , T _C	-55 to 150	°C
Operating Junction Temperature Range	TJ	-55 to 150	°C

ON Semiconductor**

http://onsemi.com

STANDARD RECOVERY RECTIFIER 1.5 AMPERES 400 VOLTS

SMB CASE 403A PLASTIC

MARKING DIAGRAM

Y = Year WW = Work Week RGG = Device Code LL = Location Code

ORDERING INFORMATION

Device	Package	Shipping
MRS1504T3	SMB	2500/Tape & Reel

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance - Junction-to-Lead (Note 2.)	R _{tjl}	18	°C/W
Thermal Resistance - Junction-to-Ambient (on 1" sq. Cu. PCB pattern)	R _{tja}	79	

ELECTRICAL CHARACTERISTICS

Maximum Instantaneous Forward Voltage (Note 1.), see Figure 2	VF	T _J = 25°C	$T_J = 100^{\circ}C$	V
(I _F = 1.5 A) (I _F = 2.25 A)		1.04 1.10	0.96 1.02	
Maximum Instantaneous Reverse Current, see Figure 4	Ι _R	T _J = 25°C	T _J = 100°C	μΑ
(V _R = 400 V) (V _R = 200 V)		1.0 0.5	340 180	

1. Pulse Test: Pulse Width \leq 250 µs, Duty Cycle \leq 2.0%.

2. Minimum pad size

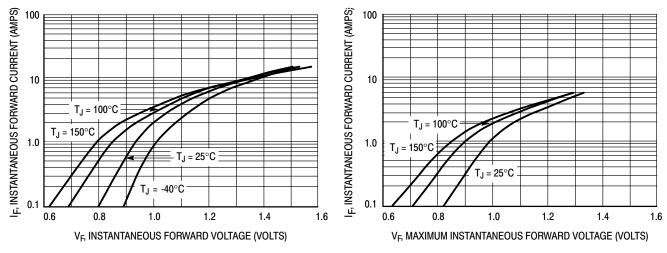


Figure 1. Typical Forward Voltage

Figure 2. Maximum Forward Voltage

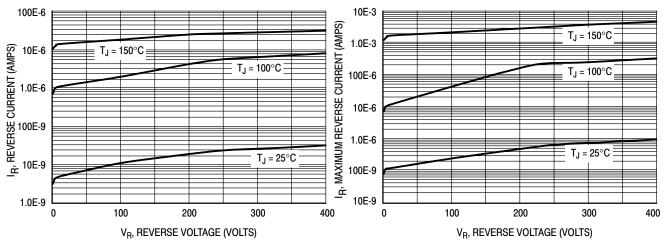


Figure 4. Maximum Reverse Current

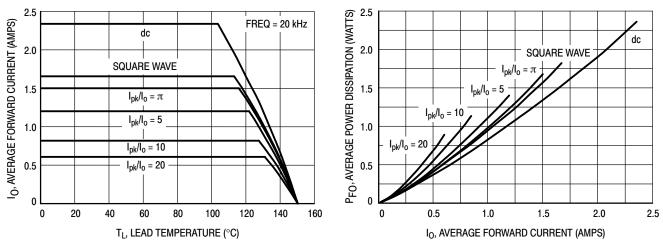
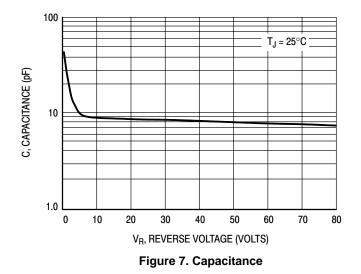
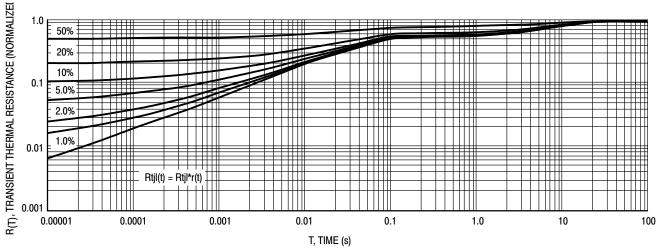




Figure 6. Forward Power Dissipation

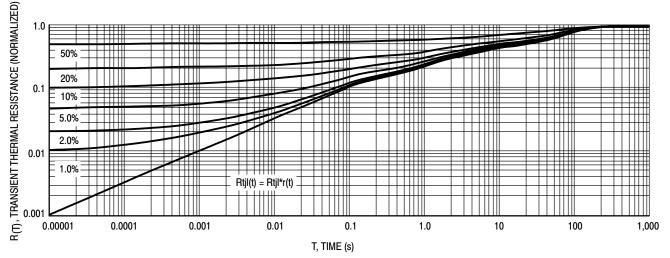


Figure 9. Thermal Response Junction to Ambient

MRA4003T3 Series

Surface Mount Standard Recovery Power Rectifier

SMA Power Surface Mount Package

Features construction with glass passivation. Ideally suited for surface mounted Automotive application.

- Compact Package with J-Bend Leads Ideal for Automated Handling
- Stable, High Temperature, Glass Passivated Junction

Mechanical Characteristics

- Case: Molded Epoxy Epoxy meets UL94, VO at 1/8"
- Weight: 70 mg (Approximately)
- Finish: All External Surfaces are Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 seconds in Solder Bath
- Polarity: Notch and/or Band in Plastic Body Indicates Cathode Lead
- Available in 12 mm Tape, 5000 Units per 13 inch Reel, Add "T3" Suffix to Part Number
- Marking: MRA4003T3 R13
 - MRA4004T3 R14 MRA4005T3 — R15 MRA4006T3 — R16 MRA4007T3 — R17

MAXIMUM RATINGS

Please See the Table on the Following Page

ON Semiconductor®

http://onsemi.com

STANDARD RECOVERY RECTIFIERS 1.0 AMPERES 300-1000 VOLTS

CASE 403B SMA PLASTIC

MARKING DIAGRAM

x = 3, 4, 5, 6 or 7

- LL = Location Code
- ## = Date Code

ORDERING INFORMATION

Device	Package	Shipping
MRA4003T3	SMA	5000/Tape & Reel
MRA4004T3	SMA	5000/Tape & Reel
MRA4005T3	SMA	5000/Tape & Reel
MRA4006T3	SMA	5000/Tape & Reel
MRA4007T3	SMA	5000/Tape & Reel

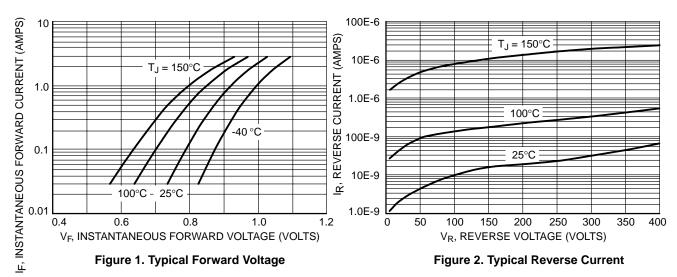
MRA4003T3 Series

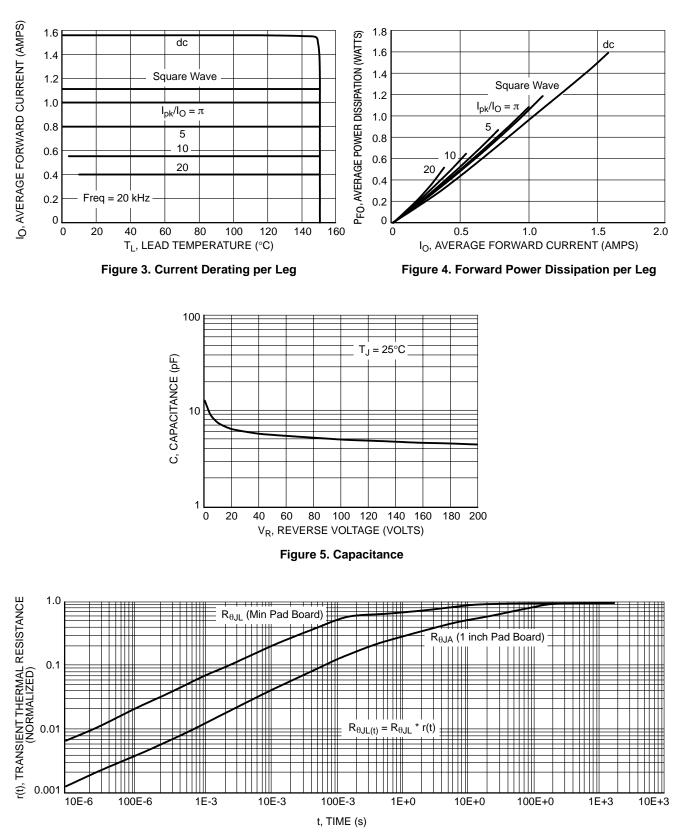
MAXIMUM RATINGS

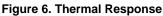
				Value			
Rating	Symbol	MRA4003T3	MRA4004T3	MRA4005T3	MRA4006T3	MRA4007T3	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	300	400	600	800	1000	Volts
Avg. Rectified Forward Current (At Rated V _R , T _L = 150°C)	Ι _Ο	1					Amp
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz, T _L = 150°C)	I _{FRM}	2				Amps	
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	I _{FSM}	30				Amps	
Storage/Operating Case Temperature	T _{stg} , T _C	-55 to 150				°C	
Operating Junction Temperature	TJ			-55 to 175			°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Lead (Note 1.)	$R_{\theta JL}$	16.2	°C/W
Thermal Resistance, Junction to Ambient (Note 2.)	$R_{\theta JA}$	88.3	


ELECTRICAL CHARACTERISTICS


		Va	lue	
Characteristic	Symbol	T _J = 25°C	T _J = 100°C	Unit
Maximum Instantaneous Forward Voltage (Note 3.) (I _F = 1 A) (I _F = 2 A)	V _F	1.1 1.18	1.04 1.12	Volts
Maximum Instantaneous Reverse Current (at rated DC voltage)	I _R	10	50	μΑ


1. Minimum Pad Size

2. 1 inch Pad Size

3. Pulse Test: Pulse Width $\leq 250~\mu s,$ Duty Cycle $\leq 2\%.$

1N4001, 1N4002, 1N4003, 1N4004, 1N4005, 1N4006, 1N4007

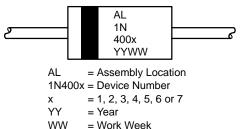
1N4004 and 1N4007 are Preferred Devices

Axial Lead Standard Recovery Rectifiers

This data sheet provides information on subminiature size, axial lead mounted rectifiers for general-purpose low-power applications.

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 1000 per bag.
- Available Tape and Reeled, 5000 per reel, by adding a "RL" suffix to the part number
- Available in Fan-Fold Packaging, 3000 per box, by adding a "FF" suffix to the part number
- Polarity: Cathode Indicated by Polarity Band
- Marking: 1N4001, 1N4002, 1N4003, 1N4004, 1N4005, 1N4006, 1N4007


ON Semiconductor[™]

http://onsemi.com

LEAD MOUNTED RECTIFIERS 50-1000 VOLTS DIFFUSED JUNCTION

MARKING DIAGRAM

MAXIMUM RATINGS

Rating	Symbol	1N4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	Unit
*Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	800	1000	Volts
*Non-Repetitive Peak Reverse Voltage (halfwave, single phase, 60 Hz)	V _{RSM}	60	120	240	480	720	1000	1200	Volts
*RMS Reverse Voltage	V _{R(RMS)}	35	70	140	280	420	560	700	Volts
*Average Rectified Forward Current (single phase, resistive load, 60 Hz, T _A = 75°C)	IO	1.0					Amp		
*Non-Repetitive Peak Surge Current (surge applied at rated load conditions)	I _{FSM}	30 (for 1 cycle)				Amp			
Operating and Storage Junction Temperature Range	T _J T _{stg}	5				°C			

*Indicates JEDEC Registered Data

ORDERING INFORMATION

See detailed ordering and shipping information on page 513 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

1N4001, 1N4002, 1N4003, 1N4004, 1N4005, 1N4006, 1N4007

ELECTRICAL CHARACTERISTICS*

Rating	Symbol	Тур	Max	Unit
Maximum Instantaneous Forward Voltage Drop ($i_F = 1.0 \text{ Amp}, T_J = 25^{\circ}\text{C}$)	۷ _F	0.93	1.1	Volts
Maximum Full-Cycle Average Forward Voltage Drop $(I_O = 1.0 \text{ Amp}, T_L = 75^{\circ}\text{C}, 1 \text{ inch leads})$	V _{F(AV)}	-	0.8	Volts
Maximum Reverse Current (rated dc voltage) $(T_J = 25^{\circ}C)$ $(T_J = 100^{\circ}C)$	۱ _R	0.05 1.0	10 50	μΑ
Maximum Full-Cycle Average Reverse Current $(I_O = 1.0 \text{ Amp}, T_L = 75^{\circ}C, 1 \text{ inch leads})$	I _{R(AV)}	-	30	μΑ

*Indicates JEDEC Registered Data

ORDERING & SHIPPING INFORMATION

Device	Package	Shipping
1N4001	Axial Lead	1000 Units/Bag
1N4001FF	Axial Lead	3000 Units/Box
1N4001RL	Axial Lead	5000/Tape & Reel
1N4002	Axial Lead	1000 Units/Bag
1N4002FF	Axial Lead	3000 Units/Box
1N4002RL	Axial Lead	5000/Tape & Reel
1N4003	Axial Lead	1000 Units/Bag
1N4003FF	Axial Lead	3000 Units/Box
1N4003RL	Axial Lead	5000/Tape & Reel
1N4004	Axial Lead	1000 Units/Bag
1N4004FF	Axial Lead	3000 Units/Box
1N4004RL	Axial Lead	5000/Tape & Reel
1N4005	Axial Lead	1000 Units/Bag
1N4005FF	Axial Lead	3000 Units/Box
1N4005RL	Axial Lead	5000/Tape & Reel
1N4006	Axial Lead	1000 Units/Bag
1N4006FF	Axial Lead	3000 Units/Box
1N4006RL	Axial Lead	5000/Tape & Reel
1N4007	Axial Lead	1000 Units/Bag
1N4007FF	Axial Lead	3000 Units/Box
1N4007RL	Axial Lead	5000/Tape & Reel

1N4933, 1N4934, 1N4935, 1N4936, 1N4937

1N4935 and 1N4937 are Preferred Devices

Axial-Lead Fast-Recovery Rectifiers

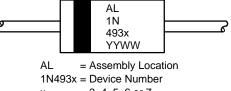
Axial-lead, fast-recovery rectifiers are designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 150 nanoseconds providing high efficiency at frequencies to 250 kHz.

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 1000 per bag.
- Available Tape and Reeled, 5000 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode Indicated by Polarity Band
- Marking: 1N4933, 1N4934, 1N4935, 1N4936, 1N4937

MAXIMUM RATINGS

Please See the Table on the Following Page


ON Semiconductor[™]

http://onsemi.com

FAST RECOVERY RECTIFIERS 1.0 AMPERE 50-600 VOLTS

MARKING DIAGRAM

x = 3, 4, 5, 6 or 7 YY = Year

WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
1N4933	Axial Lead	1000 Units/Bag
1N4933RL	Axial Lead	5000/Tape & Reel
1N4934	Axial Lead	1000 Units/Bag
1N4934RL	Axial Lead	5000/Tape & Reel
1N4935	Axial Lead	1000 Units/Bag
1N4935RL	Axial Lead	5000/Tape & Reel
1N4936	Axial Lead	1000 Units/Bag
1N4936RL	Axial Lead	5000/Tape & Reel
1N4937	Axial Lead	1000 Units/Bag
1N4937RL	Axial Lead	5000/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

1N4933, 1N4934, 1N4935, 1N4936, 1N4937

MAXIMUM RATINGS (Note 1.)

Rating	Symbol	1N4933	1N4934	1N4935	1N4936	1N4937	Unit
*Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	Volts
*Non-Repetitive Peak Reverse Voltage RMS Reverse Voltage	V _{RSM} V _{R(RMS)}	75 35	150 70	250 140	450 280	650 420	Volts
*Average Rectified Forward Current (Single phase, resistive load, $T_A = 75^{\circ}C$) (Note 2.)	Ι _Ο	1.0					Amp
*Non-Repetitive Peak Surge Current (Surge applied at rated load conditions)	I _{FSM}	30					Amps
Operating Junction Temperature Range Storage Temperature Range	T _J T _{stg}			65 to +150 65 to +150	-		°C

THERMAL CHARACTERISTICS

Characteristic		Max	Unit
Thermal Resistance, Junction to Ambient (Typical Printed Circuit Board Mounting)	$R_{\theta JC}$	65	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic		Min	Тур	Max	Unit
Instantaneous Forward Voltage ($I_F = 3.14 \text{ Amp}, T_J = 125^{\circ}\text{C}$)	۷F	-	1.0	1.2	Volts
Forward Voltage ($I_F = 1.0 \text{ Amp}, T_A = 25^{\circ}\text{C}$)	V _F	-	1.0	1.1	Volts
*Reverse Current (Rated dc Voltage) $T_A = 25^{\circ}C$ $T_A = 100^{\circ}C$	۱ _R	-	1.0 50	5.0 100	μA

***REVERSE RECOVERY CHARACTERISTICS**

Characteristic	Symbol	Min	Тур	Мах	Unit
Reverse Recovery Time ($I_F = 1.0 \text{ Amp to } V_R = 30 \text{ Vdc}$) ($I_{FM} = 15 \text{ Amp, di/dt} = 10 \text{ A/}\mu\text{s}$)	t _{rr}	-	150 175	200 300	ns
Reverse Recovery Current ($I_F = 1.0 \text{ Amp to } V_R = 30 \text{ Vdc}$)	I _{RM(REC)}	-	1.0	2.0	Amp

Ratings at 25°C ambient temperature unless otherwise specified.
 Derate by 20% for capacitive loads.
 *Indicates JEDEC Registered Data for 1N4933 Series.

1N5400 thru 1N5408

1N5404 and 1N5406 are Preferred Devices

Axial-Lead Standard Recovery Rectifiers

Lead mounted standard recovery rectifiers are designed for use in power supplies and other applications having need of a device with the following features:

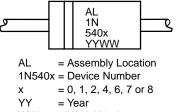
- High Current to Small Size
- High Surge Current Capability
- Low Forward Voltage Drop
- Void-Free Economical Plastic Package
- Available in Volume Quantities
- Plastic Meets UL 94V-0 for Flammability

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.1 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Polarity: Cathode Indicated by Polarity Band
- Marking: 1N5400, 1N5401, 1N5402, 1N5404, 1N5406, 1N5407, 1N5408

MAXIMUM RATINGS

Please See the Table on the Following Page


ON Semiconductor[™]

http://onsemi.com

STANDARD RECOVERY RECTIFIERS 50-1000 VOLTS 3.0 AMPERES

AXIAL LEAD CASE 267-05 STYLE 1

MARKING DIAGRAM

WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
1N5400	Axial Lead	500 Units/Box
1N5400RL	Axial Lead	1200/Tape & Reel
1N5401	Axial Lead	500 Units/Box
1N5401RL	Axial Lead	1200/Tape & Reel
1N5402	Axial Lead	500 Units/Box
1N5402RL	Axial Lead	1200/Tape & Reel
1N5404	Axial Lead	500 Units/Box
1N5404RL	Axial Lead	1200/Tape & Reel
1N5406	Axial Lead	500 Units/Box
1N5406RL	Axial Lead	1200/Tape & Reel
1N5407	Axial Lead	500 Units/Box
1N5407RL	Axial Lead	1200/Tape & Reel
1N5408	Axial Lead	500 Units/Box
1N5408RL	Axial Lead	1200/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

1N5400 thru 1N5408

MAXIMUM RATINGS

Rating	Symbol	1N5400	1N5401	1N5402	1N5404	1N5406	1N5407	1N5408	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	800	1000	Volts
Non-repetitive Peak Reverse Voltage	V _{RSM}	100	200	300	525	800	1000	1200	Volts
Average Rectified Forward Current (Single Phase Resistive Load, $1/2''$ Leads, $T_L = 105^{\circ}C$)	IO	3.0							Amp
Non-repetitive Peak Surge Current (Surge Applied at Rated Load Conditions)	I _{FSM}	200 (one cycle)							Amp
Operating and Storage Junction Temperature Range	T _J T _{stg}	- 65 to +170 - 65 to +175							°C

THERMAL CHARACTERISTICS

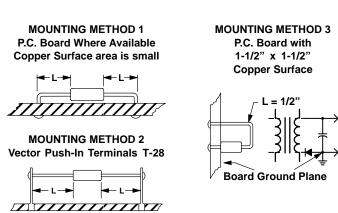
Characteristic	Symbol	Тур	Unit
Thermal Resistance, Junction to Ambient (PC Board Mount, 1/2" Leads)	R_{\thetaJA}	53	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Forward Voltage (I _F = 3.0 Amp, $T_A = 25^{\circ}C$)	٧ _F	-	-	1.0	Volts
Reverse Current (Rated dc Voltage) $T_A = 25^{\circ}C$ $T_A = 150^{\circ}C$	I _R	-	-	10 100	μΑ

Ratings at 25°C ambient temperature unless otherwise specified.

60 Hz resistive or inductive loads.


For capacitive load, derate current by 20%.

NOTE 1 — AMBIENT MOUNTING DATA

Data shown for thermal resistance junction-to-ambient ($R_{\theta JA}$) for the mountings shown is to be used as typical guideline values for preliminary engineering or in case the tie point temperature cannot be measured.

Mounting		Lead Length, L (IN)					
Method	1/8	1/4	1/2	3/4	R _{θJA}		
1	50	51	53	55	°C/W		
2	58	59	61	63	°C/W		
3		°C/W					

TYPICAL VALUES FOR ROLA IN STILL AIR

1N5400 thru 1N5408

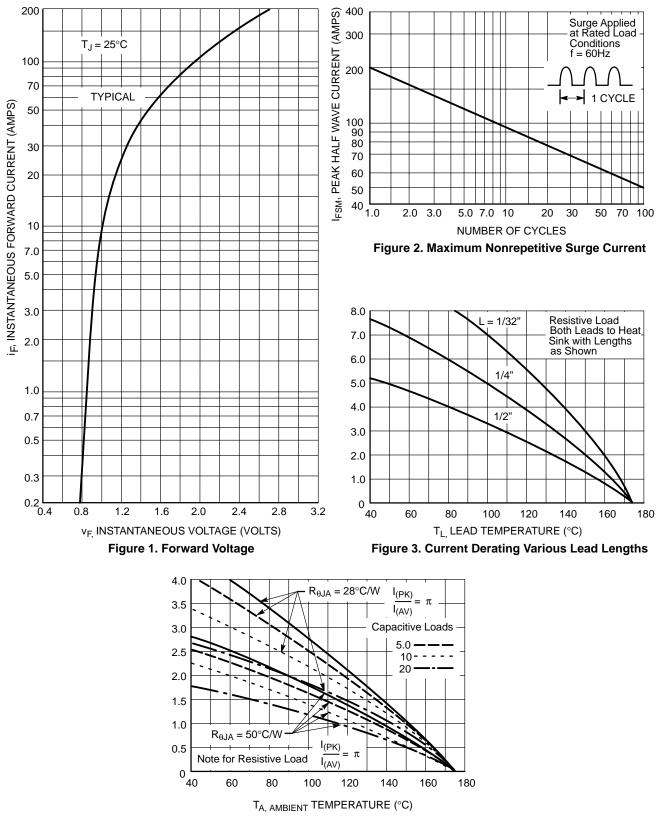


Figure 4. Current Derating PC Board Mounting

MR850, MR851, MR852, MR854, MR856

MR852 and MR856 are Preferred Devices

Axial Lead Fast Recovery Rectifiers

Axial lead mounted fast recovery power rectifiers are designed for special applications such as dc power supplies, inverters, converters, ultrasonic systems, choppers, low RF interference and free wheeling diodes. A complete line of fast recovery rectifiers having typical recovery time of 100 nanoseconds providing high efficiency at frequencies to 250 kHz.

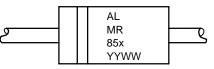
Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 1.1 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16″ from case
- Shipped in plastic bags, 500 per box
- Available Tape and Reeled, 1200 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode Indicated by Polarity Band
- Marking: MR850, MR851, MR852, MR854, MR856

MAXIMUM RATINGS

Please See the Table on the Following Page

ON Semiconductor[™]


http://onsemi.com

FAST RECOVERY POWER RECTIFIERS 3.0 AMPERES 50-600 VOLTS

CASE 267-05 STYLE 1

MARKING DIAGRAM

AL = Assembly Location MR85x = Device Number x = 0, 1, 2, 4 or 6YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping							
MR850	Axial Lead	500 Units/Box							
MR850RL	Axial Lead	1200/Tape & Reel							
MR851	Axial Lead	500 Units/Box							
MR851RL	Axial Lead	1200/Tape & Reel							
MR852	Axial Lead	500 Units/Box							
MR852RL	Axial Lead	1200/Tape & Reel							
MR854	Axial Lead	500 Units/Box							
MR854RL	Axial Lead	1200/Tape & Reel							
MR856	Axial Lead	500 Units/Box							
MR856RL	Axial Lead	1200/Tape & Reel							

Preferred devices are recommended choices for future use and best overall value.

MR850, MR851, MR852, MR854, MR856

MAXIMUM RATINGS

Rating	Symbol	MR850	MR851	MR852	MR854	MR856	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	Volts
Non-Repetitive Peak Reverse Voltage	V _{RSM}	75	150	250	450	650	Volts
RMS Reverse Voltage	V _{R(RMS)}	35	70	140	280	420	Volts
Average Rectified Forward Current (Single phase resistive load, T _A = 80°C)	Ι _Ο			Amp			
Non-Repetitive Peak Surge Current (surge applied at rated load conditions)	I _{FSM}		Amp				
Operating and Storage Junction Temperature Range	Т _Ј , T _{stg}			 65 to +125 65 to +150 	-		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient (Recommended Printed Circuit Board Mounting)	$R_{\theta J A}$	28	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic		Symbol	Min	Тур	Max	Unit
Forward Voltage (I _F = 3.0 Amp, T _J = 25°C)		V _F	-	1.04	1.25	Volts
$\begin{tabular}{ c c c c } \hline Reverse Current (rated dc voltage) $T_J = 25^\circ$ \\ \hline MR850$ \\ MR851$ \\ MR851$ \\ MR852$ \\ MR854$ \\ MR856$ \\ \hline \ MR856$ \\ \hline \ MR856$ \\ \hline \ MR856$ \\ \hline \ MR856$ \\ \hline \ MR856$ \\ \hline \ MR856$ \\ \hline \ MR856$ \\ \hline \hline \ MR856$ \\ \hline \hline \ MR856$ \\ \hline \hline \ MR856$ \\ \hline \hline \ MR856$ \\ \hline \hline \ MR856$ \\ \hline \hline \ \ MR856$ \\ \hline \hline \ \ \ MR856$ \\ \hline \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		I _R		2.0 - 60 - - 100	10 150 150 200 250 300	μΑ

REVERSE RECOVERY CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Мах	Unit
Reverse Recovery Time ($I_F = 1.0 \text{ Amp to } V_R = 30 \text{ Vdc}$) ($I_F = 15 \text{ Amp, di/dt} = 10 \text{ A/}\mu\text{s}$)	t _{rr}	-	100 150	200 300	ns
Reverse Recovery Current ($I_F = 1.0 \text{ Amp to } V_R = 30 \text{ Vdc}$)	I _{RM(REC)}	-	-	2.0	Amp

MR754 and MR760 are Preferred Devices

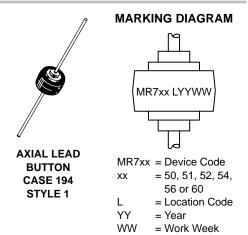
High Current Lead Mounted Rectifiers

- Current Capacity Comparable to Chassis Mounted Rectifiers
- Very High Surge Capacity
- Insulated Case

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 2.5 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Lead is Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Polarity: Cathode Polarity Band
- Shipped 1000 units per plastic bag. Available Tape and Reeled, 800 units per reel by adding a "RL" suffix to the part number

MAXIMUM RATINGS


Please See the Table on the Following Page

ON Semiconductor[™]

http://onsemi.com

HIGH CURRENT LEAD MOUNTED SILICON RECTIFIERS 50 - 1000 VOLTS DIFFUSED JUNCTION

ORDERING INFORMATION

Device	Package	Shipping
MR750	Axial Lead	1000 Units/Bag
MR750RL	Axial Lead	800/Tape & Reel
MR751	Axial Lead	1000 Units/Bag
MR751RL	Axial Lead	800/Tape & Reel
MR752	Axial Lead	1000 Units/Bag
MR752RL	Axial Lead	800/Tape & Reel
MR754	Axial Lead	1000 Units/Bag
MR754RL	Axial Lead	800/Tape & Reel
MR756	Axial Lead	1000 Units/Bag
MR756RL	Axial Lead	800/Tape & Reel
MR760	Axial Lead	1000 Units/Bag
MR760RL	Axial Lead	800/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

MAXIMUM RATINGS

Characteristic	Symbol	MR750	MR751	MR752	MR754	MR756	MR760	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	1000	Volts
Non-Repetitive Peak Reverse Voltage (Halfwave, single phase, 60 Hz peak)	V _{RSM}	60	120	240	480	720	1200	Volts
RMS Reverse Voltage	V _{R(RMS)}	35	70	140	280	420	700	Volts
Average Rectified Forward Current (Single phase, resistive load, 60 Hz) See Figures 5 and 6	Ι _Ο	$22 (T_L = 60^{\circ}C, 1/8'' \text{ Lead Lengths})$ 6.0 (T _A = 60°C, P.C. Board mounting)					Amps	
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions)	I _{FSM}	◄ 400 (for 1 cycle) →					Amps	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	۲		<u> </u>	o +175 —			°C

ELECTRICAL CHARACTERISTICS

Characteristic and Conditions	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage Drop $(i_F = 100 \text{ Amps}, T_J = 25^{\circ}\text{C})$	VF	1.25	Volts
Maximum Forward Voltage Drop ($I_F = 6.0 \text{ Amps}, T_A = 25^{\circ}C, 3/8'' \text{ leads}$)	V _F	0.90	Volts
Maximum Reverse Current $T_J = 25^{\circ}C$ (Rated dc Voltage) $T_J = 100^{\circ}C$	۱ _R	25 1.0	μA mA

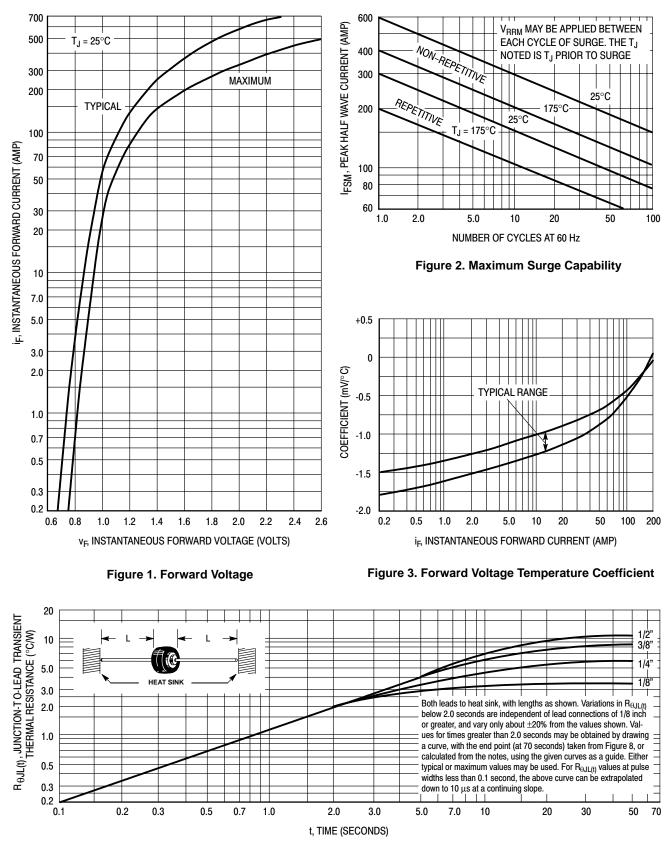
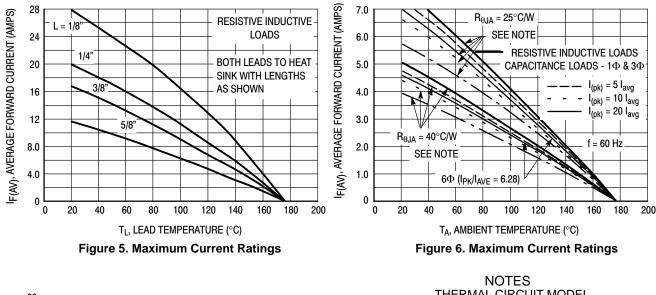
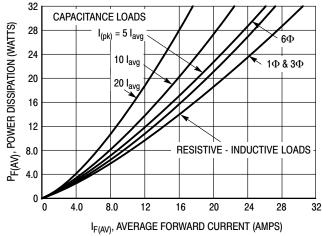




Figure 4. Typical Transient Thermal Resistance

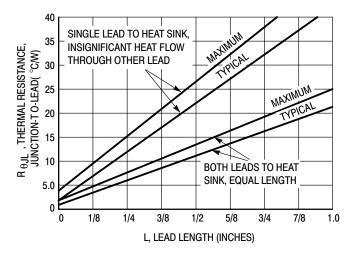
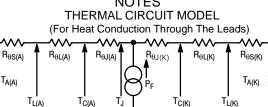



Figure 8. Steady State Thermal Resistance

Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. Lowest values occur when one side of the rectifier is brought as close as possible to the heat sink as shown below. Terms in the model signify T_C = Case Temperature

T_A = Ambient Temperature T_L = Lead Temperature

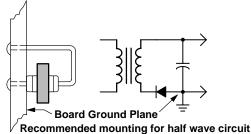
 $T_J =$ Junction Temperature

 $\overline{R_{\theta S}}$ = Thermal Resistance, Heat Sink to Ambient

 $R_{\theta L}$ = Thermal Resistance, Lead to Heat Sink

 $R_{\theta,J}$ = Thermal Resistance, Junction to Case

 $P_F = Power Dissipation$


(Subscripts A and K refer to anode and cathode sides, respectively.) Values for thermal resistance components are:

 $R_{\theta L}$ = 40°C/W/in. Typically and 44°C/W/in Maximum.

 $R_{\theta,I} = 2^{\circ}C/W$ typically and $4^{\circ}C/W$ Maximum.

Since $R_{\theta J}$ is so low, measurements of the case temperature, T_C , will be approximately equal to junction temperature in practical lead mounted applications. When used as a 60 Hz rectifierm the slow thermal response holds T_J(PK) close to T_J(AVG). Therefore maximum lead temperature may be found from: T_L = 175°-R_{0JL} P_F. P_F may be found from Figure 7. The recommended method of mounting to a P.C. board is shown on the

sketch, where R_{0JA} is approximately 25°C/W for a 1-1/2" x 1-1/2" copper surface area. Values of 40°C/W are typical for mounting to terminal strips or P.C. boards where available surface area is small.

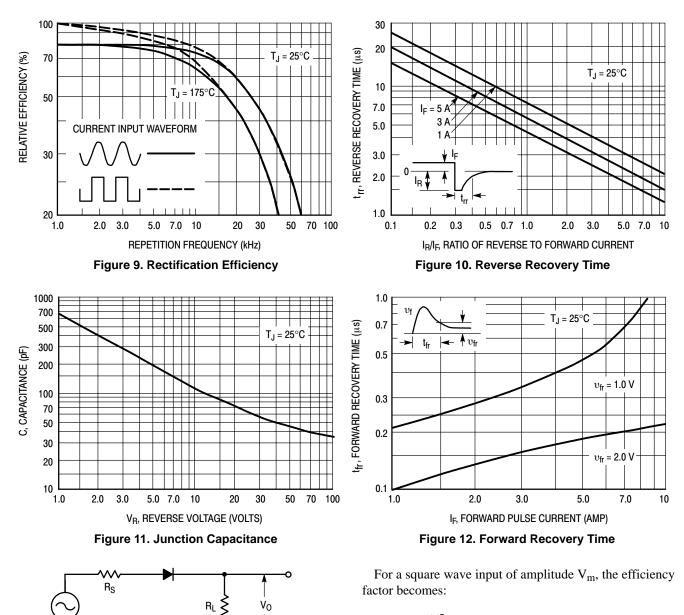


Figure 13. Single-Phase Half-Wave

Rectifier Circuit

.....

The rectification efficiency factor σ shown in Figure 9 was calculated using the formula:

$$\sigma = \frac{P_{(dc)}}{P_{(rms)}} = \frac{\frac{V_{2_0(dc)}}{R_L}}{\frac{V_{2_0(rms)}}{R_L}} \cdot 100\% = \frac{V_{2_0(dc)}}{V_{2_0(ac)}^2 + V_{2_0(dc)}^2} \cdot 100\%$$
(1)

For a sine wave input $V_m \sin (wt)$ to the diode, assumed lossless, the maximum theoretical efficiency factor becomes:

$$\sigma_{\text{(sine)}} = \frac{\frac{V^2 m}{\pi^2 R_L}}{\frac{V^2 m}{4 R_1}} \cdot 100\% = \frac{4}{\pi^2} \cdot 100\% = 40.6\%$$
(2)

$$\sigma_{(\text{square})} = \frac{\frac{V^2 m}{^2 R_L}}{\frac{V^2 m}{R_L}} \cdot 100\% = 50\%$$
(3)

(A full wave circuit has twice these efficiencies)

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 10) becomes significant, resulting in an increasing ac voltage component across R_L which is opposite in polarity to the forward current, thereby reducing the value of the efficiency factor σ , as shown on Figure 9.

It should be emphasized that Figure 9 shows waveform efficiency only; it does not provide a measure of diode losses. Data was obtained by measuring the ac component of V_o with a true rms ac voltmeter and the dc component with a dc voltmeter. The data was used in Equation 1 to obtain points for Figure 9.

MR2504 and MR2510 are Preferred Devices

Medium-Current Silicon Rectifiers

. . . compact, highly efficient silicon rectifiers for medium-current applications requiring:

- High Current Surge 400 Amperes @ $T_J = 175^{\circ}C$
- Peak Performance @ Elevated Temperature 25 Amperes @ $T_C = 150^{\circ}C$
- Low Cost
- Compact, Molded Package For Optimum Efficiency in a Small Case Configuration

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.8 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminals are Readily Solderable
- Lead Temperature for Soldering Purposes: requires a custom temperature soldering profile
- Polarity: Cathode Polarity Band
- Shipped 5000 units per box

MAXIMUM RATINGS

Please See the Table on the Following Page

ON Semiconductor**

http://onsemi.com

MEDIUM-CURRENT SILICON RECTIFIERS 25 AMPERES 200-1000 VOLTS DIFFUSED JUNCTION

MICRODE BUTTON CASE 193

MARKING DIAGRAM

 $\begin{array}{rl} MR25xx = Device \ Code \\ xx &= 02, \ 04 \ or \ 10 \\ L &= Location \ Code \\ YY &= Year \end{array}$

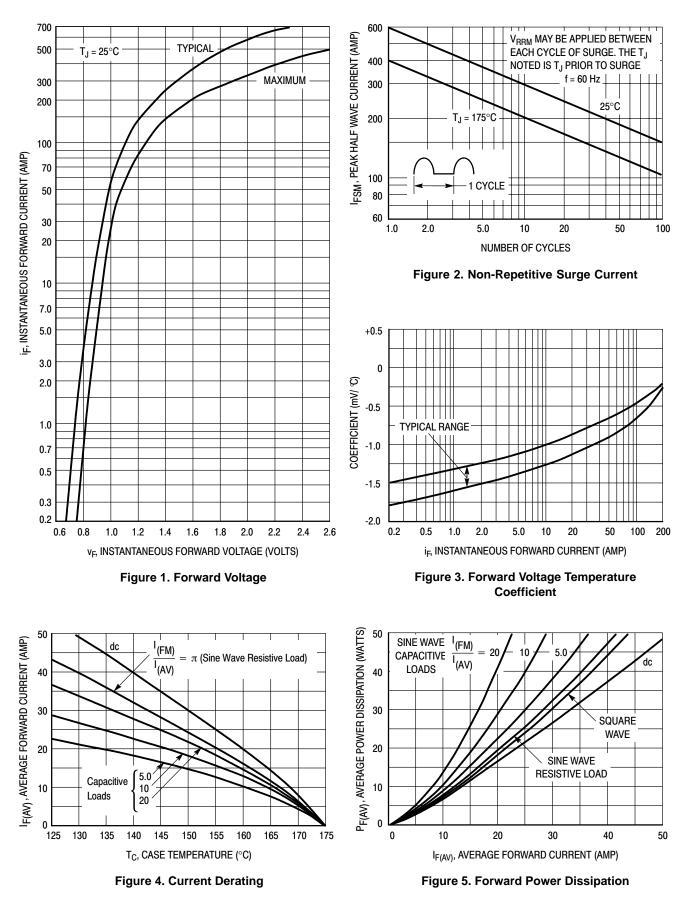
WW = Work Week

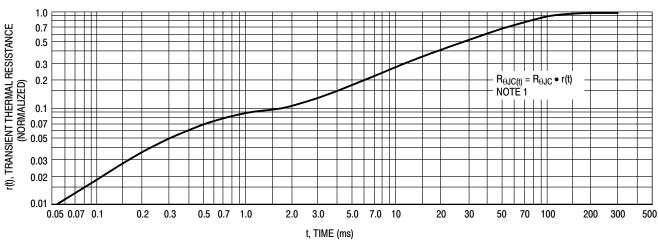
ORDERING INFORMATION

Device	Package	Shipping
MR2502	Microde Button	5000 Units/Box
MR2504	Microde Button	5000 Units/Box
MR2510	Microde Button	5000 Units/Box

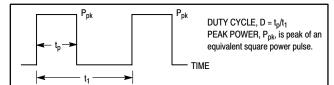
Preferred devices are recommended choices for future use and best overall value.

MAXIMUM RATINGS


Characteristic	Symbol	MR2502	MR2504	MR2510	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	400	1000	Volts
Non-Repetitive Peak Reverse Voltage (Halfwave, single phase, 60 Hz peak)	V _{RSM}	240	480	1200	Volts
Average Rectified Forward Current (Single phase, resistive load, 60 Hz, T _C = 150°C)	Ι _Ο	25			Amps
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz)	I _{FSM}	400 (for 1 cycle)			Amps
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65 to +175			°C


THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (Single Side Cooled)	$R_{ extsf{ heta}JC}$	1.0	°C/W


ELECTRICAL CHARACTERISTICS

Characteristics and Conditions	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage (i _F = 78.5 Amps, T _C = 25°C)	۷F	1.18	Volts
Maximum Reverse Current (rated dc voltage) $T_C = 25^{\circ}C$ $T_C = 100^{\circ}C$	I _R	100 500	μA

To determine maximum junction temperature of the diode in a given situation, the following procedure is recommended:

The temperature of the case should be measured using a thermocouple placed on the case at the temperature reference point (see the outline drawing on page 1). The thermal mass connected to the case is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of T_C , the junction temperature may be determined by:

$\mathsf{T}_\mathsf{J} = \mathsf{T}_\mathsf{C} + \Delta \, \mathsf{T}_\mathsf{J}_\mathsf{C}$

where $\Delta\,T_{JC}$ is the increase in junction temperature above the case temperature, it may be determined by:

 $\begin{array}{l} \Delta \ T_{JC} = P_{pk} \cdot R_{\theta JC} \left[D + (1 - D) \cdot r(t_1 + t_p) + r(t_p) - r(t_1) \right] \ \text{where} \\ r(t) = \text{normalized value of transient thermal resistance at time, } t, \\ \text{from Figure 6, i.e.:} \end{array}$

 $r~(t_1+t_p)$ = normalized value of transient thermal resistance at time $t_1+t_p.$

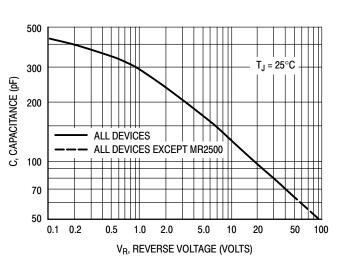
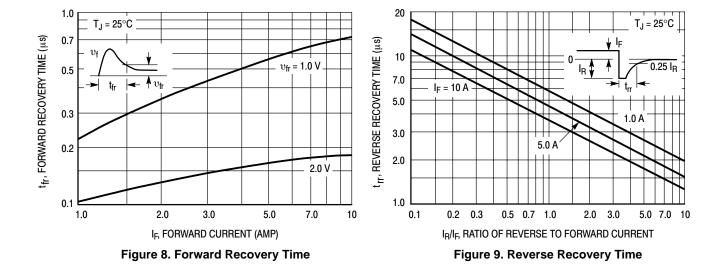



Figure 7. Capacitance

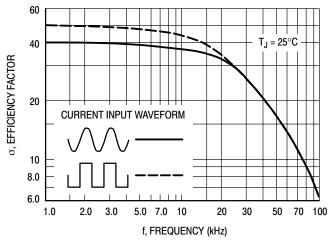


Figure 10. Rectification Waveform Efficiency

RECTIFICATION EFFICIENCY NOTE

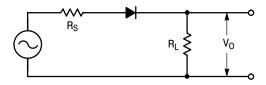


Figure 11. Single-Phase Half-Wave Rectifier Circuit

The rectification efficiency factor σ shown in Figure 10 was calculated using the formula:

$$\sigma = \frac{P_{(dc)}}{P_{(rms)}} = \frac{\frac{V_{20}^{2}(dc)}{R_{L}}}{\frac{V_{20}^{2}(rms)}{R_{L}}} \cdot 100\% = \frac{V_{20}^{2}(dc)}{V_{20}^{2}(ac) + V_{20}^{2}(dc)} \cdot 100\%$$
(1)

For a sine wave input $V_m \sin(\omega t)$ to the diode, assume lossless, the maximum theoretical efficiency factor becomes:

$$\sigma_{\text{(sine)}} = \frac{\frac{V^2 m}{\pi^2 R_L}}{\frac{V^2 m}{4 R_L}} \cdot 100\% = \frac{4}{\pi^2} \cdot 100\% = 40.6\%$$
(2)

For a square wave input of amplitude V_m , the efficiency factor becomes:

$$\sigma_{\text{(square)}} = \frac{\frac{V^2 m}{^2 R_L}}{\frac{V^2 m}{R_L}} \cdot 100\% = 50\%$$
(3)

(A full wave circuit has twice these efficiencies)

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 9) becomes significant, resulting in an increasing ac voltage component across R_L which is opposite in polarity to the forward current, thereby reducing the value of the efficiency factor σ , as shown on Figure 10.

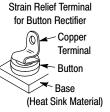
It should be emphasized that Figure 10 shows waveform efficiency only; it does not provide a measure of diode losses. Data was obtained by measuring the ac component of V_O with a true rms ac voltmeter and the dc component with a dc voltmeter. The data was used in Equation 1 to obtain points for Figure 10.

ASSEMBLY AND SOLDERING INFORMATION

There are *two basic areas* of consideration for successful implementation of button rectifiers:

1. Mounting and Handling

2. Soldering


each should be carefully examined before attempting a finished assembly or mounting operation.

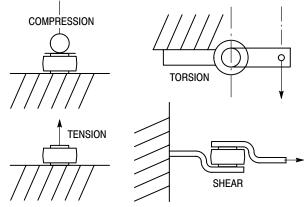
MOUNTING AND HANDLING

The button rectifier lends itself to a multitude of assembly arrangements but one key consideration must *always* be included:

One Side of the Connections to the Button Must Be Flexible!

This stress relief to the button should also be chosen for maximum contact area to afford the best heat transfer but not at the expense of flexibility. For an annealed copper terminal a thickness of 0.015" is suggested.

The base heat sink may be of various materials whose shape and size are a function of the individual application and the heat transfer requirements.


Common

Materials	Advantages and Disadvantages
Steel	Low Cost; relatively low heat conductivity
Copper	High Cost; high heat conductivity
Aluminum	Medium Cost; medium heat conductivity
	Relatively expensive to plate and not all
	platers can process aluminum.

Handling of the button during assembly must be relatively gentle to minimize sharp impact shocks and avoid nicking of the plastic. Improperly designed automatic handling equipment is the worst source of unnecessary shocks. Techniques for vacuum handling and spring loading should be investigated.

The mechanical stress limits for the button diode are as follows:

Compression	32 lbs.	142.3 Newton
Tension	32 lbs.	142.3 Newton
Torsion	6-inch lbs.	0.68 Newton-meters
Shear	55 lbs.	244.7 Newton

MECHANICAL STRESS

Exceeding these recommended maximums can result in electrical degradation of the device.

SOLDERING

The button rectifier is basically a semiconductor chip bonded between two nickel- plated copper heat sinks with an encapsulating material of thermal- setting silicone. The exposed metal areas are also tin plated to enhance solderability.

In the soldering process it is important that the temperature not exceed 250°C if device damage is to be avoided. Various solder alloys can be used for this operation but two types are recommended for best results:

- 1. 95% Sn, 5% Sb; melting point 237°C
- 2. 96.5% tin, 3.5% silver; melting point 221°C
- 3. 63% tin, 37% lead; melting point 183°C

Solder is available as preforms or paste. The paste contains both the metal and flux and can be dispensed rapidly. The solder preform requires the application of a flux to assure good wetting of the solder. The type of flux used depends upon the degree of cleaning to be accomplished and is a function of the metals involved. These fluxes range from a mild rosin to a strong acid; e.g., Nickel plating oxides are best removed by an acid base flux while an activated rosin flux may be sufficient for tin plated parts.

Since the button is relatively light-weight, there is a tendency for it to float when the solder becomes liquid. To prevent bad joints and misalignment it is suggested that a weighting or spring loaded fixture be employed. It is also important that severe thermal shock (either heating or cooling) be avoided as it may lead to damage of the die or encapsulant of the part.

Button holding fixtures for use during soldering may be of various materials. Stainless steel has a longer use life while black anodized aluminum is less expensive and will limit heat reflection and enhance absorption. The assembly volume will influence the choice of materials. Fixture dimension tolerances for locating the button must allow for expansion during soldering as well as allowing for button clearance.

HEATING TECHNIQUES

The following four heating methods have their advantages and disadvantages depending on volume of buttons to be soldered.

- 1. **Belt Furnaces** readily handle large or small volumes and are adaptable to establishment of "on-line" assembly since a variable belt speed sets the run rate. Individual furnace zone controls make excellent temperature control possible.
- 2. **Flame Soldering** involves the directing of natural gas flame jets at the base of a heatsink as the heatsink is indexed to various loading- heating- cooling- unloading positions. This is the most economical labor method of soldering large volumes. Flame soldering offers good temperature control but requires sophisticated temperature monitoring systems such as infrared.

ASSEMBLY AND SOLDERING INFORMATION (continued)

- 3. **Ovens** are good for batch soldering and are production limited. There are handling problems because of slow cooling. Response time is load dependent, being a function of the watt rating of the oven and the mass of parts. Large ovens may not give an acceptable temperature gradient. Capital cost is low compared to belt furnaces and flame soldering.
- 4. **Hot Plates** are good for soldering small quantities of prototype devices. Temperature control is fair with overshoot common because of the exposed heating surface. Solder flow and positioning can be corrected during soldering since the assembly is exposed. Investment cost is very low.

Regardless of the heating method used, a soldering profile giving the time-temperature relationship of the particular method must be determined to assure proper soldering. Profiling must be performed on a scheduled basis to minimize poor soldering. The time-temperature relationship will change depending on the heating method used.

SOLDER PROCESS EVALUATION

Characteristics to look for when setting up the soldering process:

- **I Overtemperature** is indicated by any one or all three of the following observations.
 - 1. Remelting of the solder inside the button rectifier shows the temperature has exceeded 285°C and is noted by "islands" of shiny solder and solder dewetting when a unit is broken apart.
 - 2. Cracked die inside the button may be observed by a moving reverse oscilloscope trace when pressure is applied to the unit.
 - 3. Cracked plastic may be caused by thermal shock as well as overtemperature so cooling rate should also be checked.
- **II Cold soldering** gives a grainy appearance and solder build-up without a smooth continuous solder fillet. The temperature must be adjusted until the proper solder fillet is obtained within the maximum temperature limits.
- **III Incomplete solder fillets** result from insufficient solder or parts not making proper contact.
- **IV Tilted buttons** can cause a void in the solder between the heatsink and button rectifier which will result in poor heat transfer during operation. An eight degree tilt is a suggested maximum value.
- **V Plating problems** require a knowledge of plating operations for complete understanding of observed deficiencies.

- 1. Peeling or plating separation is generally seen when a button is broken away for solder inspection. If heatsink or terminal base metal is present the plating is poor and must be corrected.
- 2. Thin plating allows the solder to penetrate through to the base metal and can give a poor connection. A suggested minimum plating thickness is 300 microinches.
- 3. Contaminated soldering surfaces may out-gas and cause non-wetting resulting in voids in the solder connection. The exact cause is not always readily apparent and can be because of:
 - (a) improper plating
 - (b) mishandling of parts
 - (c) improper and/or excessive storage time

SOLDER PROCESS MONITORING

Continuous monitoring of the soldering process must be established to minimize potential problems. All parts used in the soldering operation should be sampled on a lot by lot basis by assembly of a controlled sample. Evaluate the control sample by break-apart tests to view the solder connections, by physical strength tests and by dimensional characteristics for part mating.

A shear test is a suggested way of testing the solder bond strength.

POST SOLDERING OPERATION CONSIDERATIONS

After soldering, the completed assembly must be unloaded, washed and inspected.

Unloading must be done carefully to avoid unnecessary stress. Assembly fixtures should be cooled to room temperature so solder profiles are not affected.

Washing is mandatory if an acid flux is used because of its ionic and corrosive nature. Wash the assemblies in agitated hot water and detergent for three to five minutes. After washing; rinse, blow off excessive water and bake 30 minutes at 150°C to remove trapped moisture.

Inspection should be both electrical and physical. Any rejects can be reworked as required.

SUMMARY

The Button Rectifier is an excellent building block for specialized applications. The prime example of its use is the output bridge of the automative alternator where millions are used each year. Although the material presented here is not all inclusive, primary considerations for use are presented. For further information, contact the nearest ON Semiconductor Sales Office or franchised distributor.

Medium-Current Silicon Rectifier

250 Volts, 32 Amperes

Compact, highly efficient silicon rectifiers for medium-current applications requiring:

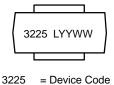
- High Current Surge 500 Amperes @ $T_J = 175^{\circ}C$
- Peak Performance @ Elevated Temperature 32 Amperes
- Low Cost
- Compact, Molded Package for Optimum Efficiency in a Small Case Configuration

Mechanical Characteristics

- Finish: All External Surfaces are Corrosion Resistant, and Contact Areas are Readily Solderable
- Polarity: Indicated by Cathode Band
- Weight: 1.8 Grams (Approximately)
- Maximum Temperature for Soldering Purposes: 260°C
- Marking: 3225

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Blocking Voltage	V _R	250	Volts
Non-Repetitive Peak Reverse Voltage (Halfwave, Single Phase, 60 Hz)	V _{RSM}	310	Volts
Average Forward Current (Single Phase, Resistive Load, T _C = 150°C)	Ι _Ο	32	Amps
Non-Repetitive Peak Surge Current (Halfwave, Single Phase, 60 Hz)	I _{FSM}	500	Amps
Operating Junction Temperature Range	TJ	-65 to +175	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C



ON Semiconductor[™]

http://onsemi.com

MICRODE BUTTON CASE 193

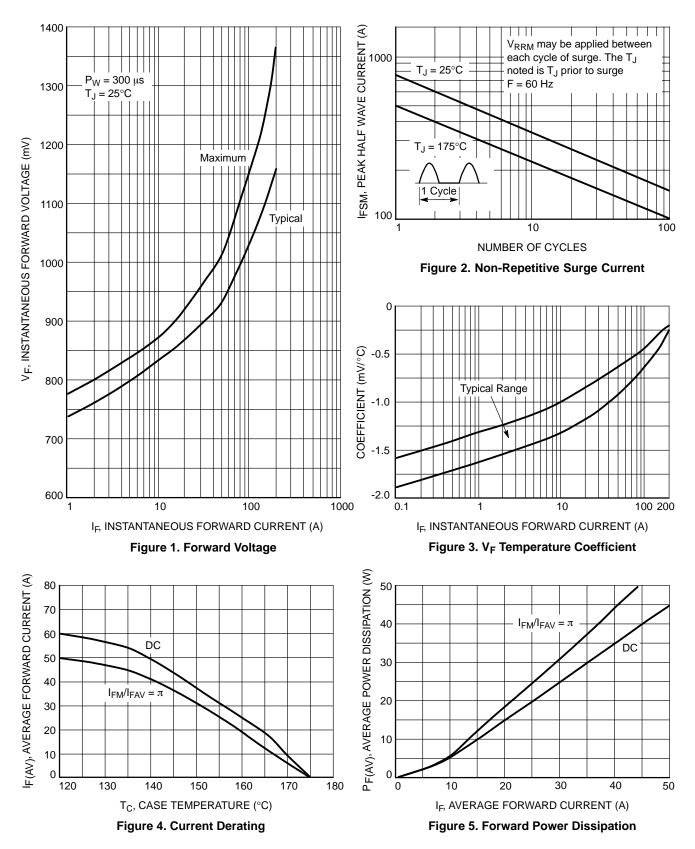
MARKING DIAGRAM

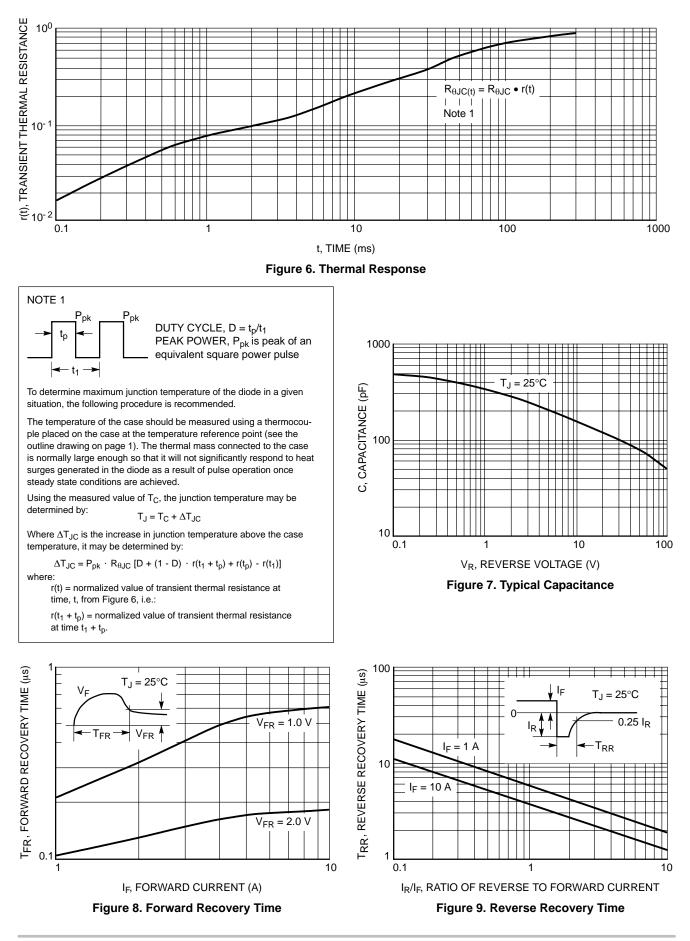
L = Location Code YY = Year

WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
TRA3225	Microde Button	5000 Units/Box


THERMAL CHARACTERISTICS


Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case		0.8	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Instantaneous Forward Voltage (Note 1.) ($I_F = 100 \text{ Amps}, T_C = 25^{\circ}C$)	V _F	-	1.15	Volts
Reverse Current (Note 1.) $(V_R = 250 \text{ V}, T_C = 25^{\circ}\text{C})$ $(V_R = 250 \text{ V}, T_C = 100^{\circ}\text{C})$	I _R		20 250	μΑ
Forward Voltage Temperature Coefficient (I _F = 10 mA)		-2*	-2*	mV/°C

1. Pulse Test: Pulse Width < 300 μs, Duty Cycle < 2%. *Typical

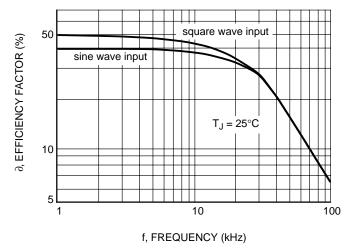


Figure 10. Rectification Waveform Efficiency

RECTIFICATION EFFICIENCY NOTE

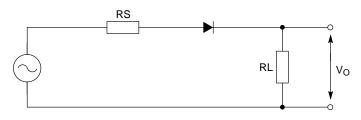


Figure 11. Single Phase Half-Wave Rectifier Circuit

The rectification efficiency factor ∂ shown in Figure 10 was calculated using the formula:

$$\partial = \frac{P_{(dc)}}{P_{(rms)}} = \frac{\frac{V_{20}^{(dc)}}{R_{L}}}{\frac{V_{20}^{(rms)}}{R_{L}}} \cdot 100\% = \frac{V_{20}^{2}(dc)}{V_{20}^{2}(ac) + V_{20}^{2}(dc)} \cdot 100\%$$
(1)

For a sine wave input Vm sin(wt) to the diode, assume lossless, the maximum theoretical efficiency factor becomes:

$$\partial_{\text{(sine)}} = \frac{\frac{\sqrt{2}m}{\pi^2 R_L}}{\frac{\sqrt{2}m}{4R_L}} \cdot 100\% = \frac{4}{\pi^2} \cdot 100\% = 40.6\%$$
(2)

For a square wave input of amplitude Vm, the efficiency factor becomes:

$$\partial_{\text{(square)}} = \frac{\frac{V^2 m}{^2 R_L}}{\frac{V^2 m}{R_L}} \cdot 100\% = 50\%$$
(3)

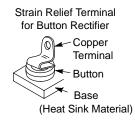
(a full wave circuit has twice these efficiencies)

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 9) becomes significant, resulting in an increase ac voltage component across RL which is opposite in polarity to the forward current, thereby reducing the value of the efficiency factor ∂ , as shown on Figure 10.

It should be emphasized that Figure 10 shows waveform efficiency only; it does not provide a measure of diode losses. Data was obtained by measuring the ac component of V_O with a true rms ac voltmeter and the dc component with a dc voltmeter. The data was used in Equation 1 to obtain points for Figure 10.

Assembly and Soldering Information

There are two basic areas of consideration for successful implementation of button rectifiers:


- 1. Mounting and Handling
- 2. Soldering

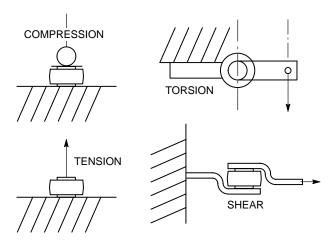
Each should be carefully examined before attempting a finished assembly or mounting operation.

Mounting and Handling

The button rectifier lends itself to a multitude of assembly arrangements, but one key consideration must *always* be included: One Side of the Connections to the Button Must be Flexible!

This stress relief to the button should also be chosen for maximum contact area to afford the best heat transfer - but not at the expense of flexibility. For an annealed copper terminal a thickness of 0.015'' is suggested.

The base heat sink may be of various materials whose shape and size are a function of the individual application and the heat transfer requirements.


Common Materials	Advantages and Disadvantages		
Steel	Low Cost: relatively low heat conductivity		
Copper	High Cost: high heat conductivity		
Aluminum	Medium Cost: medium heat conductivity.		
	Relatively expensive to plate and not all		
	platers can process aluminum.		

Handling of the button during assembly must be relatively gentle to minimize sharp impact shocks and avoid nicking of the plastic. Improperly designed automatic handling equipment is the worst source of unnecessary shocks. Techniques for vacuum handling and spring loading should be investigated.

The mechanical stress limits for the button diode are as follows:

Compression	32 lbs.	142.3 Newton
Tension	32 lbs.	142.3 Newton
Torsion	6-inch lbs.	0.68 Newtons-meters
Shear	55 lbs.	244.7 Newton

MECHANICAL STRESS

Exceeding these recommended maximums can result in electrical degradation of the device.

Soldering

The button rectifier is basically a semiconductor chip bonded between two nickel-plated copper heat sinks with an encapsulating material of epoxy compound. The exposed metal areas are also tin plated to enhance solderability.

In the soldering process it is important that the temperature not exceed 260°C if device damage is to be avoided. Various solder alloys can be used for this operation but two types are recommended for best results:

- 1. 95% Sn, 5% Sb; melting point 237°C
- 2. 96.5% tin, 3.5% silver; melting point 221°C
- 3. 63% tin, 37% lead; melting point 183°C

Solder is available as preforms or paste. The paste contains both the metal and flux and can be dispensed rapidly. The solder preform requires the application of a flux to assure good wetting of the solder. The type of flux used depends upon the degree of cleaning to be accomplished and is a function of the metal involved. These fluxes range from a mild rosin to a strong acid; e.g., Nickel plating oxides are best removed by an acid base flux while an activated rosin flux may be sufficient for tin plated parts.

Since the button is relatively lightweight, there is a tendency for it to float when the solder becomes liquid. To prevent bad joints and misalignment, it is suggested that a weighting or spring loaded fixture be employed. It is also important that severe thermal shock (either heating or cooling) be avoided as it may lead to damage of the die or encapsulant of the part. Button holding fixtures for use during soldering may be of various materials. Stainless steel has a longer use life while black anodized aluminum is less expensive and will limit heat reflection and enhance absorption. The assembly volume will influence the choice of materials. Fixture dimension tolerances for locating the button must allow for expansion during soldering as well as allowing for button clearance.

Heating Techniques

The following four heating methods have their advantages and disadvantages depending on volume of buttons to be soldered.

- 1. **Belt furnaces** readily handle large or small volumes and are adaptable to establishment of "on-line" assembly since a variable belt speed sets the run rate. Individual furnace zone controls make excellent temperature control possible.
- 2. Flame Soldering involves the directing of natural gas flame jets at the base of a heatsink as the heatsink is indexed to various loading-heatingcooling-unloading positions. This is the most economical labor method of soldering large volumes. Flame soldering offers good temperature

control but requires sophisticated temperature monitoring systems such as infrared.

- 3. **Ovens** are good for batch soldering and are production limited. There are handling problems because of slow cooling. Response time is load dependent, being a function of the watt rating of the oven and the mass of parts. Large ovens may not give an acceptable temperature gradient. Capital cost is low compared to belt furnaces and flame soldering.
- 4. **Hot Plates** are good for soldering small quantities of prototype devices. Temperature control is fair with overshoot common because of the exposed heating surface. Solder flow and positioning can be corrected during soldering since the assembly is exposed. Investment cost is very low.

Regardless of the heating method used, a soldering profile giving the time-temperature relationship of the particular method must be determined to assure proper soldering. Profiling must be performed on a scheduled basis to minimize poor soldering. The time-temperature relationship will change depending on the heating method used.

Medium-Current Silicon Rectifiers

250 Volts, 25 Amperes

Compact, highly efficient silicon rectifiers for medium-current applications requiring:

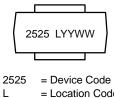
- High Current Surge 400 Amperes @ $T_J = 175^{\circ}C$
- Peak Performance @ Elevated Temperature 25 Amperes
- Low Cost
- Compact, Molded Package for Optimum Efficiency in a Small Case Configuration

Mechanical Characteristics

- Finish: All External Surfaces are Corrosion Resistant, and Contact Areas are Readily Solderable
- Polarity: Indicated by Cathode Band
- Weight: 1.8 Grams (Approximately)
- Maximum Temperature for Soldering Purposes: 260°C
- Marking: 2525 or MR3025

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Blocking Voltage	V _R	250	Volts
Non-Repetitive Peak Reverse Voltage (Halfwave, Single Phase, 60 Hz)	V _{RSM}	310	Volts
Average Forward Current (Single Phase, Resistive Load, T _C = 150°C)	Io	25	Amps
Non-Repetitive Peak Surge Current (Halfwave, Single Phase, 60 Hz)	I _{FSM}	400	Amps
Operating Junction Temperature Range	TJ	-65 to +175	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C



ON Semiconductor[™]

http://onsemi.com

MICRODE BUTTON CASE 193

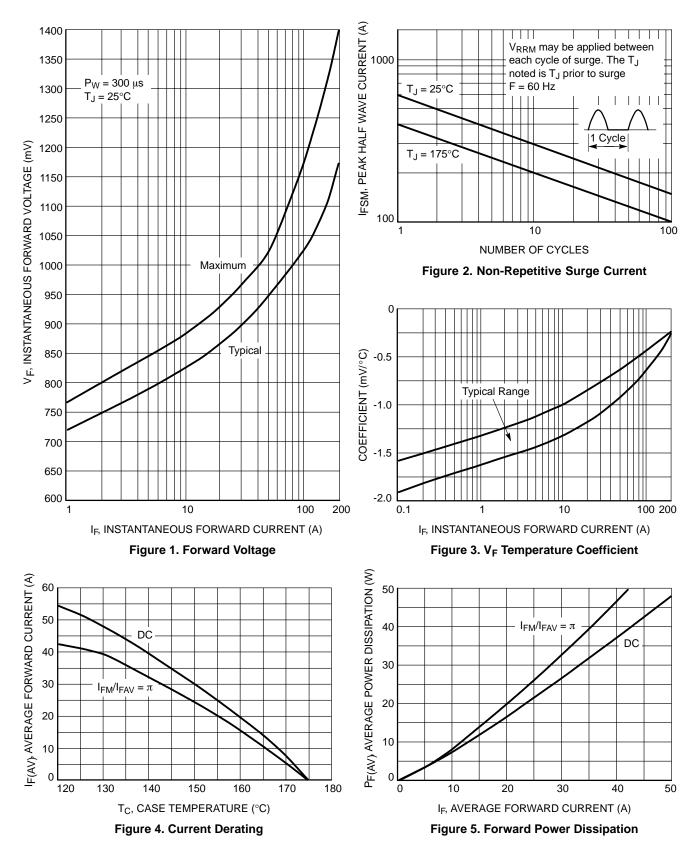
MARKING DIAGRAM

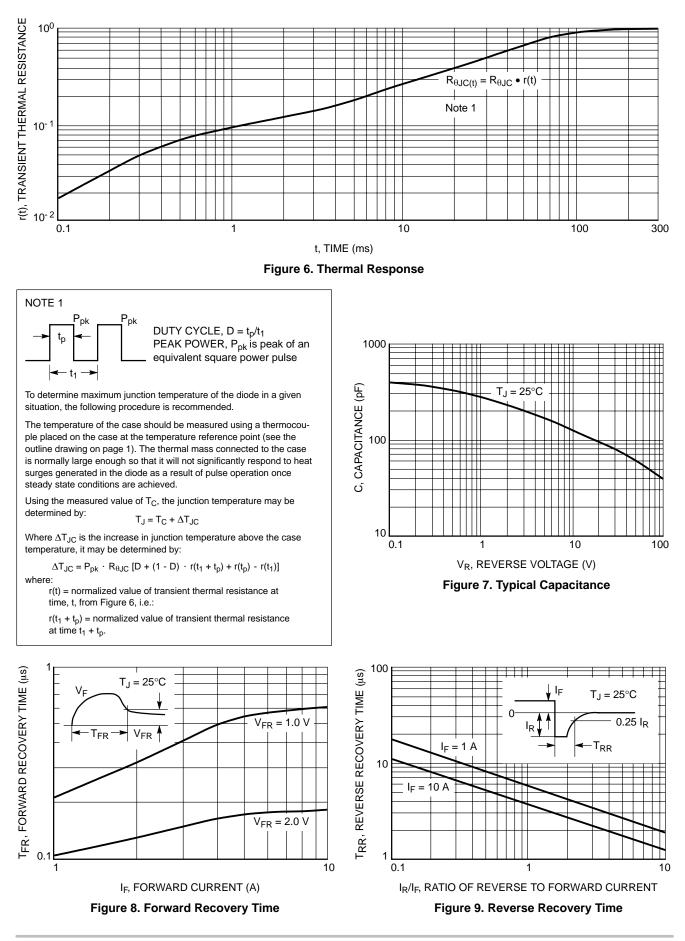
L = Location Code YY = Year WW = Work Week

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
TRA2525	Microde Button	5000 Units/Box
MR3025	Microde Button	5000 Units/Box


THERMAL CHARACTERISTICS


Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	R_{\thetaJC}	1.0	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Instantaneous Forward Voltage (Note 1.) ($I_F = 100 \text{ Amps}, T_C = 25^{\circ}C$)	V _F	_	1.18	Volts
Reverse Current ⁽¹⁾ (V _R = 250 V, T _C = 25°C) (V _R = 250 V, T _C = 100°C)	I _R		10 250	μΑ
Forward Voltage Temperature Coefficient @ I _F = 10 mA	V _{FTC}	-2*	-2*	mV/°C

1. Pulse Test: Pulse Width < 300 μs, Duty Cycle < 2%. *Typical

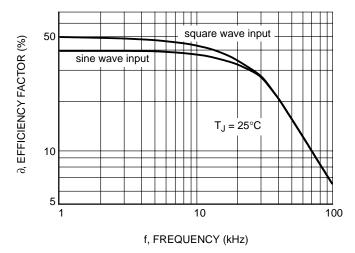


Figure 10. Rectification Waveform Efficiency

RECTIFICATION EFFICIENCY NOTE

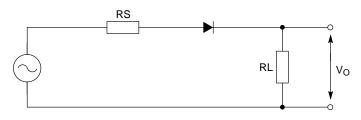


Figure 11. Single Phase Half-Wave Rectifier Circuit

The rectification efficiency factor ∂ shown in Figure 10 was calculated using the formula:

$$\partial = \frac{P_{(dc)}}{P_{(rms)}} = \frac{\frac{V_{20}^{(dc)}}{R_{L}}}{\frac{V_{20}^{(rms)}}{R_{L}}} \cdot 100\% = \frac{V_{20}^{2}(dc)}{V_{20}^{2}(ac) + V_{20}^{2}(dc)} \cdot 100\%$$
(1)

For a sine wave input Vm sin(wt) to the diode, assume lossless, the maximum theoretical efficiency factor becomes:

$$\partial_{\text{(sine)}} = \frac{\frac{V^2 m}{\pi^2 R_L}}{\frac{V^2 m}{4 R_L}} \cdot 100\% = \frac{4}{\pi^2} \cdot 100\% = 40.6\%$$
(2)

For a square wave input of amplitude Vm, the efficiency factor becomes:

$$\partial_{\text{(square)}} = \frac{\frac{V^2 m}{^2 R_L}}{\frac{V^2 m}{R_l}} \cdot 100\% = 50\%$$
(3)

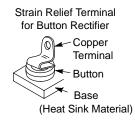
(a full wave circuit has twice these efficiencies)

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 9) becomes significant, resulting in an increase ac voltage component across RL which is opposite in polarity to the forward current, thereby reducing the value of the efficiency factor ∂ , as shown on Figure 10.

It should be emphasized that Figure 10 shows waveform efficiency only; it does not provide a measure of diode losses. Data was obtained by measuring the ac component of V_O with a true rms ac voltmeter and the dc component with a dc voltmeter. The data was used in Equation 1 to obtain points for Figure 10.

Assembly and Soldering Information

There are two basic areas of consideration for successful implementation of button rectifiers:


- 1. Mounting and Handling
- 2. Soldering

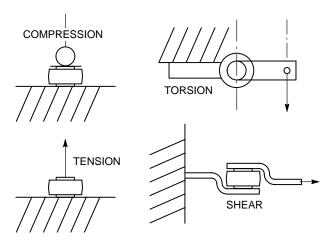
Each should be carefully examined before attempting a finished assembly or mounting operation.

Mounting and Handling

The button rectifier lends itself to a multitude of assembly arrangements, but one key consideration must *always* be included: One Side of the Connections to the Button Must be Flexible!

This stress relief to the button should also be chosen for maximum contact area to afford the best heat transfer — but not at the expense of flexibility. For an annealed copper terminal a thickness of 0.015'' is suggested.

The base heat sink may be of various materials whose shape and size are a function of the individual application and the heat transfer requirements.


Common Materials	Advantages and Disadvantages
Steel	Low Cost: relatively low heat conductivity
Copper	High Cost: high heat conductivity
Aluminum	Medium Cost: medium heat conductivity.
	Relatively expensive to plate and not all
	platers can process aluminum.

Handling of the button during assembly must be relatively gentle to minimize sharp impact shocks and avoid nicking of the plastic. Improperly designed automatic handling equipment is the worst source of unnecessary shocks. Techniques for vacuum handling and spring loading should be investigated.

The mechanical stress limits for the button diode are as follows:

Compression	32 lbs.	142.3 Newton
Tension	32 lbs.	142.3 Newton
Torsion	6-inch lbs.	0.68 Newtons-meters
Shear	55 lbs.	244.7 Newton

MECHANICAL STRESS

Exceeding these recommended maximums can result in electrical degradation of the device.

Soldering

The button rectifier is basically a semiconductor chip bonded between two nickel-plated copper heat sinks with an encapsulating material of epoxy compound. The exposed metal areas are also tin plated to enhance solderability.

In the soldering process it is important that the temperature not exceed 260°C if device damage is to be avoided. Various solder alloys can be used for this operation but two types are recommended for best results:

- 1. 95% Sn, 5% Sb; melting point 237°C
- 2. 96.5% tin, 3.5% silver; melting point 221°C
- 3. 63% tin, 37% lead; melting point 183°C

Solder is available as preforms or paste. The paste contains both the metal and flux and can be dispensed rapidly. The solder preform requires the application of a flux to assure good wetting of the solder. The type of flux used depends upon the degree of cleaning to be accomplished and is a function of the metal involved. These fluxes range from a mild rosin to a strong acid; e.g., Nickel plating oxides are best removed by an acid base flux while an activated rosin flux may be sufficient for tin plated parts.

Since the button is relatively lightweight, there is a tendency for it to float when the solder becomes liquid. To prevent bad joints and misalignment, it is suggested that a weighting or spring loaded fixture be employed. It is also important that severe thermal shock (either heating or cooling) be avoided as it may lead to damage of the die or encapsulant of the part. Button holding fixtures for use during soldering may be of various materials. Stainless steel has a longer use life while black anodized aluminum is less expensive and will limit heat reflection and enhance absorption. The assembly volume will influence the choice of materials. Fixture dimension tolerances for locating the button must allow for expansion during soldering as well as allowing for button clearance.

Heating Techniques

The following four heating methods have their advantages and disadvantages depending on volume of buttons to be soldered.

- 1. **Belt furnaces** readily handle large or small volumes and are adaptable to establishment of "on-line" assembly since a variable belt speed sets the run rate. Individual furnace zone controls make excellent temperature control possible.
- 2. Flame Soldering involves the directing of natural gas flame jets at the base of a heatsink as the heatsink is indexed to various loading-heating-cooling-unloading positions. This is the most economical labor method of soldering large volumes. Flame soldering offers good temperature

control but requires sophisticated temperature monitoring systems such as infrared.

- 3. **Ovens** are good for batch soldering and are production limited. There are handling problems because of slow cooling. Response time is load dependent, being a function of the watt rating of the oven and the mass of parts. Large ovens may not give an acceptable temperature gradient. Capital cost is low compared to belt furnaces and flame soldering.
- 4. Hot Plates are good for soldering small quantities of prototype devices. Temperature control is fair with overshoot common because of the exposed heating surface. Solder flow and positioning can be corrected during soldering since the assembly is exposed. Investment cost is very low.

Regardless of the heating method used, a soldering profile giving the time-temperature relationship of the particular method must be determined to assure proper soldering. Profiling must be performed on a scheduled basis to minimize poor soldering. The time-temperature relationship will change depending on the heating method used.

Overvoltage Transient Suppressor

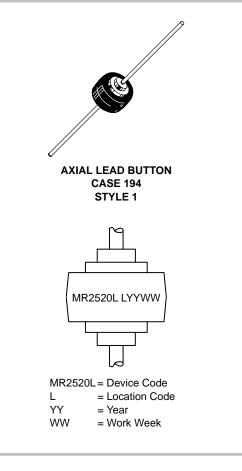
Designed for applications requiring a low voltage rectifier with reverse avalanche characteristics for use as reverse power transient suppressors. Developed to suppress transients in the automotive system, these devices operate in the forward mode as standard rectifiers or reverse mode as power avalanche rectifier and will protect electronic equipment from overvoltage conditions.

- High Power Capability
- Economical
- Increased Capacity by Parallel Operation

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 2.5 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Maximum Lead Temperature for Soldering Purposes: 350°C 3/8″ from Case for 10 Seconds at 5 lbs. Tension
- Polarity: Indicated by Diode Symbol or Cathode Band
- Marking: MR2520L

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)


Rating	Symbol	Value	Unit	
DC Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	23	Volts	
$\begin{array}{l} \mbox{Repetitive Peak Reverse Surge Current} \\ \mbox{(Time Constant = 10 ms,} \\ \mbox{Duty Cycle} \leq 1\%, \ T_C = 25^{\circ}C) \end{array}$	I _{RSM}	58	Amps	
Peak Reverse Power (Time Constant = 10 ms, Duty Cycle \leq 1%, T _C = 25°C)	P _{RSM}	2500	Watts	
Average Rectified Forward Current (Single Phase, Resistive Load, 60 Hz, $T_C = 125^{\circ}C$) (See Figure 4)	Ι _Ο	6.0	Amps	
Non-Repetitive Peak Surge Current Surge Supplied at Rated Load Conditions Halfwave, Single Phase	I _{FSM}	400	Amps	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C	

ON Semiconductor®

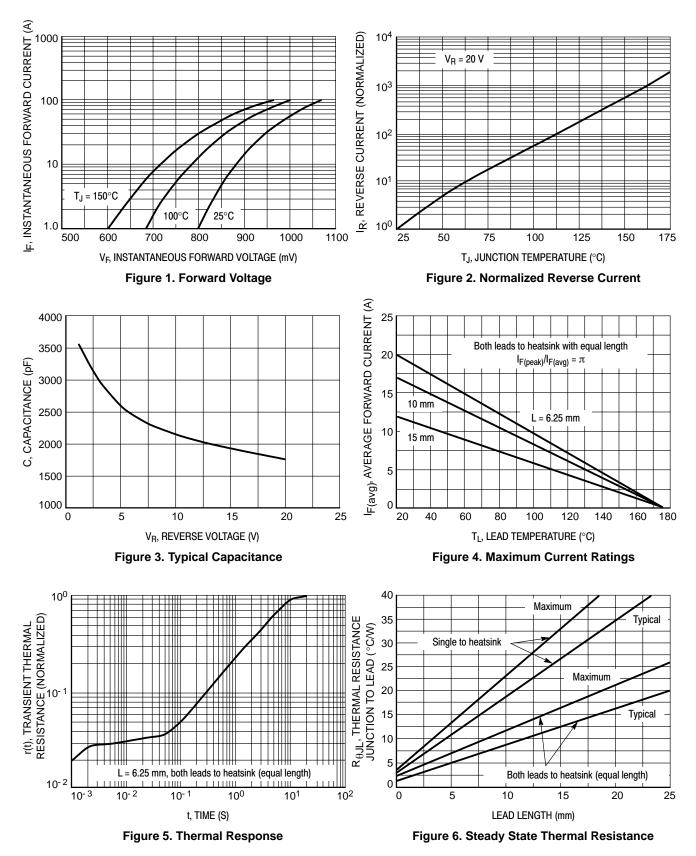
http://onsemi.com

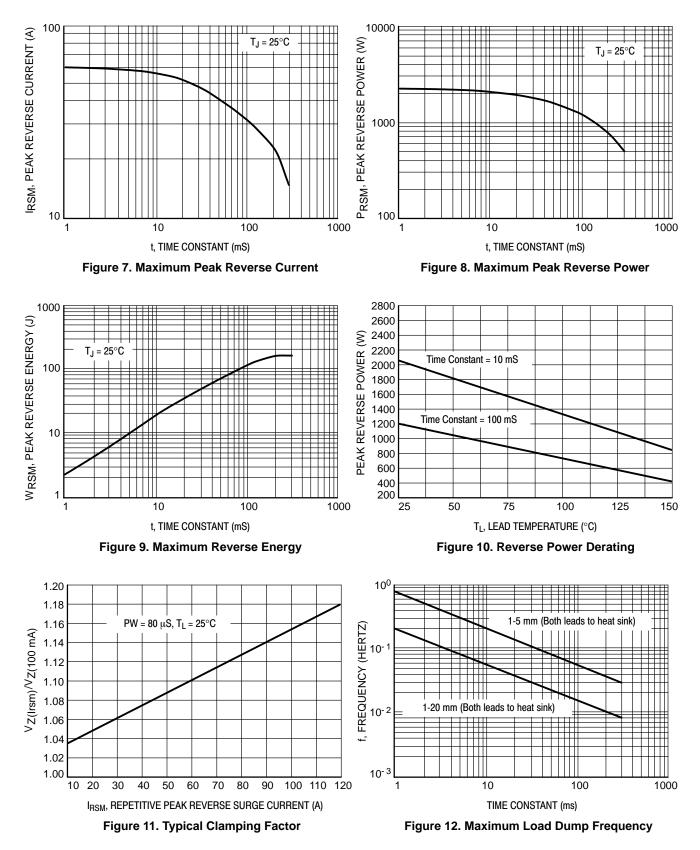
OVERVOLTAGE TRANSIENT SUPPRESSOR 24 - 32 VOLTS

ORDERING INFORMATION

Device	Package	Shipping
MR2520L	Axial Lead Button	1000/Box
MR2520LRL	Axial Lead Button	800/Reel

THERMAL CHARACTERISTICS


Characteristic	Lead Length	Symbol	Max	Unit
Thermal Resistance, Junction to Lead, Both Leads to Heat Sink with Equal Length	6.25 mm 10 mm 15 mm	R _{θJL}	7.5 10 15	°C/W
Thermal Resistance Junction to Case	-	$R_{ extsf{ heta}JC}$	1.0	°C/W


**Typical

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Instantaneous Forward Voltage (Note 1) ($I_F = 100 \text{ Amps}, T_C = 25^{\circ}C$)	VF	-	1.25	Volts
Instantaneous Forward Voltage (Note 1) (I _F = 6.0 Amps, T _C = 25° C)	VF	-	0.90	Volts
Reverse Current (V _R = 20 Vdc, T _C = 25°C)	I _R	-	10	nAdc
Reverse Current (V _R = 20 Vdc, T _C = 25°C)	۱ _R	-	300	nAdc
Breakdown Voltage (Note 1) ($I_R = 100 \text{ mAdc}, T_C = 25^{\circ}C$)	V _(BR)	24	32	Volts
Breakdown Voltage (Note 1) ($I_R = 90 \text{ Amp}, T_C = 150^{\circ}\text{C}, PW = 80 \mu\text{s}$)	V _(BR)	-	40	Volts
Dynamic Resistance (I _R = 100 mA, T _J = 25°C, f = 1.0 kHz)	R _Z	-	5.0	Ω
Dynamic Resistance (I _R = 40 mA, T_J = 25°C)	R _Z	-	0.15	Ω
Breakdown Voltage Temperature Coefficient	V _{(BR)TC}	-	0.09*	%/°C
Forward Voltage Temperature Coefficient @ $I_F = 10 \text{ mA}$	V _{FTC}	-	-2*	mV/°C

1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%. **Typical

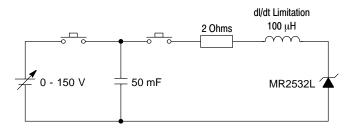


Figure 13. Load Dump Test Circuit

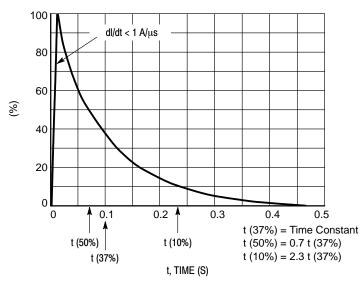


Figure 14. Load Dump Pulse Current

Overvoltage Transient Suppressors

Medium Current

Designed for applications requiring a low voltage rectifier with reverse avalanche characteristics for use as reverse power transient suppressors. Developed to suppress transients in the automotive system, these devices operate in the forward mode as standard rectifiers or reverse mode as power avalanche rectifier and will protect electronic equipment from overvoltage conditions.

- Avalanche Voltage 24 to 32 Volts
- High Power Capability
- Economical
- Increased Capacity by Parallel Operation

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 2.5 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Maximum Lead Temperature for Soldering Purposes: 350°C 3/8" from Case for 10 Seconds at 5 lbs. Tension
- Polarity: Indicated by Diode Symbol or Cathode Band
- Marking: MR2535L

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
DC Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	20	Volts
$\begin{array}{l} \mbox{Repetitive Peak Reverse Surge Current} \\ \mbox{(Time Constant = 10 ms, Duty Cycle} \\ \le 1\%, \ T_C = 25^\circ C) \ (\mbox{See Note 1}) \end{array}$	I _{RSM}	62	Amps
Average Rectified Forward Current (Single Phase, Resistive Load, 60 Hz, $T_C = 125^{\circ}C$) (See Figure 4)	Ι _Ο	6.0	Amps
Non-Repetitive Peak Surge Current Surge Supplied at Rated Load Conditions Halfwave, Single Phase	I _{FSM}	600	Amps
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175	°C

ON Semiconductor[™]

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
MR2535L	Axial Lead Button	1000/Box
MR2535LRL	Axial Lead Button	800/Reel

THERMAL CHARACTERISTICS

Characteristic	Lead Length	Symbol	Max	Unit
Thermal Resistance, Junction to Lead @ Both Leads to Heat Sink, Equal Length	1/4″ 3/8″ 1/2″	R _{θJL}	7.5 10 13	°C/W
Thermal Resistance Junction to Case		$R_{ extsf{ heta}JC}$	0.8*	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Instantaneous Forward Voltage (Note 1.) (i _F = 100 Amps, $T_C = 25^{\circ}C$)	VF	-	1.1	Volts
Reverse Current (V _R = 20 Vdc, T _C = 25°C)	I _R	-	200	nAdc
Breakdown Voltage (Note 1.) (I_R = 100 mAdc, T_C = 25°C)	V _(BR)	24	32	Volts
Breakdown Voltage (Note 1.) (I _R = 90 Amp, T_C = 150°C, PW = 80 µs)	V _(BR)	-	40	Volts
Breakdown Voltage Temperature Coefficient	V _{(BR)TC}	-	0.096*	%/°C
Forward Voltage Temperature Coefficient @ I _F = 10 mA	V _{FTC}	-	2*	mV/°C

1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2%.

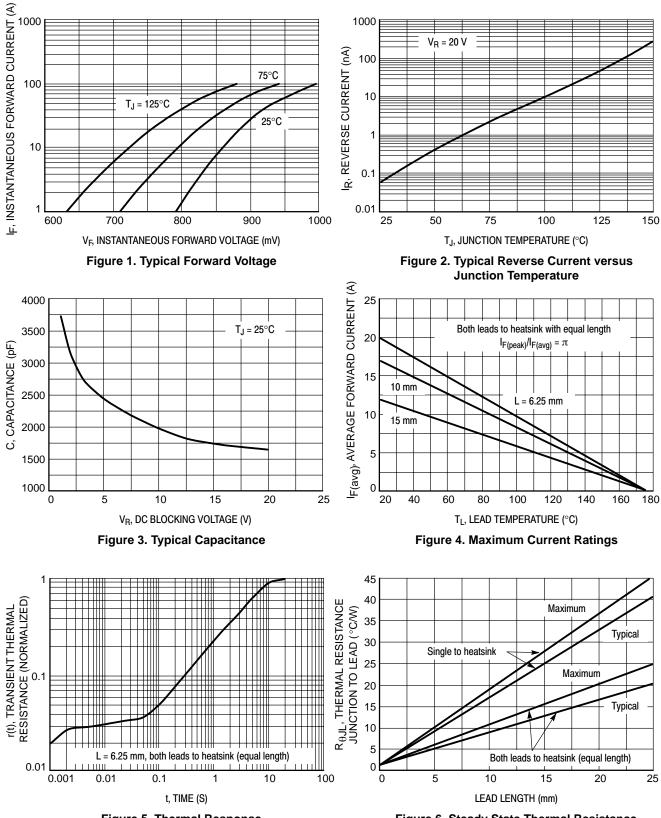
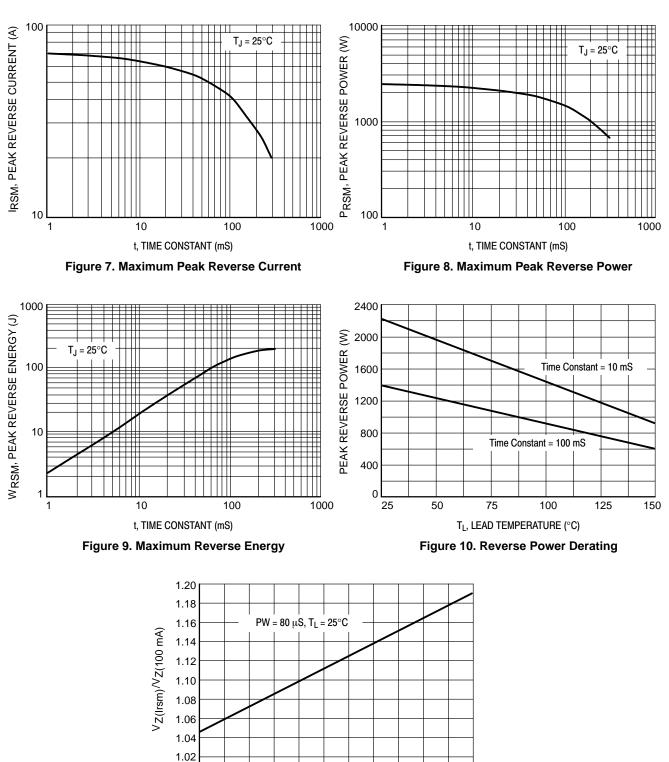



Figure 5. Thermal Response

Figure 6. Steady State Thermal Resistance

I_{RSM}, REPETITIVE PEAK REVERSE SURGE CURRENT (A) Figure 11. Typical Clamping Factor

90

100 110

120

50 60 70 80

30 40

1.00

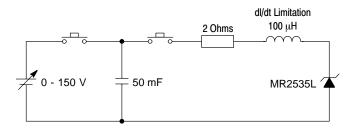


Figure 12. Load Dump Test Circuit

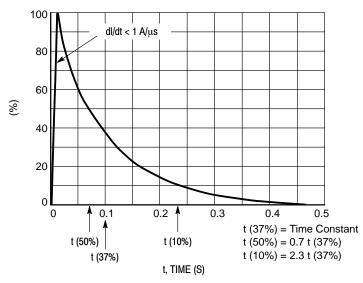


Figure 13. Load Dump Pulse Current

Overvoltage Transient Suppressor

24 V-32 V

Designed for applications requiring a diode with reverse avalanche characteristics for use as reverse power transient suppressor. Developed to suppress transients in automotive system, this device operates in the forward mode as standard rectifier or reverse mode as power zener diode and will protect expensive modules such as ignition, injection, antiblocking system . . . from overvoltage conditions.

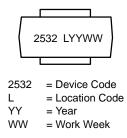
- High Power Capability
- Economical

Mechanical Characteristics

- Finish: All External Surfaces are Corrosion Resistant, and Contact Areas are Readily Solderable
- Polarity: Indicated by Cathode Band
- Weight: 1.8 Grams (Approximately)
- Maximum Temperature for Soldering Purposes: 260°C
- Marking: 2532

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Blocking Voltage	V _R	23	Volts
Average Forward Current (Single Phase, Resistive Load, $T_{C} = 150^{\circ}C$)	Ι _Ο	32	Amps
Peak Repetitive Reverse Surge Current (Time Constant = 10 ms, $T_C = 25^{\circ}C$)	I _{RSM}	80	Amps
Non-Repetitive Peak Surge Current (Halfwave, Single Phase, 60 Hz)	I _{FSM}	500	Amps
Operating Junction Temperature Range	Τ _J	-65 to +175	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C


ON Semiconductor[™]

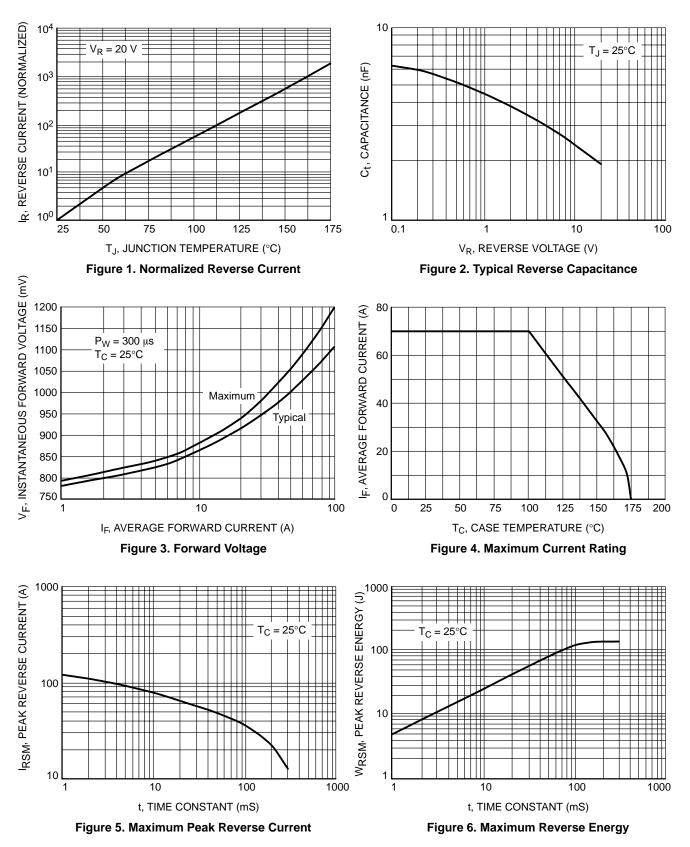
http://onsemi.com

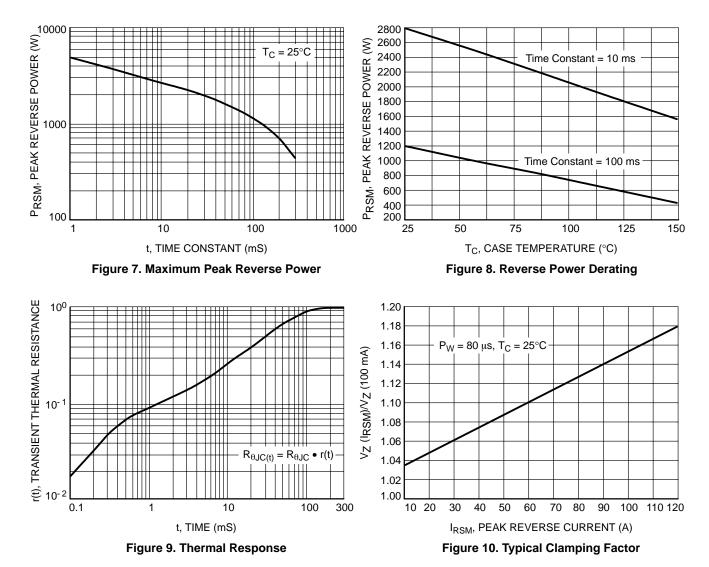
MICRODE BUTTON CASE 193

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping
TRA2532	Microde Button	5000 Units/Box


THERMAL CHARACTERISTICS


Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	R_{\thetaJC}	0.8	°C/W

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Max	Unit
Instantaneous Forward Voltage (Note 1.) ($i_F = 100 \text{ Amps}, T_C = 25^{\circ}C$)	VF	-	1.18	Volts
Reverse Current ⁽¹⁾ (V _R = 23 Vdc, T _C = 25°C)	۱ _R	-	10	μA
Breakdown Voltage ⁽¹⁾ ($I_Z = 100 \text{ mA}, T_C = 25^{\circ}C$)	V _(BR)	24	32	Volts
Breakdown Voltage ($I_Z = 80 \text{ Amps}, T_C = 25^{\circ}C, P_W = 80 \mu\text{s}$)	V _(BR)	-	40	Volts
Breakdown Voltage Temperature Coefficient	V _{(BR)TC}	0.096*	0.096*	%/°C
Forward Voltage Temperature Coefficient @ $I_F = 10 \text{ mA}$	V _{FTC}	-2*	-2*	mV/°C

1. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%. *Typical

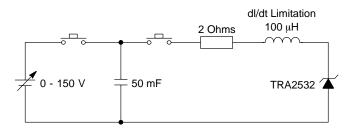


Figure 11. Load Dump Test Circuit

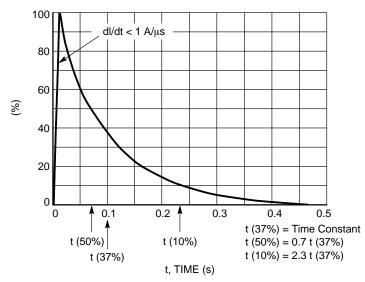
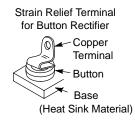


Figure 12. Load Dump Pulse Current

Assembly and Soldering Information

There are two basic areas of consideration for successful implementation of button rectifiers:


- 1. Mounting and Handling
- 2. Soldering

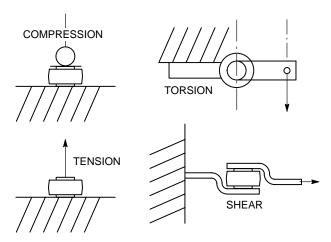
Each should be carefully examined before attempting a finished assembly or mounting operation.

Mounting and Handling

The button rectifier lends itself to a multitude of assembly arrangements, but one key consideration must *always* be included: One Side of the Connections to the Button Must be Flexible!

This stress relief to the button should also be chosen for maximum contact area to afford the best heat transfer - but not at the expense of flexibility. For an annealed copper terminal a thickness of 0.015'' is suggested.

The base heat sink may be of various materials whose shape and size are a function of the individual application and the heat transfer requirements.


Common Materials	Advantages and Disadvantages
Steel	Low Cost: relatively low heat conductivity
Copper	High Cost: high heat conductivity
Aluminum	Medium Cost: medium heat conductivity.
	Relatively expensive to plate and not all
	platers can process aluminum.

Handling of the button during assembly must be relatively gentle to minimize sharp impact shocks and avoid nicking of the plastic. Improperly designed automatic handling equipment is the worst source of unnecessary shocks. Techniques for vacuum handling and spring loading should be investigated.

The mechanical stress limits for the button diode are as follows:

Compression	32 lbs.	142.3 Newton
Tension	32 lbs.	142.3 Newton
Torsion	6-inch lbs.	0.68 Newtons-meters
Shear	55 lbs.	244.7 Newton

MECHANICAL STRESS

Exceeding these recommended maximums can result in electrical degradation of the device.

Soldering

The button rectifier is basically a semiconductor chip bonded between two nickel-plated copper heat sinks with an encapsulating material of epoxy compound. The exposed metal areas are also tin plated to enhance solderability.

In the soldering process it is important that the temperature not exceed 260°C if device damage is to be avoided. Various solder alloys can be used for this operation but two types are recommended for best results:

- 1. 95% Sn, 5% Sb; melting point 237°C
- 2. 96.5% tin, 3.5% silver; melting point 221°C
- 3. 63% tin, 37% lead; melting point 183°C

Solder is available as preforms or paste. The paste contains both the metal and flux and can be dispensed rapidly. The solder preform requires the application of a flux to assure good wetting of the solder. The type of flux used depends upon the degree of cleaning to be accomplished and is a function of the metal involved. These fluxes range from a mild rosin to a strong acid; e.g., Nickel plating oxides are best removed by an acid base flux while an activated rosin flux may be sufficient for tin plated parts.

Since the button is relatively lightweight, there is a tendency for it to float when the solder becomes liquid. To prevent bad joints and misalignment, it is suggested that a weighting or spring loaded fixture be employed. It is also important that severe thermal shock (either heating or cooling) be avoided as it may lead to damage of the die or encapsulant of the part.

Button holding fixtures for use during soldering may be of various materials. Stainless steel has a longer use life while black anodized aluminum is less expensive and will limit heat reflection and enhance absorption. The assembly volume will influence the choice of materials. Fixture dimension tolerances for locating the button must allow for expansion during soldering as well as allowing for button clearance.

Heating Techniques

The following four heating methods have their advantages and disadvantages depending on volume of buttons to be soldered.

- 1. **Belt furnaces** readily handle large or small volumes and are adaptable to establishment of "on-line" assembly since a variable belt speed sets the run rate. Individual furnace zone controls make excellent temperature control possible.
- 2. Flame Soldering involves the directing of natural gas flame jets at the base of a heatsink as the heatsink is indexed to various loading-heatingcooling-unloading positions. This is the most economical labor method of soldering large volumes. Flame soldering offers good temperature control but requires sophisticated temperature monitoring systems such as infrared.

- 3. **Ovens** are good for batch soldering and are production limited. There are handling problems because of slow cooling. Response time is load dependent, being a function of the watt rating of the oven and the mass of parts. Large ovens may not give an acceptable temperature gradient. Capital cost is low compared to belt furnaces and flame soldering.
- 4. **Hot Plates** are good for soldering small quantities of prototype devices. Temperature control is fair with overshoot common because of the exposed heating surface. Solder flow and positioning can be corrected during soldering since the assembly is exposed. Investment cost is very low.

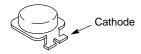
Regardless of the heating method used, a soldering profile giving the time-temperature relationship of the particular method must be determined to assure proper soldering. Profiling must be performed on a scheduled basis to minimize poor soldering. The time-temperature relationship will change depending on the heating method used.

Overvoltage Transient Suppressor

...designed for applications requiring a diode with reverse avalanche characteristics for use as reverse power transient suppressor.

Developed to suppress transients in the automotive system, this device operates in reverse mode as power zener diode and will protect expensive modules such as ignition, injection and autoblocking systems from overvoltage conditions.

- High Power Capability
- Economical
- **Mechanical Characteristics**
- Finish: All External Surfaces are Corrosion Resistant
- Polarity: Cathode to Terminal
- Weight: 1.78 Grams (Approximately)
- Maximum Temperature for Soldering Purposes: 260°C for 10 s using a Belt Furnace
- Marking: MR2835S


MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Blocking Voltage	V _R	23	Volts
Peak Repetitive Reverse Surge Current (Time Constant = 10 ms, T _C = 25°C)	I _{RSM}	62	Amps
Non-Repetitive Peak Surge Current (Halfwave, Single Phase, 50 Hz)	I _{FSM}	400	Amps
Storage Temperature Range	T _{stg}	-40 to +150	°C
Operating Junction Temperature Range	Τ _J	-40 to +150	°C

ON Semiconductor®

http://onsemi.com

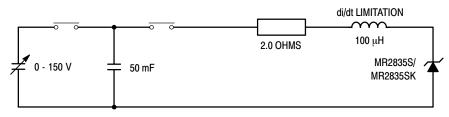
TOP CAN CASE 460

MARKING DIAGRAM

= Lot Number MR2835S = Specific Device Code YY = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MR2835S	Top Can	500/Tape & Reel
MR2835SK	Top Can	500/Tape & Reel

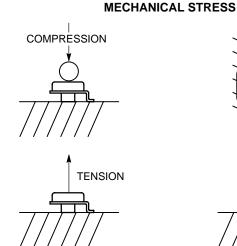

THERMAL CHARACTERISTICS

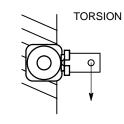
Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	R_{\thetaJC}	1.0	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

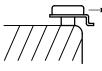
Characteristic	Symbol	Min	Max	Unit
Instantaneous Forward Voltage (I _F = 100 A) (Note 1)	V _F	-	1.1	Volts
Reverse Current (V _R = 20 V) (Note 1)	I _R	-	5.0	μΑ
Breakdown Voltage (I _Z = 100 mA) (Note 1)	V _(BR)	24	32	Volts
Breakdown Voltage (I _Z = 80 A, T _C = 85°C, PW = 80 μ s)	V _(BR)	-	40	Volts
Breakdown Voltage Temperature Coefficient	V _{(BR)TC}	-	0.09	%/°C
Forward Voltage Temperature Coefficient (I _F = 10 mA)	V _{FTC}	-	-2.0*	mV/°C

1. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2%. *Typical





MOUNTING AND HANDLING


The mechanical stress limits for the Top Can diode are as follows:

Compression:	33.7 lbs	150 newtons
Tension:	33.7 lbs	150 newtons
Torsion:	6.3 inch lbs	0.7 newton meters
Shear:	56.2 lbs	250 newtons

SHEAR

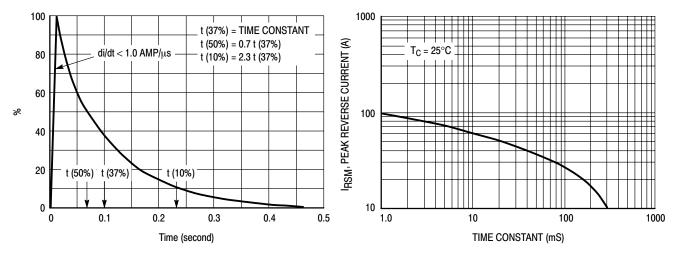


Figure 3. Maximum Peak Reverse Current

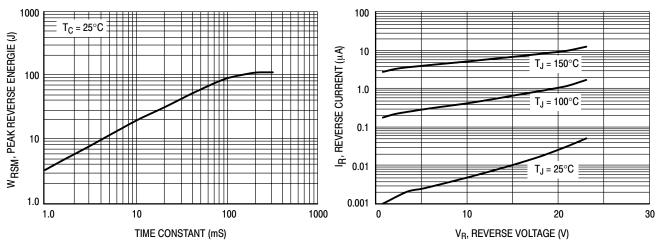


Figure 4. Maximum Reverse Energie

Figure 5. Typical Reverse Current

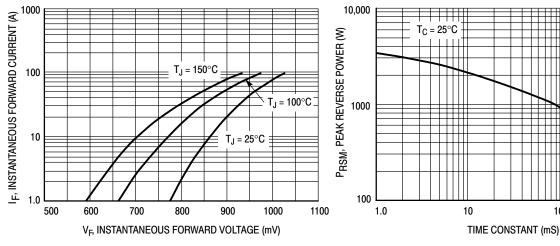


Figure 6. Typical Forward Voltage

100

1000

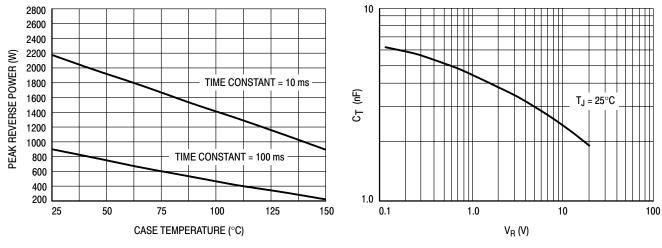
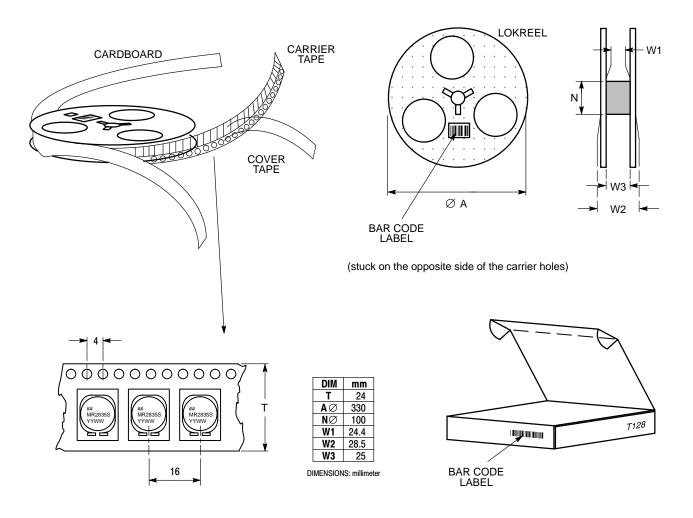



Figure 8. Reverse Power Derating

Figure 9. Typical Reverse Capacitance

Reel of 500 Units

CHAPTER 6 AR598: Avalanche Capability of Today's Power Semiconductors

Avalanche Capability of Today's Power Semiconductors

ON Semiconductor[™]

http://onsemi.com

R Borras, P Aloisi, D Shumate* ON Semiconductor, France, USA* Paper published at the EPE Conference '93, Brighton 9/93.

ARTICLE REPRINT

<u>Abstract.</u> Power semiconductors are used to switch high currents in fractions of a second and therefore belong inherently to a world of voltage spikes. To avoid unnecessary breakdown voltage guardbands, new generations of semiconductors are now avalanche rugged and characterized in avalanche energy.

This characterization is often far from application conditions and thus quite useless to the designer. It is easy to verify that an energy rating is not the best approach to a ruggedness quantification because of avalanche energy fluctuations with test conditions.

A physical and thermal analysis of the failure mechanisms leads to a new characterization method generating easy-to-use data for safe designs. The short-term avalanche capability will be discussed with an insight of the different technologies developed to meet these new ruggedness requirements.

Keywords. Avalanche, breakdown, unclamped inductive switching energy, safe operating areas.

INTRODUCTION

One obvious trend for new power electronic designs is to work at very high switching frequencies in order to reduce the volume and weight of all the capacitive and inductive elements. The consequence is that most applications today require switching very high currents in fractions of a microsecond and therefore generate L x dI/dt voltage spikes due to parasitic inductance. Unfortunately these undesirable voltage levels sometimes reach the breakdown voltage of power semiconductors that are not intended to be used in avalanche.

The necessity for avalanche rugged power semiconductors has clearly been perceived by many semiconductor manufacturers who have come up with avalanche-energy rated devices.

This paper will show the limits of an energy-based characterization model. It will concentrate on three different devices: Ultra Fast recovery Rectifiers, Schottky Barrier Rectifiers and MOSFETs. It will study their main failure mechanisms and show the technological improvements that guarantee an enhanced ruggedness.

This will lead to a new characterization that will help the designer choose correctly between overall cost and reliability.

LIMITS OF AN AVALANCHE ENERGY CHARACTERIZATION

Practically all the characterizations are based on the following Unclamped Inductive Switching (UIS) test circuit (Fig 1).

The energy is first stored in inductor L by turning on transistor Q for a period of time proportional to the peak current desired in the inductor. When Q is turned off, the inductor reverses its voltage and avalanches the Device Under Test until all its energy is transferred. The DUT can be a rectifier or a MOSFET (the gate should always be shorted to the source).

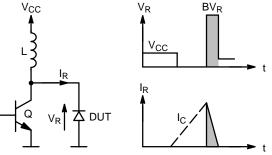


Figure 1. Standard UIS Characterization Circuit.

The standard characterization method consists in increasing the peak current in the inductor until the device fails. The energy that the device can sustain without failing becomes a figure of merit of the ruggedness to avalanche:

 $Waval = 1/2 L I_{peak}^2 BV_{(DUT)} / (BV_{(DUT)} - V_{CC})$ [1]

The main limit of this method is that the energy level that causes a failure in the DUT is not a constant but a function of L and V_{CC} . This results of the fact that the avalanche duration is function of the current decay slope $(BV_{(DUT)}-V_{CC})/L$:

Table 1. Peak Current and Energy Causing Failures ina 1 A, 1000 V Ultra Fast Recovery Rectifier.

Inductor Value:	10 mH	50 mH	100 mH
Peak Current:	1.7 A	0.9 A	0.8 A
Energy:	14 mJ	20 mJ	32 mJ

Table 1 indicates that the failure is not caused by an energy (i.e. it is not independent of the avalanche duration) but rather by a current level that has to be derated versus time: the devices can sustain a low current for a long period of time (high energy) but at high avalanche currents they will fail after a few microseconds (low energy).

Therefore, unless the designer has a parasitic inductance of value L in his circuit, the standard characterization data will be useless, or worse, it might lead to an overestimate of the ruggedness of his application: because parasitic inductances are often an order of magnitude less than the test circuit inductance, the expected energy capability leads to excessive current levels.

The UIS test circuit is very easy to implement: the only important point is that the transistor has to have a breakdown voltage higher than the DUT. For low breakdown voltage devices, a MOSFET might be preferred to the bipolar transistor.

The advantages of using a MOSFET are multiple: it is a more rugged device, it is much easier to drive and its switching characteristics can be controlled by adding a resistor in series with the gate. It is mandatory to limit this switching speed to avoid having an avalanche energy measurement dependent on the gate drive (i.e. gate resistor and gate to source voltage values).

Anyhow, it is possible to generate very useful information with this UIS test circuit by varying the inductor value. It is also very important to present the data independently of the values of V_{CC} and L. One solution can be to plot the maximum peak current versus the avalanche duration (Fig 2):

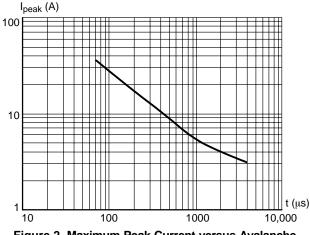
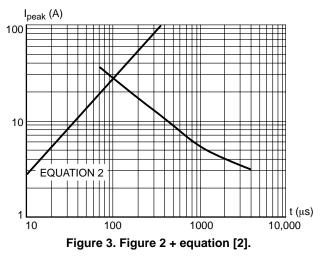


Figure 2. Maximum Peak Current versus Avalanche Duration for a 15 A, 60 V MOSFET in an UIS Test Circuit.


The advantage of this new graph is that the designer can easily calculate the safety margin of his application and he will not be mislead by an energy value that depends on too many different parameters. If he knows the value of the parasitic inductance in his circuit he will be able to determine its maximum peak current.

For instance, let us assume that the designer uses the 15 A, 60 V MOSFET characterized in Figure 2. This device sustains 500 mJ with an inductor of 75 mH according to equation [1]. Its typical breakdown voltage is 80 V.

If the supply voltage V_{DD} is 12 V and the parasitic inductance L is 250 μ H, then the avalanche duration and maximum peak current are related by

$$I_{peak} = t (BV_{DSS} - V_{DD}) / L$$
[2]

This relationship can be added to Figure 2 (see Fig 3):

Thus the maximum peak current that can flow through the parasitic inductance L is approximately 28 A instead of 58 A that would have resulted of using equation [1].

UNDERSTANDING THE FAILURE MECHANISMS

Physical Approach

The following microscope photographs show the failure locations for an Ultra Fast Recovery Rectifier (UFR), a Schottky Barrier Rectifier (SBR) and a MOSFET:

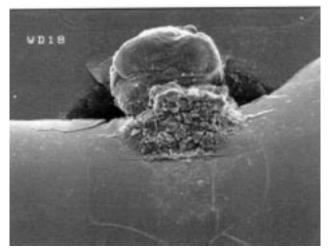


Figure 4. 4 A, 1000 V UFR Avalanche Failure.

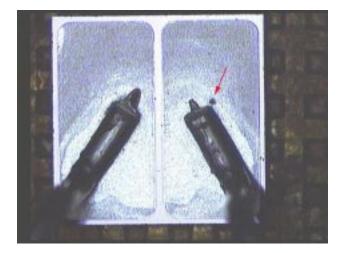


Figure 5. 25 A, 35 V SBR Avalanche Failure.

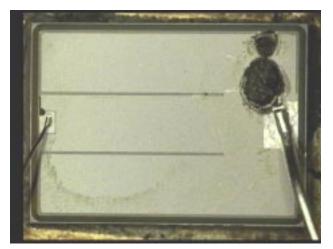
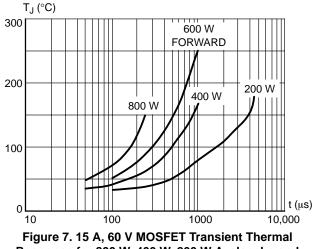


Figure 6. 20 A, 500 V MOSFET Avalanche Failure.

These photographs show that the failure is generally a punchthrough. The melt-through hole dimensions depend on the current level and avalanche duration.


A close look at the electrical characteristics of failed rectifiers on a curve tracer show three levels of degradation: low stressed diodes have a normal forward characteristic but show an unusual leakage current before entering breakdown as if they had a high-value resistor in parallel: this resistance can be explained by a small punchthrough. For medium degradation levels, the value of this pseudo-resistance decreases and becomes visible in the forward characteristic of the diode. Finally, when the punchthrough reaches considerable dimensions, the device looks very similar to a low value resistor.

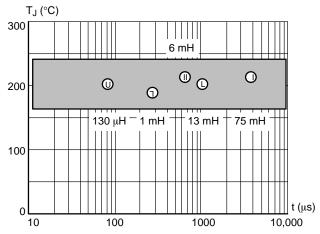
The failure does not always appear in the same region of the die. For instance, high voltage UFRs have their punch-through always located in a corner, MOSFETs often

fail in the corners or on the sides whereas SBRs have randomly located failures.

Thermal Approach

Transient thermal response graphs generated by a standard ΔV_{DS} method show the junction temperature evolution for forward and avalanche constant current conduction in a MOSFET. These graphs (Fig 7) prove that the silicon efficiency during avalanche and forward currents are similar.

Response for 800 W, 400 W, 200 W Avalanche and 600 W Forward Conduction.


Figure 7 can be used to generate a transient thermal resistance graph by plotting the temperature divided by the power: the four graphs should then normally match. Some slight differences show that the transient thermal resistance increases with the current level: i.e. the 800 W curve (10 A constant avalanche current) has a higher transient thermal resistance than the 200 W (2.5 A). Therefore the thermal efficiency in a MOSFET is not perfectly homogeneous versus the avalanche current.

A similar analysis on an UFR or an SBR shows poor thermal efficiency in avalanche. This can be shown by comparing the temperature rise after 1 ms for forward and avalanche conduction pulses of same power (400 W):

MOSFET	ΔT_{direct} =160°C	$\Delta T_{avalanche} = 180^{\circ}C$	ratio=0.9
UFR	ΔT_{direct} =120°C	$\Delta T_{avalanche}$ =175°C	ratio=0.7
SBR	∆T _{direct} =100°C	∆T _{avalanche} =150°C	ratio=0.7

Electrical Approach

Considering the transient thermal responses of a device, it is possible to simulate the instantaneous junction temperature for any sort of power pulse. Conducting this simulation on the data generated by the UIS test it is possible to show that all the parts fail when they reach a "critical temperature" (Fig 8):

At these critical temperatures the intrinsic carrier concentration, ni, reaches levels close to those of the doping concentrations:

ni is proportional to $T^{3/2} e^{-Eg/2kT}$ [3]

where T is the absolute temperature, Eg the energy bandgap and k is Boltzmann's constant.

At 200°C, ni exceeds 2 10^{14} cm⁻³ which corresponds to a 1000 V material epitaxy concentration level. This means that when the junction temperature reaches 300°C, the rectifier looks more like a resistor than a diode. A local thermal runaway then generates a hot spot and a punchthrough as can be seen in Figures 4, 5 and 6.

This failure analysis has shown that the failure mechanism is essentially thermal: the devices are heated by the $BV_R x$ I_R power dissipation. Unfortunately, this power does not remain constant because the UIS circuit generates a linear current decay and also the breakdown voltage varies with the current level and with the junction temperature.

In order to have a complete characterization of the device it is interesting to see how it reacts to a constant avalanche current and different ambient temperatures.

NEW CHARACTERIZATION METHOD PROPOSAL

During the prototype phase, it is easier for the designer to measure the avalanche current and duration than the circuit's parasitic inductance. Therefore, the characterization should be based on easy to measure parameters. The failure analysis proves that the main cause of degradation is the inability to handle an excessive power (avalanche current I_R multiplied by breakdown voltage BV_R). A proper characterization should present the maximum power capability versus time.

As the avalanche voltage varies only slightly with the current level, the proposed method is based on avalanching

a device at a constant current and presenting the maximum current capability versus time:

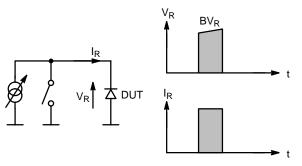


Figure 9. Constant Current Characterization Circuit.

Different test circuits similar to Figure 9 have been proposed by Gauen (1) and Pshaenich (2). Some unexpected failures in MOSFETs suggest that the DUT should always be referenced to ground. Unlike UFRs and SBRs, MOSFETs react differently whether they are tied to ground or floating around a fluctuating voltage. Many floating transistors fail at very low stress levels probably due to capacitive coupled currents that turn-on the internal parasitic transistor.

The test circuit shown in Figure 9 sets a constant avalanche current through the device until it fails, this duration can then be plotted for different current levels. This generates a graph similar to the UIS method, except that the current is constant instead of decreasing linearly.

This leads to the definition of a "Safe Avalanching Area" (Fig 10) that will guarantee a short-term reliability if the device is used within this clearly defined area.

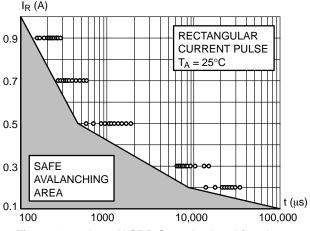


Figure 10. 1 A, 30 V SBR Save Avalanching Area.

This graph gives the maximum avalanche duration for any value of avalanche current.

The Safe Avalanching Area is generated by taking a safety margin from the failure points. Another approach would be to dynamically measure the temperature as in Figure 7 and generate an area defined by a maximum allowable junction temperature. As the failure mechanism is related to a peak junction temperature, it is necessary to give Safe Avalanching Areas for different ambient temperatures (Fig 11):

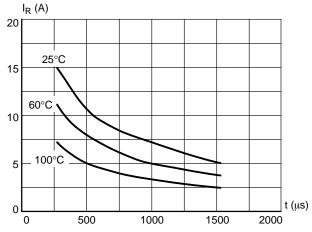


Figure 11. 25 A, 35 V SBR Safe Avalanching Areas for different ambient temperatures.

When the data in Figures 10 and 11 is plotted on log/log axes instead of lin/log or lin/lin, an interesting feature appears (Fig 12):

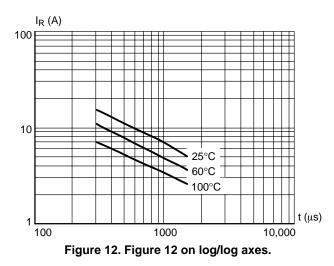


Figure 12 shows a linear relationship between current and time on a log/log plot. This means that:

so
$$\frac{\log(I_R) = A \log(t) + B}{I_R = k T^A}$$
 [4]

where k is a constant function of the die size, the breakdown voltage and other parameters. Constant A can be extracted from Figure 12 and similar figures for UFRs and MOSFETs:

$$I_{R} = k T^{-0.55}$$
 [5]

Relation [5] is a consequence of heat propagation laws which explain that the temperature in a semiconductor rises proportionally to t $^{0.5}$ (for a constant current pulse and as long as the temperature remains within the silicon die). This can be seen in any transient thermal resistance graph.

A standard thermal calculation shows that:

$$T_{J} = T_{A} + P_{D} \operatorname{Rth}_{JA}(t),$$

$$P_{D} = (T_{J} - T_{A}) / \operatorname{Rth}_{JA}(t)$$
[6]

where:

so

or

 T_{J} , T_{A} are the junction and ambient temperatures,

P_D is the power dissipation,

 $Rth_{JA}(t)$ is the transient thermal resistance.

Given a constant power pulse and for values of t less than 1 ms, [6] is equivalent to:

$$I_{R} B_{VR} = (T_{J} - T_{A}) / (k t^{0.5})$$

$$I_{R} = k t^{-0.5}$$
[7]

This relation is similar to [5]. For avalanche durations of less than 500 μ s the heat propagates within the silicon only. For longer durations the heat reaches the solder and the package so the propagation characteristics are modified. The devices heat faster or slower and therefore the I_R=f(t) slope changes. Empirical data shows that A in relation [4] remains within -0.5 to -0.6.

Relation [7] can also be expressed by:

$$I_R^2 t = k$$
 (k:constant) [7bis]

This rule of thumb works out much better than the, unfortunately too common, $1/2 L I^2$ law.

For example, when applied to the example following Figure 2 (which is UIS and not Constant Current generated) to determine the maximum peak current in a 250 μ H inductor and by choosing for instance the 9 A, 500 μ s point, relation [7bis] can be written:

This gives a conservative value of 20 A instead of a real value of 28 A whereas the 1/2 L I² method generates a catastrophic 58 A value.

TECHNOLOGY TRADEOFFS

Ultra Fast Recovery Rectifiers

The UFR devices are based on a Mesa technology (Fig 13) with a Phosphorus doped (n-type) substrate. The heavily doped N+ substrate is followed by a lighter N- epitaxial layer. The P+ is diffused into the epitaxy to form the P-N junction. The passivation follows the perimeter of the die.

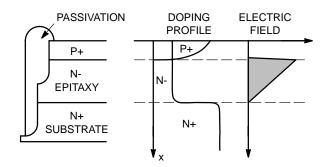


Figure 13. UFR Technology, Profile and Electric Field.

The epitaxy characteristics determine the major electrical parameters of the device. A designed experiment was conducted varying the epitaxy thickness and resistivity. The output responses were the forward voltage, the breakdown voltage, the leakage current and the avalanche capability. A wide range of epitaxy materials was chosen to determine the general trends for all the effects.

Although the results were predictable for the static parameters, the avalanche capability results were not.

A key issue is the electric field extension. If it terminates before the substrate the avalanche capability increases by increasing the epitaxy resistivity. If the field extends into the N+ region (reach-through) the avalanche capability is considerably reduced.

The avalanche capability is proportional to the die size and not to the perimeter. This confirms that the avalanche current is vertical and not only a surface or passivation related phenomenon.

The failures always occur in the corners where the electric field is most critical. These failures are essentially function of the thermal characteristics of the device when conducting avalanche currents. Therefore the avalanche capability decreases when the ambient temperature increases and the failures can normally be predicted by Safe Avalanching Areas such as Figure 12.

Some unexpected defects though can radically degrade the avalanche capability. Defects in the epi such as pipes cause premature failures but can often be screened by a leakage current test that eliminates soft breakdown devices. Defects in the passivation can generate parasitic oscillations during breakdown.

Schottky Rectifiers

Due to P-N junction guard rings, SBR devices are very similar to UFRs when conducting avalanche currents. These rectifiers have very low breakdown voltages and therefore very thin epitaxy layers. This probably explains that the avalanche-related failures occur anywhere on the die surface: the thin N- region is relatively more heterogeneous with respect to avalanche capability and thermal dissipation than a thick UFR epitaxy.

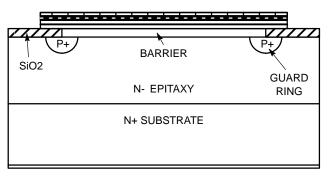


Figure 14. SBR Technology with P-N Guard Rings

MOSFETs

MOSFETs can also be compared to UFRs as long as the internal parasitic bipolar transistor (due to the P-tub) does not turn-on. The latest MOSFET generations reduce the Presistance to avoid biasing this NPN.

While analyzing different constant current test circuits, it appeared that devices used in a floating configuration can have very poor avalanche capabilities.

Due to their cellular technology, MOSFETs conduct very efficiently avalanche currents. They can sustain avalanche power levels close to those of forward conduction ratings.

CONCLUSION

The necessity of characterizing the avalanche capability of power semiconductors has been explained. An analysis of the standard UIS test circuit has shown the limits of a characterization based on energy ratings. Throughout a discussion of the main failure mechanisms, a new thermal approach has been proposed to help designers set safety levels in their designs. This paper sets new standards for characterizing avalanche ruggedness.

Acknowledgements

The authors would like to thank Jean-Michel REYNES, design engineer at ON Semiconductor Toulouse, for his help in understanding the failure mechanisms.

References

- Gauen, K., 1987, "Specifying Power MOSFET Avalanche Stress Capability", <u>Power Technics Magazine, January</u>
- Pshaenich, A., 1985, "Characterizing Overvoltage Transient Suppressors", <u>Powerconversion</u> <u>International, June/July</u>
- Cherniak, S., "A Review of Transients and The Means of Suppression", ON Semiconductor Application Note AN843
- 4. Wilhardt, J., "Transient Power Capability of Zener Diodes", ON Semiconductor Application Note AN784

CHAPTER 7 Surface Mount Information

INFORMATION FOR USING SURFACE MOUNT PACKAGES RECOMMENDED FOOTPRINTS FOR SURFACE MOUNTED APPLICATIONS

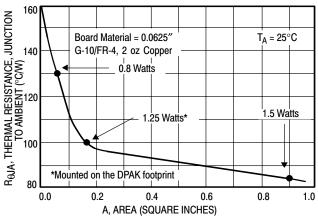
The power dissipation for a surface mount device is a function of the drain/collector pad size. These can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by $T_{J(max)}$, the maximum rated junction temperature of the die, $R_{\theta JA}$, the thermal resistance from the device junction to ambient, and the operating temperature, T_A . Using the values provided on the data sheet, P_D can be calculated as follows:

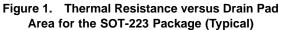
Surface mount board layout is a critical portion of the total

design. The footprint for the semiconductor packages must

be the correct size to ensure proper solder connection

$$P_{D} = \frac{T_{J(max)} - T_{A}}{R_{\theta JA}}$$


The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature T_A of 25°C, one can calculate the power dissipation of the device. For example, for a SOT-223 device, P_D is calculated as follows.


$$P_{D} = \frac{150^{\circ}C - 25^{\circ}C}{156^{\circ}C/W} = 800 \text{ milliwatts}$$

The 156°C/W for the SOT-223 package assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 800 milliwatts. There are other alternatives to achieving higher power dissipation from the surface mount packages. One is to increase the area of the drain/collector pad. By increasing the area of the drain/collector pad, the power dissipation can be increased. Although the power dissipation can almost be doubled with this method, area is taken up on the printed circuit board which can defeat the purpose of using surface mount technology. For example, a graph of $R_{\theta JA}$ versus drain pad area is shown in Figures 1, 2 and 3.

Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad[™]. Using a board material such as Thermal Clad, an aluminum core board, the power dissipation can be doubled using the same footprint. interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.

POWER DISSIPATION FOR A SURFACE MOUNT DEVICE

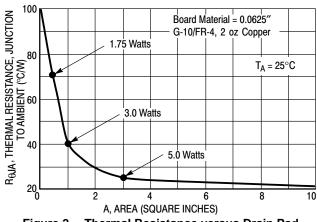
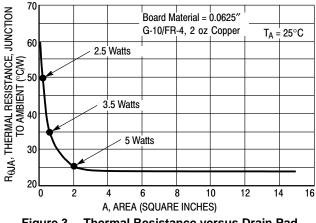
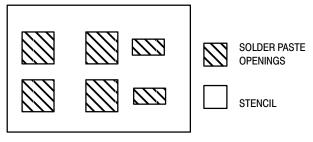
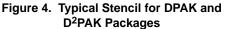


Figure 2. Thermal Resistance versus Drain Pad Area for the DPAK Package (Typical)


Figure 3. Thermal Resistance versus Drain Pad Area for the D²PAK Package (Typical)

SOLDER STENCIL GUIDELINES

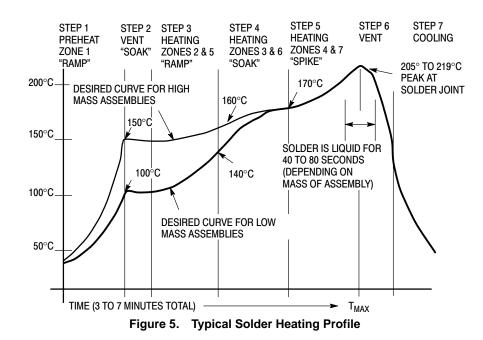
Prior to placing surface mount components onto a printed circuit board, solder paste must be applied to the pads. Solder stencils are used to screen the optimum amount. These stencils are typically 0.008 inches thick and may be made of brass or stainless steel. For packages such as the SC-59, SC-70/SOT-323, SOD-123, SOT-23, SOT-143, SOT-223, SO-8, SO-14, SO-16, and SMB/SMC diode packages, the stencil opening should be the same as the pad size or a 1:1 registration. This is not the case with the DPAK and D²PAK packages. If a 1:1 opening is used to screen solder onto the drain pad, misalignment and/or "tombstoning" may occur due to an excess of solder. For these two packages, the opening in the stencil for the paste should be approximately 50% of the tab area. The opening for the leads is still a 1:1 registration. Figure 4 shows a typical stencil for the DPAK and D²PAK packages. The

pattern of the opening in the stencil for the drain pad is not critical as long as it allows approximately 50% of the pad to be covered with paste.

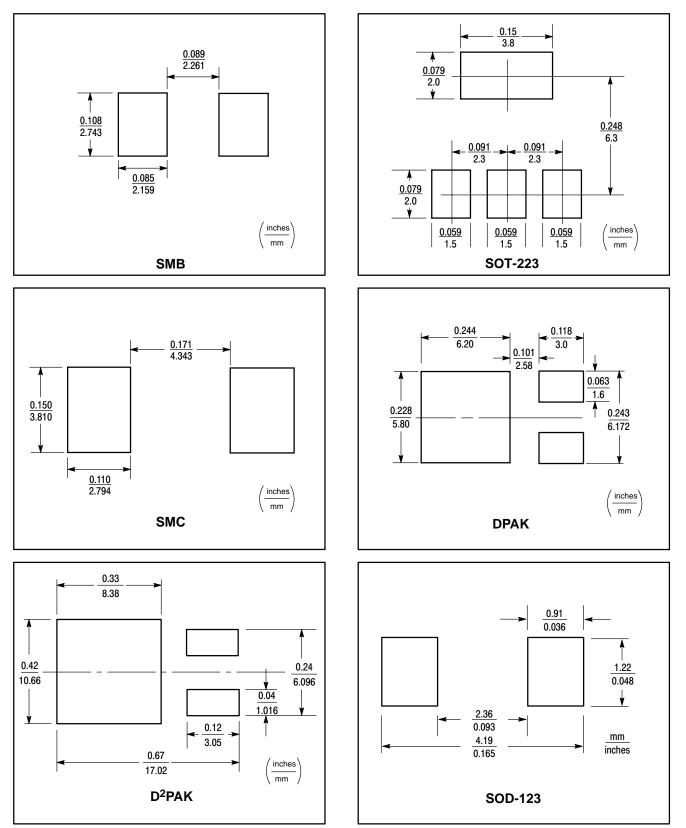
SOLDERING PRECAUTIONS

The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected.

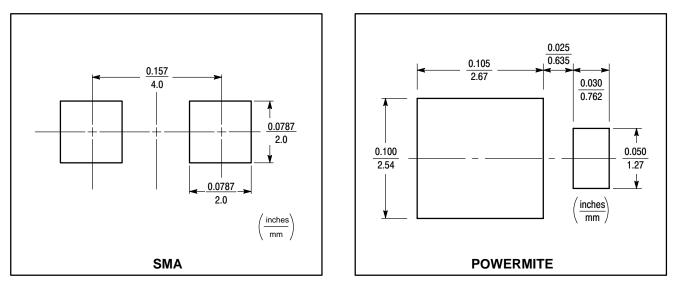
- Always preheat the device.
- The delta temperature between the preheat and soldering should be 100°C or less.*
- When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference should be a maximum of 10°C.
- The soldering temperature and time should not exceed 260°C for more than 10 seconds.
- When shifting from preheating to soldering, the maximum temperature gradient shall be 5°C or less.


- After soldering has been completed, the device should be allowed to cool naturally for at least three minutes. Gradual cooling should be used since the use of forced cooling will increase the temperature gradient and will result in latent failure due to mechanical stress.
- Mechanical stress or shock should not be applied during cooling.

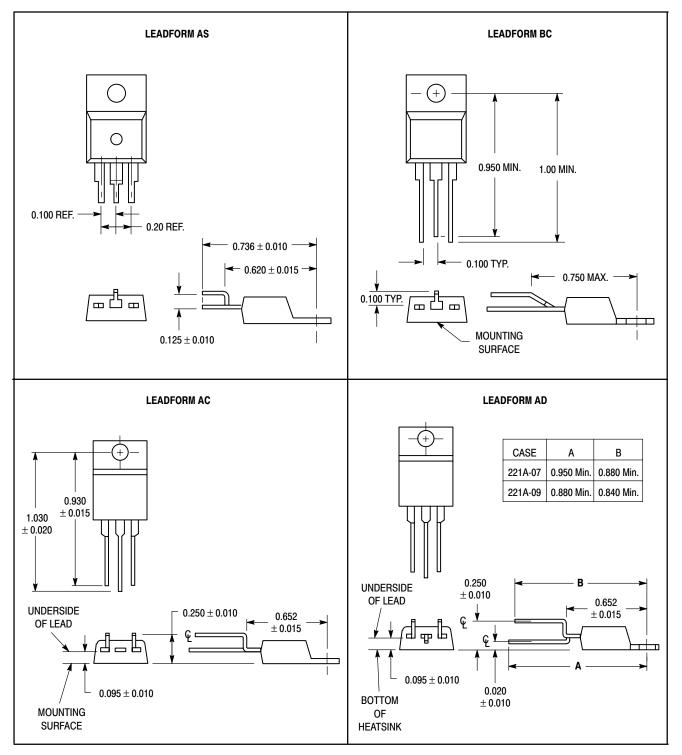
* Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device.

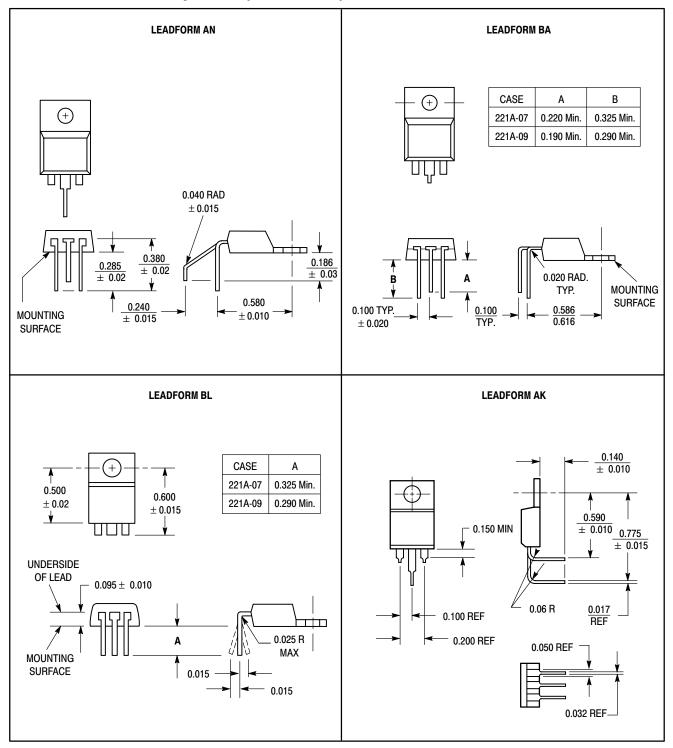

* Due to shadowing and the inability to set the wave height to incorporate other surface mount components, the D²PAK is not recommended for wave soldering.

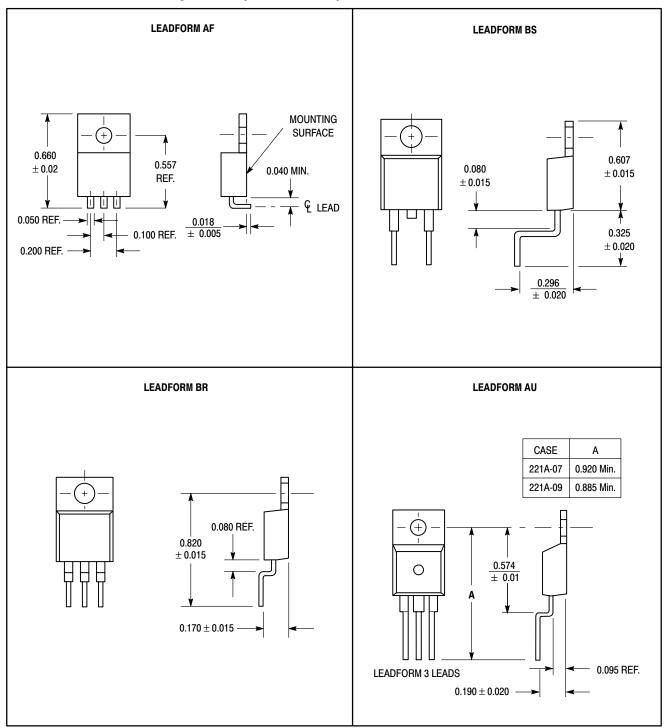
TYPICAL SOLDER HEATING PROFILE

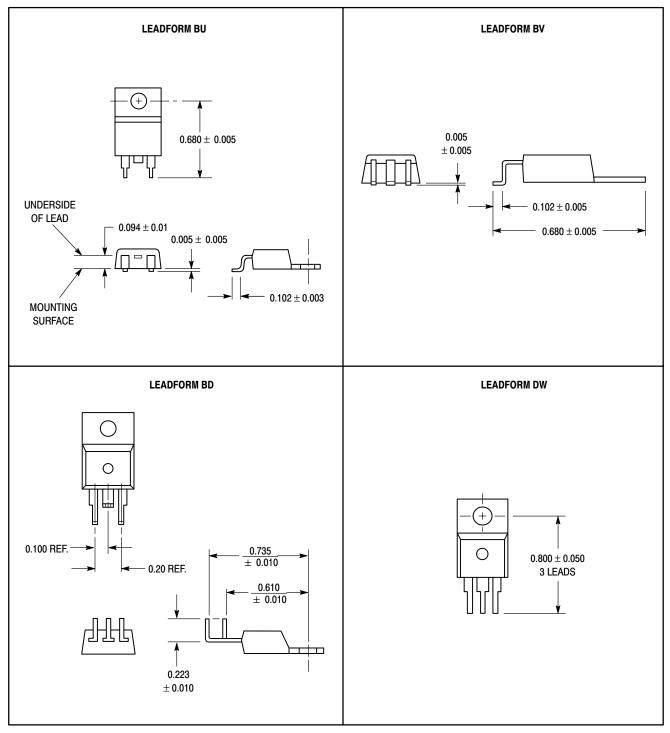

For any given circuit board, there will be a group of control settings that will give the desired heat pattern. The operator must set temperatures for several heating zones and a figure for belt speed. Taken together, these control settings make up a heating "profile" for that particular circuit board. On machines controlled by a computer, the computer remembers these profiles from one operating session to the next. Figure 5 shows a typical heating profile for use when soldering a surface mount device to a printed circuit board. This profile will vary among soldering systems, but it is a good starting point. Factors that can affect the profile include the type of soldering system in use, density and types of components on the board, type of solder used, and the type of board or substrate material being used. This profile shows temperature versus time. The line on the graph shows the actual temperature that might be experienced on the surface of a test board at or near a central solder joint. The two profiles are based on a high density and a low density board. The Vitronics SMD310 convection/infrared reflow soldering system was used to generate this profile. The type of solder used was 62/36/2 Tin Lead Silver with a melting point between 177-189 °C. When this type of furnace is used for solder reflow work, the circuit boards and solder joints tend to heat first. The components on the board are then heated by conduction. The circuit board, because it has a large surface area, absorbs the thermal energy more efficiently, then distributes this energy to the components. Because of this effect, the main body of a component may be up to 30 degrees cooler than the adjacent solder joints.

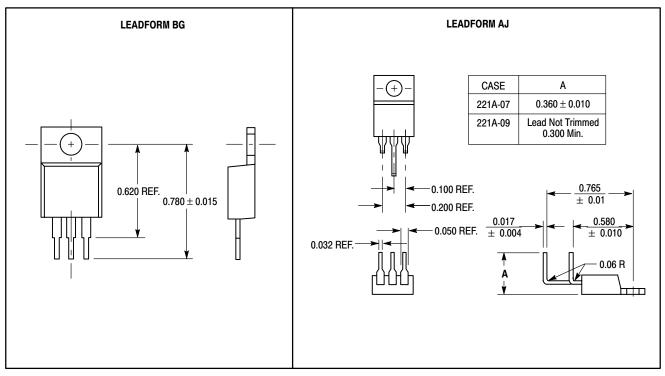
Footprints for Soldering

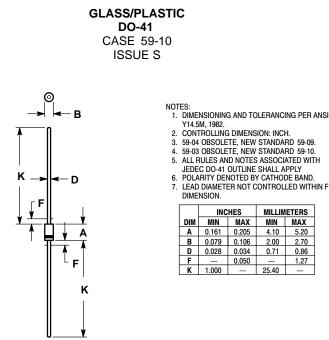

Footprints for Soldering

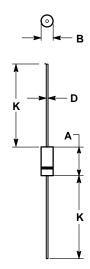



CHAPTER 8 TO-220 Leadform Information


Leadform Options — TO-220 (Case 221A)


- Leadform options require assignment of a special part number before ordering.
- Contact your local ON Semiconductor representative for special part number and pricing.
- 10,000 piece minimum quantity orders are required.
- Leadform orders are non-cancellable after processing.
- Leadforms apply to both ON Semiconductor Case 221A-07 and 221A-09 except as noted.

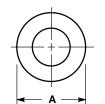



CHAPTER 9 Package Outline Dimensions

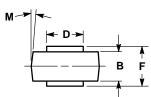
Package Outline Dimensions

For information on tape and reel packaging specifications, please download or order the ON Semiconductor Tape and Reel Packaging Specification Brochure (part number BRD8011/D). The PDF is available on the ON Semiconductor website at: http://www.onsemi.com/pub/Collateral/BRD8011-D.PDF.

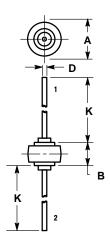
MINI MOSORB CASE 59-09 **ISSUE S**


NOTES:

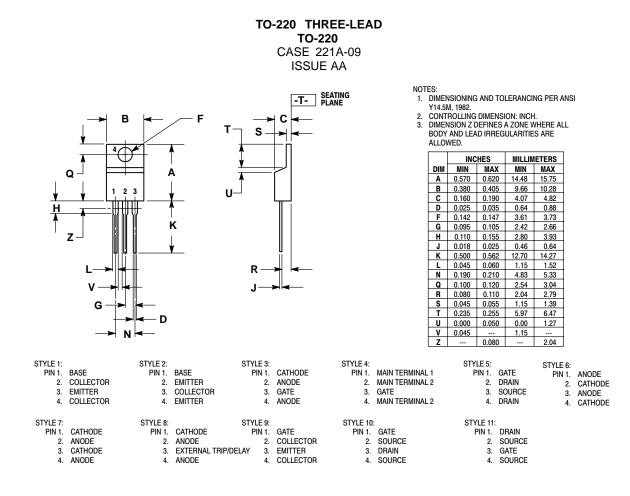
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH. 2.
- 59-04 OBSOLETE, NEW STANDARD 59-09.
 59-03 OBSOLETE, NEW STANDARD 59-10.
- 5. ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY.
- POLARITY DENOTED BY CATHODE BAND. LEAD DIAMETER NOT CONTROLLED WITHIN F 6. 7. DIMENSION.

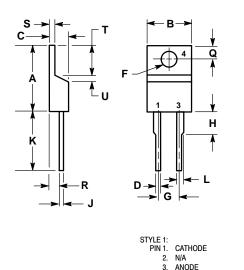

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.228	0.299	5.80	7.60
В	0.102	0.142	2.60	3.60
D	0.028	0.034	0.71	0.86
Κ	1.000		25.44	

PACKAGE OUTLINE DIMENSIONS (continued)


MICRODE BUTTON CASE 193-04 ISSUE J

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.43	8.69	0.332	0.342
В	4.19	4.45	0.165	0.175
D	5.54	5.64	0.218	0.222
F	5.94	6.25	0.234	0.246
M	5°N	5°NOM		MOM


AXIAL LEAD BUTTON CASE 194-04 ISSUE F


NOTES: 1. CATHODE SYMBOL ON PACKAGE.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.43	8.69	0.332	0.342
В	5.94	6.25	0.234	0.246
D	1.27	1.35	0.050	0.053
Κ	25.15	25.65	0.990	1.010

STYLE 1: PIN 1. CATHODE 2. ANODE

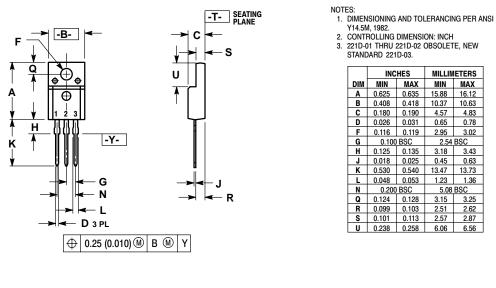
TO-220 TWO-LEAD CASE 221B-04 ISSUE D

NOTES: DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.595	0.620	15.11	15.75
В	0.380	0.405	9.65	10.29
С	0.160	0.190	4.06	4.82
D	0.025	0.035	0.64	0.89
F	0.142	0.147	3.61	3.73
G	0.190	0.210	4.83	5.33
Н	0.110	0.130	2.79	3.30
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.14	1.52
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.14	1.39
Т	0.235	0.255	5.97	6.48
U	0.000	0.050	0.00	1.27

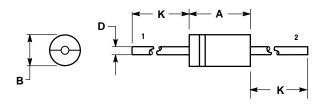
STYLE 2: PIN 1. ANODE 2. N/A 3. CATHODE

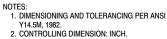
ANODE 4.


CATHODE

4.

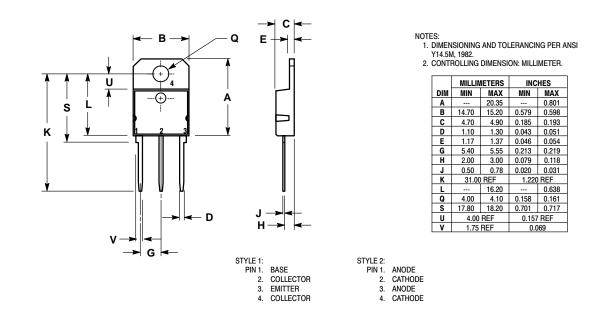
PACKAGE OUTLINE DIMENSIONS (continued)

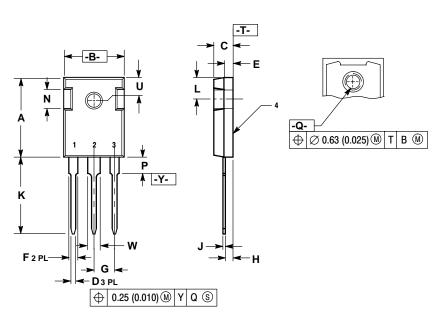

TO-220 FULLPACK TRANSISTOR CASE 221D-03


ISSUE G

STYLE 1: STYLE 2: STYLE	E 3: STYLE 4:	STYLE 5:	STYLE 6:
PIN 1. GATE PIN 1. BASE PI	N 1. ANODE PIN 1.	CATHODE PIN 1. CATHODE	PIN 1. MT 1
2. DRAIN 2. COLLECTOR	2. CATHODE 2.	ANODE 2. ANODE	2. MT 2
3. SOURCE 3. EMITTER	3. ANODE 3.	CATHODE 3. GATE	3. GATE

AXIAL LEAD CASE 267-05 **ISSUE G**


Γ		INCHES		MILLIN	IETERS
	DIM	MIN	MAX	MIN	MAX
	Α	0.287	0.374	7.30	9.50
	В	0.189	0.209	4.80	5.30
	D	0.047	0.051	1.20	1.30
	Κ	1.000		25.40	


STYLE 2:

NO POLARITY

TO-218 THREE LEAD TO-218 CASE 340D-02 ISSUE B

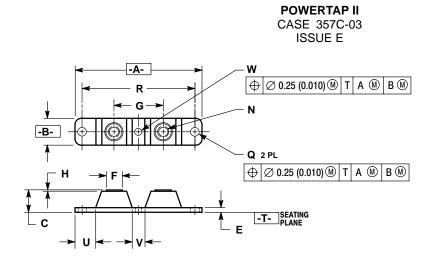
TO-247 CASE 340L-02 ISSUE D

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982.

2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	20.32	21.08	0.800	8.30
В	15.75	16.26	0.620	0.640
С	4.70	5.30	0.185	0.209
D	1.00	1.40	0.040	0.055
Ш	2.20	2.60	0.087	0.102
F	1.65	2.13	0.065	0.084
G	5.45	BSC	0.215 BSC	
Н	1.50	2.49	0.059	0.098
-	0.40	0.80	0.016	0.031
Κ	20.06	20.83	0.790	0.820
Г	5.40	6.20	0.212	0.244
Ν	4.32	5.49	0.170	0.216
Ρ		4.50		0.177
Ø	3.55	3.65	0.140	0.144
C	6.15	BSC	0.242	2 BSC
W	2.87	3.12	0.113	0.123

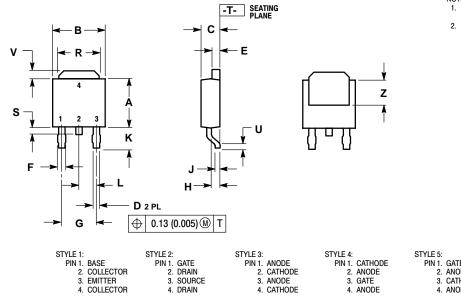
 STYLE 1:
 STYLE 2:
 STYLE 3:
 STYLE 4:


 PIN 1. GATE
 PIN 1. ANODE
 PIN 1. BASE
 PIN 1. GATE

 2. DRAIN
 2. CATHODE (S)
 2. COLLECTOR
 2. COLLECTOR

 3. SOURCE
 3. ANODE 2
 3. EMITTER
 3. EMITTER

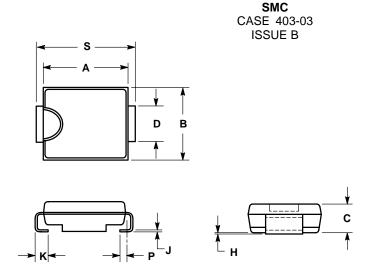
 4. DRAIN
 4. CATHODES (S)
 4. COLLECTOR
 4. COLLECTOR


PACKAGE OUTLINE DIMENSIONS (continued)

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. TERMINAL PENETRATION: 5.97 (0.235) MAXIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	3.450	3.635	87.63	92.33
В	0.700	0.810	17.78	20.57
С	0.615	0.640	15.63	16.26
Е	0.120	0.130	3.05	3.30
F	0.435	0.445	11.05	11.30
G	1.370	1.380	34.80	35.05
Н	0.007	0.030	0.18	0.76
Ν	1/4-20U	NC-2B	1/4-20UNC-2B	
Q	0.270	0.285	6.86	7.23
R	31.50	BSC	80.01	BSC
U	0.600	0.630	15.24	16.00
۷	0.330	0.375	8.39	9.52
W	0.170	0.190	4.32	4.82

DPAK CASE 369A-13 **ISSUE AA**

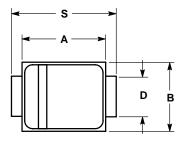


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.250	5.97	6.35
В	0.250	0.265	6.35	6.73
C	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.033	0.040	0.84	1.01
F	0.037	0.047	0.94	1.19
G	0.180 BSC		4.58 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.102	0.114	2.60	2.89
L	0.090	BSC	2.29 BSC	
R	0.175	0.215	4.45	5.46
S	0.020	0.050	0.51	1.27
U	0.020		0.51	
۷	0.030	0.050	0.77	1.27
Z	0.138		3.51	

STYLE 5:	STYLE 6:
PIN 1. GATE	PIN 1. MT1
2. ANODE	2. MT2
3. CATHODE	3. GATE
4. ANODE	4. MT2

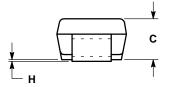
PACKAGE OUTLINE DIMENSIONS (continued)


NOTES:		
 DIMENSI 	IONING AND TOLERANC	ING

G PER ANSI

DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 D DIMENSION SHALL BE MEASURED WITHIN DIMENSION P.

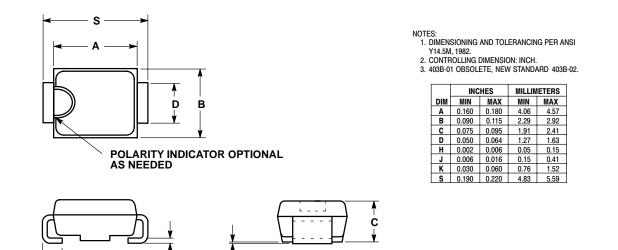
	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.260	0.280	6.60	7.11
В	0.220	0.240	5.59	6.10
С	0.075	0.095	1.90	2.41
D	0.115	0.121	2.92	3.07
н	0.0020	0.0060	0.051	0.152
J	0.006	0.012	0.15	0.30
Κ	0.030	0.050	0.76	1.27
Р	0.020 REF		0.51	REF
S	0.305	0.320	7.75	8.13


SMB D0-214AA CASE 403A-03 ISSUE D

ĸ

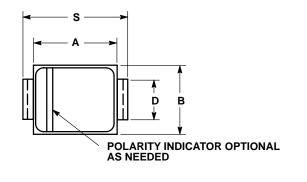
J

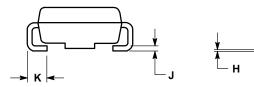
Р



NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. D DIMENSION SHALL BE MEASURED WITHIN DIMENSION P.

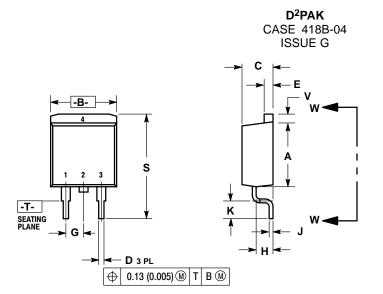
	INC	HES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	0.160	0.180	4.06	4.57		
В	0.130	0.150	3.30	3.81		
С	0.075	0.095	1.90	2.41		
D	0.077	0.083	1.96	2.11		
Н	0.0020	0.0060	0.051	0.152		
J	0.006	0.012	0.15	0.30		
Κ	0.030	0.050	0.76	1.27		
Р	0.020) REF	0.51 REF			
S	0.205 0.220		5.21	5.59		


K


SMA CASE 403B-02 ISSUE C

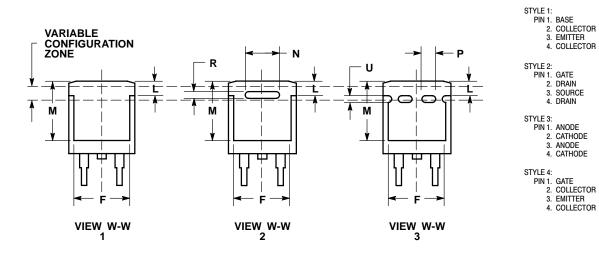
SMA CASE 403D-02 **ISSUE A**

н

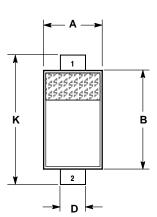

NOTES:

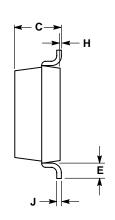
Ċ

VOLES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 403D-01 DISOLETE, NEW STANDARD IS 403D-02.


	INC	HES	MIL 1 10/	ETER		
DIM	MIN	MAX	MILLIMETERS			
DIN	IVIIN	IVIAA	MIN	MAX		
Α	0.160	0.180	4.06	4.57		
В	0.090	0.115	2.29	2.92		
С	0.075	0.095	1.91	2.41		
D	0.050	0.064	1.27	1.63		
н	0.002	0.006	0.05	0.15		
J	0.006	0.016	0.15	0.41		
K	0.030	0.060	0.76	1.52		
S	0.190	0.220	4.83	5.59		

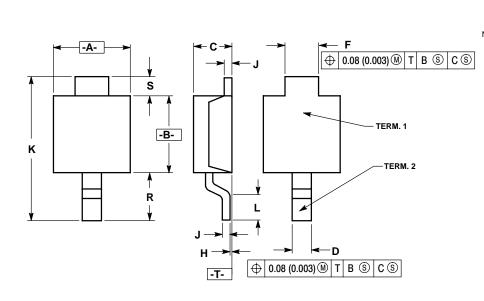
http://onsemi.com 597




NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 4188-01 THRU 4188-03 OBSOLETE, NEW STANDARD 4188-04.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.340	0.380	8.64	9.65	
В	0.380	0.405	9.65	10.29	
С	0.160	0.190	4.06	4.83	
D	0.020	0.035	0.51	0.89	
E	0.045	0.055	1.14	1.40	
F	0.310	0.350	7.87	8.89	
G	0.100	BSC	2.54 BSC		
н	0.080	0.110	2.03	2.79	
J	0.018	0.025	0.46	0.64	
K	0.090	0.110	2.29	2.79	
L	0.052	0.072	1.32	1.83	
М	0.280	0.320	7.11	8.13	
Ν	0.197	' REF	5.00	REF	
Ρ	0.079	REF	2.00	REF	
R	0.039	REF	0.99	REF	
S	0.575	0.625	14.60	15.88	
V	0.045	0.055	1.14	1.40	

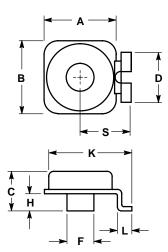
SOD-123 CASE 425-04 ISSUE C



PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR

	INC	HES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	0.055	0.071	1.40	1.80		
B 0.100		0.112	2.55	2.85		
C 0.037		0.053	0.95	1.35		
D	0.020	0.028	0.50	0.70		
Е	0.01		0.25			
Н	0.000	0.004	0.00	0.10		
L		0.006		0.15		
Κ	0.140	0.152	3.55	3.85		

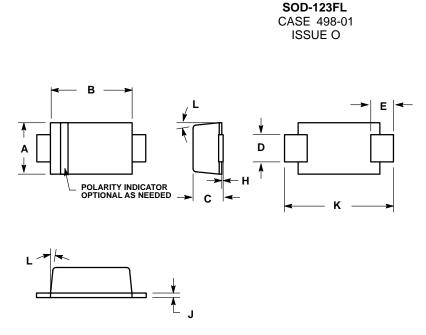
STYLE 1: PIN 1. CATHODE 2. ANODE



NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

	MILLIN	IETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	1.75	2.05	0.069	0.081		
В	1.75	2.18	0.069	0.086		
С	0.85	1.15	0.033	0.045		
D	0.40	0.69	0.016	0.027		
F	0.70	1.00	0.028	0.039		
Н	-0.05	+0.10	-0.002	+0.004		
J	0.10	0.25	0.004	0.010		
K	3.60	3.90	0.142	0.154		
L	0.50	0.80	0.020	0.031		
R	1.20	1.50	0.047	0.059		
S	0.50	REF	0.019 REF			

TOP CAN BUTTON CASE 460-02 **ISSUE A**


PowerMIte CASE 457-04 ISSUE D

NOTES:

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.

	MILLIN	IETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	9.1	9.5	0.358	0.374		
В	9.5	9.9	0.374	0.390		
С	5.2	5.6	0.205	0.220		
D	6.4	6.8	0.252	0.268		
F	3.4	3.8	0.134	0.149		
Н	2.0	2.4	0.079	0.095		
Κ	11.3	11.7	0.445	0.460		
Г	1.7	2.1	0.067	0.083		
s	6.5	6.9	0.256	0.272		

NOTES:

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD ELADIU.

FLASH. A. DIMENSIONS D AND J ARE TO BE MEASURED ON FLAT SECTION OF THE LEAD: BETWEEN 0.10 AND 0.25 MM FROM THE LEAD TIP.

	MILLIN	IETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	1.50	1.80	0.059	0.071		
В	2.50	2.90	0.098	0.114		
С	0.90	1.00	0.035	0.039		
D	0.70	1.10	0.028	0.043		
E	0.55	0.95	0.022	0.037		
н	0.00	0.10	0.000	0.004		
J	0.10	0.20	0.004	0.008		
K	3.40	3.80	0.134	0.150		
L	0 °	8 °	0 °	8 °		

For information on tape and reel packaging specifications, please download or order the ON Semiconductor Tape and Reel Packaging Specification Brochure (part number BRD8011/D). The PDF is available on the ON Semiconductor website at: http://www.onsemi.com/pub/Collateral/BRD8011-D.PDF.

CHAPTER 10 Index and Cross Reference

Index and Cross Reference

The following table represents an index and cross reference guide for all rectifier devices which are either manufactured directly by ON Semiconductor or for which ON Semiconductor manufactures a suitable equivalent. Where the ON Semiconductor part number differs from the industry part number, the ON Semiconductor device is a form, fit and function replacement for the industry type number - however, subtle differences in characteristics and/or specifications may exist. The part numbers listed in this Cross Reference are in computer sort.

	ON Semiconductor	ON Semiconductor			ON Semiconductor	ON Semiconductor	
Industry	Nearest	Similar		Industry	Nearest	Similar	
Part Number	Replacement	Replacement	Page	Part Number	Replacement	Replacement	Page
10BF10	MURS110T3		374	1N2069,A	1N4003		512
10BF20	MURS120T3		374	1N2070,A	1N4004		512
10BF40	MURS140T3		374	1N2071,A	1N4005		512
10BF60	MURS160T3		374	1N3611		1N4003	512
10BF80		MURS160T3	374	1N3611GP		1N4003	512
10BQ015		MBRS120T3	106	1N3612		1N4004	512
10BQ030	MBRS130T3		112	1N3612GP		1N4004	512
10BQ040	MBRS140T3		115	1N3613		1N4005	512
10BQ060		MBRS1100T3	122	1N3613GP		1N4005	512
10BQ100	MBRS1100T3		122	1N3614		1N4006	512
10CTF10		MUR840	462	1N3614GP		1N4006	512
10CTF20		MUR840	462	1N3957		1N4007	512
10CTF30		MUR840	462	1N3957GP		1N4007	512
10CTF40		MUR840	462	1N4001	1N4001		512
10DL1		1N4934	514	1N4001GP		1N4001	512
10DL2		1N4935	514	1N4002	1N4002		512
10MQ040N	MBRA140T3		89	1N4002GP		1N4002	512
10TQ030		MBR1035	265	1N4003	1N4003		512
10TQ035	MBR1035		265	1N4003GP		1N4003	512
10TQ040		MBR1045	265	1N4004	1N4004		512
10TQ045	MBR1045		265	1N4004GP		1N4004	512
11DQ03		1N5818	203	1N4005	1N4005		512
11DQ04		1N5819	203	1N4005GP		1N4005	512
11DQ05		MBR150	209	1N4006	1N4006		512
11DQ06		MBR160	209	1N4006GP		1N4006	512
11DQ09		MBR1100	213	1N4007	1N4007		512
11DQ10		MBR1100	213	1N4007GP		1N4007	512
12CTQ030		MBR1535CT	235	1N4245		1N4003	512
12CTQ035		MBR1535CT	235	1N4245GP		1N4003	512
12CTQ035S		MBRB1545CT	173	1N4246		1N4004	512
12CTQ040		MBR1545CT	235	1N4246GP		1N4004	512
12CTQ040S		MBRB1545CT	173	1N4247		1N4005	512
12CTQ045		MBR1545CT	235	1N4247GP		1N4005	512
12CTQ045S		MBRB1545CT	173	1N4248		1N4006	512
12CWQ03FN		MBRD1035CTL	165	1N4248GP		1N4006	512
12TQ035		MBR1635	273	1N4249		1N4007	512
12TQ035S		MBRB1545CT	173	1N4249GP		1N4007	512
12TQ040		MBR1645	273	1N4383GP		1N4003RL	512
12TQ040S		MBRB1545CT	173	1N4384GP		1N4004RL	512
12TQ045		MBR1645	273	1N4385GP		1N4005RL	512
12TQ045S		MBRB1545CT	173	1N4585GP		1N4006RL	512
15CTQ035	MBR1535CT		235	1N4586GP		1N4007RL	512
15CTQ035S		MBRB1545CT	173	1N4934	1N4934	IN TOURINE	512
15CTQ040		MBR1545CT	235	1N4934GP		1N4934	514
15CTQ040S		MBRB1545CT	173	1N4935	1N4935		514
15CTQ045	MBR1545CT		235	1N4935GP		1N4935	514
15CTQ045S	MBRB1545CT		173	1N4936	1N4936		514
100100400	1010104301		175	114330	114330	1	514

Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page	Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page
	Replacement	-	_		Replacement	•	
1N4936GP		1N4936	514	1N5417		MR852	519
1N4937	1N4937		514	1N5418		MR856	519
1N4937GP		1N4937	514	1N5419		MR856	519
1N4942		1N4935	514	1N5420		MR856	519
1N4942GP		1N4935	514	1N5614		1N4003	512
1N4943		1N4936	514	1N5615		1N4935	514
1N4944		1N4936	514	1N5615GP		1N4935	514
1N4944GP		1N4936	514	1N5616		1N4004	512
1N4945		1N4937	514	1N5617		1N4936	514
1N4946		1N4937	514	1N5617GP		1N4936	514
1N4946GP		1N4937	514	1N5618		1N4005	512
1N5185		MR852	519	1N5619		1N4937	514
1N5185GP		MR852	519	1N5619GP		1N4937	514
1N5186		MR852	519	1N5620		1N4006	512
1N5186GP		MR852	519	1N5802		MUR420	434
1N5187		MR852	519	1N5803		MUR420	434
1N5187GP		MR852	519	1N5804		MUR420	434
1N5188		MR856	519	1N5805		MUR420	434
1N5188GP		MR856	519	1N5806		MUR420	434
1N5189		MR856	519	1N5807		MUR420	434
1N5189GP		MR856	519	1N5808		MUR420	434
1N5190		MR856	519	1N5809		MUR420	434
1N5190GP		MR856	519	1N5810		MUR420	434
1N5391		1N4001RL	512	1N5811		MUR420	434
1N5391GP		1N4001RL	512	1N5817	1N5817		203
1N5391S		1N4001RL	512	1N5818	1N5818		203
1N5392		1N4002RL	512	1N5819	1N5819		203
1N5392GP		1N4002RL	512	1N5820	1N5820		220
1N5392S		1N4002RL	512	1N5821	1N5821		220
1N5393		1N4003RL	512	1N5822	1N5822		220
1N5393GP		1N4003RL	512	200CNQ020		MBRP20030CTL	308
1N5393S		1N4003RL	512	200CNQ030	MBRP20030CTL		308
1N5394		1N4004RL	512	200CNQ035		MBRP20030CTL	308
1N5394GP		1N4004RL	512	200CNQ040		MBRP20045CT	318
1N5395		1N4004RL	512	200CNQ045	MBRP20045CT		318
1N5395GP		1N4004RL	512	201CNQ020		MBRP20030CTL	308
1N5395S		1N4004RL	512	201CNQ030	MBRP20030CTL		308
1N5396		1N4005RL	512	201CNQ035		MBRP20030CTL	308
1N5396GP		1N4005RL	512	201CNQ040		MBRP20045CT	318
1N5397		1N4005RL	512	201CNQ045	MBRP20045CT		318
1N5397GP		1N4005RL	512	208CMQ060	MBRP20060CT		326
1N5397S		1N4005RL	512	208CNQ060	MBRP20060CT		326
1N5398		1N4006RL	512	20CTQ030	MBR2030CTL	MPRODUCTI	241
1N5398GP		1N4006RL	512	20CTQ035		MBR2030CTL	241
1N5398S		1N4006RL	512	20CTQ040	MDD00450T	MBR2045CT	245
1N5399		1N4007RL	512	20CTQ045	MBR2045CT	115001	245
1N5399GP		1N4007RL	512	21DQ03		1N5821	220
1N5399S	115401	1N4007RL	512	21DQ04	MPPP20000T	1N5822	220
1N5401	1N5401		516	220CNQ030	MBRP20030CTL	MPROFOCTI	308
1N5402	1N5402	115404	516	25CTQ035		MBR2535CTL	256
1N5403	1N5404	1N5404	516	25CTQ035S		MBRB2535CTL	184
1N5404	1N5404	115406	516	25CTQ040S		MBRB2545CT	187
1N5405	115406	1N5406	516	25CTQ045S		MBRB2545CT	187 200
1N5406 1N5415	1N5406	MR852	516 519	28CPQ030 28CPQ040		MBR3045PT MBR3045PT	290 290
1N5415 1N5416		MR852 MR852	519	301CNQ040		MBRP3045PT	
1110410	1	WIN03Z	019	3010100040		WDRF 3004301	321

Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page	Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page
301CNQ045		MBRP30045CT	321	6A2		MR754	521
301CNQ050		MBRP30060CT	331	6A4		MR754	521
30BF20	MURS320T3		387	6A6		MR760	521
30BF40	MURS340T3		387	6A8		MR760	521
30BF60	MURS360T3		387	6CWQ03FN	MBRD630CTT4		158
30BQ015		MBRS320T3	142	6CWQ04FN	mbrib occorrin	MBRD650CTT4	158
30BQ040	MBRS340T3	WB1002010	142	6CWQ06FN	MBRD660CTT4	WIBI(B0000114	158
30BQ060	MBRS360T3		142	6TQ035	MBR735		262
30CPQ035	mbreesere	MBR3045WT	297	6TQ040	mBrtroo	MBR745	262
30CPQ040		MBR3045WT	297	6TQ045	MBR745		262
30CPQ045	MBR3045WT		297	72CPQ030	MBR7030WT		NA
30CPQ050		MBR3045WT	297	8TQ080	mBrtrocovi i	MBR1090	270
30CTQ035	MBR2535CTL		256	8TQ100		MBR10100	270
30CTQ035S		MBRB2535CTL	184	A114A		1N4934	514
30CTQ040S		MBRB2545CT	187	A114B		1N4935	514
30CTQ045S		MBRB2545CT	187	A114C		1N4936	514
30CTQ050S		MBRB2545CT	187	A1140		1N4936	514
30DL1	MR852		519	A114E		1N4937	514
30DL2	MR852		519	A114F		1N4933	514
30WQ03FN	MBRD330T4		154	A114M		1N4937	514
30WQ04FN	MBR B00014	MBRD350T4	154	A115A		MR852	519
30WQ06FN	MBRD360T4	WBI (B00014	154	A115B		MR852	519
31DQ03	MBR BOOOT 1	1N5821	220	A115C		MR856	519
31DQ04		1N5822	220	A115D		MR856	519
31DQ05		MBR350	229	A115E		MR856	519
31DQ06		MBR360	229	A115F		MR852	519
31DQ09		MBR3100	232	A115M		MR856	519
31DQ10		MBR3100	232	A14A		1N4002	512
32CTQ030		MBR2535CTL	256	A14C		1N4002	512
32CTQ030S	MBRB3030CT	WIDI (2000012	189	A14D		1N4004	512
400CNQ040	MEREBOOOD	MBRP40045CTL	324	A14E		1N4005	512
400CNQ045		MBRP40045CTL	324	A14F		1N4001	512
400DMQ045		MBRP40045CTL	324	A14M		1N4005	512
401CMQ045		MBRP40045CTL	324	A14N		1N4006	512
401CNQ040		MBRP40045CTL	324	A14P		1N4007	512
401CNQ045		MBRP40045CTL	324	AR25A		MR2504	526
403CMQ100		MBRP400100CTL	334	AR25B		MR2504	526
403CNQ100		MBRP400100CTL	334	AR25D		MR2504	526
40CPQ035		MBR4045WT	304	AR25G		MR2504	526
40CPQ040		MBR4045WT	304	AR25J		MR2510	526
40CPQ045	MBR4045WT		304	AR25K		MR2510	526
40D1		MR754	521	AR25M		MR2510	526
40D2		MR754	521	ARS25A		MR2504	526
40D4		MR754	521	ARS25B		MR2504	526
40D6		MR760	521	ARS25D		MR2504	526
40D8		MR760	521	ARS25G		MR2504	526
40L15CQ	MBR4015LWT		300	ARS25J		MR2510	526
40L40CW		MBR4045WT	304	ARS25K		MR2510	526
40L45CW		MBR4045WT	304	ARS25M		MR2510	526
42CTQ030S	MBRB4030		199	B0520LW	MBR0520LT1,T3	-	28
50WQ03FN		MBRD630CTT4	158	B0520W	MBR0520LT1,T3		28
50WQ04FN		MBRD650CTT4	158	B0530W	MBR0530T1,T3		31
50WQ06FN		MBRD660CTT4	158	B0540W	MBR0540T1,T3		34
6A05		MR754	521	B1100B	MBRS1100T3		122
6A1		MR754	521	B1100LB	MBRS1100T3		122
6A10		MR760	521	B120		MBRA130LT3	86

	ON Semiconductor	ON Semiconductor			ON Semiconductor	ON Semiconductor	
Industry	Nearest	Similar		Industry	Nearest	Similar	
Part Number	Replacement	Replacement	Page	Part Number	Replacement	Replacement	Page
B120B	MBRS120T3		106	BYQ28-150		MUR1620CT	453
B130	MBRA130LT3		86	BYQ28-200		MUR1620CT	453
B130B	MBRS130LT3		109	BYQ28-50		MUR1620CT	453
B140	MBRA140T3		89	BYR29-600	MUR860		462
B140B	MBRS140LT3		118	BYS92-40		MBRP20045CT	318
B150		MBRA140T3	89	BYS92-45		MBRP20045CT	318
B150B		MBRS140T3	115	BYS92-50		MBRP20060CT	326
B160		MBRA140T3	89	BYS93-40		MBRP30045CT	321
B160B		MBRS1100T3	122	BYS93-45		MBRP30045CT	321
B170B		MBRS1100T3	122	BYS93-50		MBRP30060CT	331
B180B		MBRS1100T3	122	BYS95-40		MBRP20045CT	318
B190B		MBRS1100T3	122	BYS95-45		MBRP20045CT	318
B220A		MBRA130LT3	86	BYS95-50		MBRP20060CT	326
B230A		MBRA130LT3	86	BYS97-40		MBRP20045CT	318
B240		MBRS240LT3	129	BYS97-45		MBRP20045CT	318
B240A		MBRA130LT3	86	BYS97-50		MBRP20060CT	326
B250		MBRS240LT3	129	BYS98-40		MBRP20045CT	318
B250A		MBRA140T3	89	BYS98-45		MBRP20045CT	318
B260		MBRS1100T3	122	BYS98-50		MBR1545CT	235
B260A		MBRA140T3	89	BYT08P-1000	MUR8100E		477
B320	MBRS320T3		142	BYT08P-400	MUR840	NURADOOT	462
B320A	MDDOGGTO	MBRA130LT3	86	BYT28-300		MUR1660CT	453
B330	MBRS330T3		142	BYT28-400		MUR1660CT	453
B330A		MBRA130LT3	86	BYT28-500	MUDACAOOT	MUR1660CT	453
B340 B340A	MBRS340T3	MBRA140T3	142 89	BYT6P-400 BYT79-300	MUR1640CT	MUR1560	453 468
B340A B340B		MBRS240LT3	129	BYT79-400		MUR1560	468
B350		MBRS360T3	142	BYT79-500		MUR1560	468
B350A		MBRA140T3	89	BYV18-35		MBR1545CT	235
B350B		MBRS240LT3	129	BYV18-45		MBR1545CT	235
B360		MBRS360T3	142	BYV19-35	MBR1045	MBI(104001	265
B360A		MBRA140T3	89	BYV19-45	MBR1045		265
B360B		MBRS1100T3	122	BYV26A		MUR120	408
B520C		MBRS320T3	142	BYV26B		MUR140	408
B530C		MBRS330T3	142	BYV26C		MUR160	408
B540C		MBRS340T3	142	BYV27-100		MUR120	408
B550C		MBRS360T3	142	BYV27-150		MUR120	408
B560C		MBRS360T3	142	BYV27-50		MUR120	408
BA157	1N4936RL		514	BYV28-100		MUR420	434
BA158	1N4937RL		514	BYV28-150		MUR420	434
BY229-200	MUR820		462	BYV28-50		MBR2045CT	245
BY229-400	MUR840		462	BYV29-300		MUR1560	468
BY229-600	MUR860		462	BYV29-400		MUR1560	468
BYP21-100		MUR820	462	BYV29-500		MUR1560	468
BYP21-150		MUR820	462	BYV32-100		MUR1620CT	453
BYP21-200		MUR820	462	BYV32-150		MUR1620CT	453
BYP21-50		MUR820	462	BYV32-200		MUR1620CT	453
BYP22-100		MUR3020PT	495	BYV32-50		MUR1620CT	453
BYP22-150		MUR3020PT	495	BYV33-35	MBR2045CT		245
BYP22-200		MUR3020PT	495	BYV33-40	MBR2045CT		245
BYP22-50	1NE4000	MUR3020PT	495 516	BYV33-45	MBR2045CT		245
BY251GP BY252GP	1N5402RL 1N5404RL		516 516	BYV39-35 BYV39-40	MBR1645 MBR1645		273 273
BY253GP	1N5404RL 1N5406RL		516	BYV39-40 BYV39-45	MBR1645 MBR1645		273
BY254GP	1N5406RL 1N5407RL		516	BYVB32-100	1043	MURB1620CT	402
BYQ28-100		MUR1620CT	453	BYVB32-100 BYVB32-150		MURB1620CT	402 402
51020-100	1		400	510002-100	1		-102

Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page	Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page
BYVB32-200		MURB1620CT	402	ERB35	MUR120		408
BYVB32-50		MURB1620CT	402	ERB44	1N4935		514
BYW29-100	MUR820	MOND 102001	462	ERB91	MUR120		408
BYW29-150	MUR820		462	ERC24	1N4936		514
BYW29-200	MUR820		462	ERC38	MUR140		408
BYW29-50	MUR820		462	ERC62	MBR1045		265
BYW4200B	MOROZO	MURD620CT	391	ERC80	MBR745		262
BYW51-200		MUR1620CT	453	ERC90	MUR820		462
BYW51F-200		MURF1620CT	482	ERC91	MUR420		434
BYW80-100	MUR820		462	ES1A		MRA4003T3	509
BYW80-150	MUR820		462	ES1B		MRA4003T3	509
BYW80-200	MUR820		462	ES1C		MRA4003T3	509
BYW80-50	MUR820		462	ES1D	MRA4003T3		509
BYW81P-200		MUR1520	468	ES1G	MRA4004T3		509
BYW98-200		MUR420	434	ES2A	_	MURS105T3	374
BYW99W-200		MUR3020WT	490	ES2AA		MRA4003T3	509
CPT12035	MBRP20045CT		318	ES2B		MURS110T3	374
CPT12045	MBRP20045CT		318	ES2BA		MRA4003T3	509
CPT12050	MBRP20060CT		326	ES2C		MURS115T3	374
CPT20035	MBRP20045CT		318	ES2CA		MRA4003T3	509
CPT20045	MBRP20045CT		318	ES2D	MURS120T3		374
CPT20050	MBRP20060CT		326	ES2DA	MRA4003T3		509
CPT20120	MBRP20030CTL		308	ES2F		MURS140T3	374
CPT20125	MBRP20030CTL		308	ES2G		MURS140T3	374
CPT30035	MBRP30045CT		321	ES3A		MURS320T3	387
CPT30045	MBRP30045CT		321	ES3AB		MURS105T3	374
CPT30050	MBRP30060CT		331	ES3B		MURS320T3	387
EGP10A	MUR120		408	ES3BB		MURS110T3	374
EGP10B	MUR120		408	ES3C		MURS320T3	387
EGP10C	MUR120		408	ES3CB		MURS115T3	374
EGP10D	MUR120		408	ES3D	MURS320T3		387
EGP10F		MUR160	408	ES3DB	MURS120T3		374
EGP10G		MUR160	408	ES3F		MURS340T3	387
EGP10J EGP10K		MUR160 MUR180E	408 413	ES3G	MURS340T3		387
EGP20A				ESAB33	MUR820		462 262
EGP20A EGP20B		MUR420 MUR420	434 434	ESAB82 ESAB92	MBR745 MUR820		262 462
EGP20C		MUR420	434	ESAC33	MUR820		462
EGP20D		MUR420	434	ESAC82	MBR1045		265
EGP20F		MUR460	434	ESAC92	MUR1520		468
EGP20G		MUR460	434	ESAC93	MORTOZO	MUR3020PT	495
EGP20J		MUR460	434	ESAD33		MUR3040PT	495
EGP20K		MUR480E	439	FE16A		MUR1620CT	453
EGP30A	MUR420		434	FE16B		MUR1620CT	453
EGP30B	MUR420		434	FE16C		MUR1620CT	453
EGP30C	MUR420		434	FE16D		MUR1620CT	453
EGP30D	MUR420		434	FE16F		MUR1660CT	453
EGP30F		MUR460	434	FE16G		MUR1660CT	453
EGP30G		MUR460	434	FE1A		MUR120	408
EGP30J		MUR460	434	FE1B		MUR120	408
EGP30K		MUR480E	439	FE1C		MUR120	408
EGP50A	MUR420		434	FE1D		MUR120	408
EGP50B	MUR420		434	FE2A		MUR420	434
EGP50C	MUR420		434	FE2B		MUR420	434
EGP50D	MUR420		434	FE2C		MUR420	434
ERA81		1N5819	203	FE2D		MUR420	434

Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page		Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page
FE3A		MUR420	434		FES8HT	1	MUR860	462
FE3B		MUR420	434		FES8JT		MUR860	462
FE3C		MUR420	434		FESB16AT		MURB1620CT	402
FE3D		MUR420	434		FESB16BT		MURB1620CT	402
FE5A		MUR420	434		FESB16CT		MURB1620CT	402
FE5B		MUR420	434		FESB16DT		MURB1620CT	402
FE5C		MUR420 MUR420	434 434		FM120		MBRA130LT3	402 86
FE5D		MUR420 MUR420	434 434		FM120 FM130		MBRA130LT3	
			-				MBRA130LT3	86
FE6A		MUR420	434		FM140			89 00
FE6B		MUR420	434		FM5817		MBRA130LT3	86
FE6C		MUR420	434		FM5818		MBRA130LT3	86
FE6D		MUR420	434		FM5819		MBRA140T3	89
FE8A		MUR420	434		FR061	4114000	1N4933	514
FE8B		MUR820	462		FR061L	1N4933		514
FE8C		MUR820	462		FR062		1N4934	514
FE8D		MUR820	462		FR062L	1N4934		514
FE8F		MUR840	462		FR063		1N4935	514
FE8G		MUR840	462		FR063L	1N4935		514
FEP16AT		MUR1620CT	453		FR064		1N4936	514
FEP16BT		MUR1620CT	453		FR065		1N4937	514
FEP16CT		MUR1620CT	453		FR065L	1N4936		514
FEP16DT		MUR1620CT	453		FR065L	1N4937		514
FEP16FT		MUR1640CT	453		FR101	1N4933		514
FEP16GT		MUR1640CT	453		FR102	1N4934		514
FEP16HT		MUR1660CT	453		FR103	1N4935		514
FEP16JT		MUR1660CT	453		FR104	1N4936		514
FEP30AP		MUR3020WT	490		FR105	1N4937		514
FEP30BP		MUR3020WT	490		FR251		MR852	519
FEP30CP		MUR3020WT	490		FR252		MR852	519
FEP30DP		MUR3020WT	490		FR253		MR852	519
FEP30FP		MUR3060WT	490		FR254		MR856	519
FEP30GP		MUR3060WT	490		FR255		MR856	519
FEP30HP		MUR3060WT	490		FR301	MR852		519
FEP30JP		MUR3060WT	490		FR302	MR852		519
FEP6AT		MUR620CT	444		FR303	MR852		519
FEP6BT		MUR620CT	444		FR304	MR856		519
FEP6CT		MUR620CT	444		FR305	MR856		519
FEP6DT		MUR620CT	444		FRM3205CC	MUR3020PT		495
FEPB16AT		MURB1620CT	402		FRM3210CC	MUR3020PT		495
FEPB16BT		MURB1620CT	402		FRM3215CC	MUR3020PT		495
FEPB16CT		MURB1620CT	402		FRM3220CC	MUR3020PT		495
FEPB16DT		MURB1620CT	402		FRP1605CC	MUR1620CT		453
FES16AT		MUR1520	468		FRP1610CC	MUR1620CT		453
FES16BT		MUR1520	468		FRP1615CC	MUR1620CT		453
FES16CT		MUR1520	468		FRP1620CC	MUR1620CT		453
FES16DT		MUR1520	468		FRP805	MUR820		462
FES16FT		MUR1540	468		FRP810	MUR820		462
FES16GT		MUR1540	468		FRP815	MUR820		462
FES16HT		MUR1560	468		FRP820	MUR820		462
FES16JT		MUR1560	468		FST1240	MBR1545CT		235
FES8AT		MUR820	462		FST1245	MBR1545CT		235
FES8BT		MUR820	462		FST1540	MBR1545CT		235
FES8CT		MUR820	462		FST1545	MBR1545CT		235
FES8DT		MUR820	462		FST20035		MBRP20045CT	318
FES8FT		MUR840	462		FST20040		MBRP20045CT	318
FES8GT		MUR840	462		FST20040		MBRP20045CT	318
1 20001	I		402	l	10120043	L	MDN 2004001	510

Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page	Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page
FST20050		MBRP20060CT	326	GI754		MR754	521
FST2040	MBR2045CT		245	GI756		MR760	521
FST2045	MBR2045CT		245	GI758		MR760	521
FST2050	MBR2060CT		250	GI810		1N4933RL	514
FST30035		MBRP30045CT	321	GI811		1N4934RL	514
FST30040		MBRP30045CT	321	GI812		1N4935RL	514
FST30045		MBRP30045CT	321	GI812		1N4936RL	514
FST30050		MBRP30060CT	331	GI816		1N4937RL	514
FST6035		MBRP20045CT	318	GI850	MR852	IN SOURCE	519
FST6040		MBRP20045CT	318	GI851	MR852		519
FST6045		MBRP20045CT	318	GI852	MR852		519
FST6050		MBRP20060CT	326	GI854	MR856		519
GER4001		1N4001	512	GI856	MR856		519
GER4002		1N4002	512	GIB2401	Will COOO	MURB1620CT	402
GER4003		1N4002 1N4003	512	GIB2402		MURB1620CT	402
GER4003		1N4003 1N4004	512	GIB2402 GIB2403		MURB1620CT	402
GER4005		1N4005	512	GIB2403		MURB1620CT	402
GER4006		1N4006	512	GP08A		1N4001RL	512
GER4007		1N4000 1N4007	512	GP08B		1N4002RL	512
GI1001		MUR120	408	GP08D		1N4003RL	512
GI1001 GI1002		MUR120	408	GP08G		1N4004RL	512
GI1002 GI1003		MUR120	408	GP08J		1N4004RL	512
GI1003		MUR120	408	GP10A		1N400311	512
GI1004 GI1101		MUR420	408	GP10A GP10B		1N4001 1N4002	512
GI1101 GI1102		MUR420	434	GP10D		1N4002 1N4003	512
GI1102 GI1103		MUR420	434	GP10D GP10G		1N4003 1N4004	512
GI1103 GI1104		MUR420	434	GP10J		1N4004 1N4005	512
GI1301		MUR420 MUR420	434 434	GP10J GP10K		1N4005 1N4006	512
GI1302		MUR420	434	GP10K GP10M		1N4008 1N4007	512
GI1302 GI1303		MUR420 MUR420	434 434	GP15A		1N4007 1N4001RL	512
GI1303 GI1304		MUR420 MUR420	434 434	GP15A GP15B		1N4001RL 1N4002RL	512
GI1304 GI1401	MUR820	WUR420	434 462	GP15D			512
GI1401 GI1402			462 462			1N4003RL 1N4004RL	512
	MUR820			GP15G			
GI1403 GI1404	MUR820		462 462	GP15J GP15K		1N4005RL 1N4006RL	512 512
	MUR820						
GI2401	MUR1620CT		453	GP15M		1N4007RL	512
GI2402 GI2403	MUR1620CT		453	GP30A GP30B	1N5400RL 1N5401RL		516
GI2403	MUR1620CT MUR1620CT		453 453	GP30D	1N5401RL 1N5402RL		516 516
GI2500	MR2504		433 526	GP30G	1N5402RL		516
			526				516
GI2501 GI2502	MR2504 MR2504		526 526	GP30J GP30K	1N5406RL 1N5407RL		516
	MR2504 MR2504			GP30K GP30M			
GI2504 GI2506	MR2504 MR2510		526 526	GP30M GP80A	1N5408RL MUR820		516 462
GI2508	MR2510		526	GP80B	MUR820		462
GI2510	MR2510		526	GP80D	MUR820		462
GI500	1N5400RL 1N5401RL		516 516	GP80G GP80J	MUR840 MUR860		462 462
GI501							
GI502	1N5402RL		516	HER101	MUR120		408
GI504	1N5404RL		516	HER102	MUR120		408
GI506	1N5406RL		516	HER103	MUR120		408
GI508	1N5407RL		516	HER104	MUR140		408
GI510	1N5408RL		516	HER105	MUR140	MUD100	408
GI750		MR754	521	HER151		MUR120	408
GI751		MR754	521	HER152		MUR120 MUR120	408
GI752		MR754	521	HER153			408

Industry Part NumberReHER154HER155HER301MUFHER302MUFHER801MUFHER802MUFHER803MUF	miconductor Nearest eplacement R420 R420 R420 R420 R820 R820	Semiconductor Similar Replacement MUR140 MUR140	Page 408 408 434	Industry Part Number MBR1550CT	Semiconductor Nearest Replacement	Semiconductor Similar Replacement	Page
HER155 HER301 MUR HER302 MUR HER303 MUR HER801 MUR HER802 MUR HER803 MUR	R420 R420 R820		408				
HER301 MUR HER302 MUR HER303 MUR HER801 MUR HER802 MUR HER803 MUR	R420 R420 R820	MUR140		MDD45000T		MBR1545CT	235
HER302 MUR HER303 MUR HER801 MUR HER802 MUR HER803 MUR	R420 R420 R820		131	MBR1560CT		MBR2060CT	250
HER303 MUF HER801 MUF HER802 MUF HER803 MUF	R420 R820		404	MBR160	MBR160		209
HER801 MUR HER802 MUR HER803 MUR	R820		434	MBR1630		MBR1635	273
HER802 MUR HER803 MUR			434	MBR1635	MBR1635		273
HER803 MUR	D020		462	MBR1640		MBR1645	273
	rozu		462	MBR1645	MBR1645		273
	R820		462	MBR1650		MBR1645	273
HER804 MUF	R840		462	MBR170	MBR1100		213
HER805 MU	R840		462	MBR180	MBR1100		213
HFA15TB60		MUR1560	468	MBR190	MBR1100		213
HFA16TA60C		MUR1660CT	453	MBR20015CTL	MBRP20030CTL		308
HFA200MD40C		MURP20040CT	501	MBR20020CTL	MBRP20030CTL		308
HFA200MD40D		MURP20040CT	501	MBR20025CTL	MBRP20030CTL		308
HFA30PA60C		MUR3060WT	490	MBR20030CTL	MBRP20030CTL		308
LT2A01		1N5400RL	516	MBR20035CT	MBRP20045CT		318
LT2A02		1N5401RL	516	MBR20045CT	MBRP20045CT		318
LT2A03		1N5402RL	516	MBR20050CT	MBRP20060CT		326
LT2A04		1N5404RL	516	MBR20060CT	MBRP20060CT		326
LT2A05		1N5406RL	516	MBR20100CT	MBR20100CT		250
LT2A06		1N5407RL	516	MBR2015CTL	MBR2030CTL		241
LT2A07		1N5408RL	516	MBR20200CT	MBR20200CT		253
	4001RL		512	MBR2030CTL	MBR2030CTL		241
	1002RL		512	MBR2035CT	MBR2045CT		245
	1003RL		512	MBR2040CT		MBR2045CT	245
	1004RL		512	MBR2045CT	MBR2045CT		245
	1005RL		512	MBR2050CT		MBR2060CT	250
	1006RL		512	MBR2060CT	MBR2060CT		250
	1007RL		512	MBR2070CT	MBR2080CT		250
	R0520LT1,T3		28	MBR2080CT	MBR2080CT		250
	R0540T1,T3		34	MBR2090CT	MBR2090CT		250
	R10100		270	MBR2535CTL	MBR2535CTL		256
MBR1030		MBR1035	265	MBR30035CT	MBRP30045CT		321
MBR1030CT		MBR1535CT	235	MBR30045CT	MBRP30045CT		321
	R1035		265	MBR30050CT	MBRP30060CT		331
MBR1035CT		MBR1535CT	235	MBR30060CT	MBRP30060CT		331
MBR1040		MBR1045	265	MBR3035CT		MBR2535CTL	256
MBR1040CT		MBR1545CT	235	MBR3035PT	MBR3045PT		290
	R1045		265	MBR3035WT	MBR3045WT		297
MBR1045CT		MBR1545CT	235	MBR3040PT		MBR3045PT	290
MBR1050		MBR1060	270	MBR3045PT	MBR3045PT		290
MBR1050		MBR1060	270	MBR3045WT	MBR3045WT		297
MBR1050		MBR1060	270	MBR3050PT		MBR3045PT	290
	R1060	-	270	MBR3100	MBR3100	-	232
	R1100		213	MBR320	MBR340		226
	R1100		213	MBR330	MBR340		226
	R1100		213	MBR340	MBR340		226
	R1100		213	MBR350	MBR360		229
	RP20045CT		318	MBR360	MBR360		229
	RP20045CT		318	MBR370	MBR3100		232
	RP20060CT		326	MBR380	MBR3100		232
	RP20060CT		326	MBR390	MBR3100		232
	R160		209	MBR4030PT	-	MBR4045PT	293
	R1535CT		235	MBR4035PT		MBR4045PT	293
MBR1540CT		MBR1545CT	235	MBR4045PT	MBR4045PT		293
	R1545CT		235	MBR4045WT	MBR4045WT		304

	ON	ON			ON	ON	
Industry Part Number	Semiconductor Nearest Replacement	Semiconductor Similar Replacement	Page	Industry Part Number	Semiconductor Nearest Replacement	Semiconductor Similar Replacement	Pa
MBR4050PT		MBR4045PT	293	MBRM120LT3	MBRM120LT3		6
MBR60035CTL	MBRP60035CTL		315	MBRM130LT3	MBRM130LT3		
MBR6030PT	WIDKF00035CTL	MBR6045PT	295	MBRM130L13	MBRM130L13 MBRM140T3		
							1
MBR6035PT		MBR6045PT	295	MBRS1100T3	MBRS1100T3		
MBR6040PT		MBR6045PT	295	MBRS130LT3	MBRS130LT3		1
MBR6045PT	MBR6045PT		295	MBRS140T3	MBRS140T3		1
MBR6045WT	MBR6045WT		306	MBRS320	MBRS320T3		1
MBR730	NDDTOF	MBR735	262	MBRS340	MBRS340T3		1
MBR735	MBR735		262	MBRS340T3	MBRS340T3		1
MBR740		MBR745	262	MR2500	MR2504		5
MBR745	MBR745		262	MR2501	MR2504		5
MBR750		MBR745	262	MR2502	MR2504		5
MBRA130LT3	MBRA130LT3		86	MR2504	MR2504		5
MBRA140T3	MBRA140T3		89	MR2506	MR2510		5
MBRB1035		MBRB1545CT	173	MR2508	MR2510		5
MBRB1045		MBRB1545CT	173	MR2510	MR2510		5
MBRB1050		MBRB1545CT	173	MR2535L	MR2535L		5
MBRB1530CT		MBRB1545CT	173	MR750	MR754		5
MBRB1535CT		MBRB1545CT	173	MR751	MR754		5
MBRB1540CT		MBRB1545CT	173	MR752	MR754		Ę
MBRB1545CT	MBRB1545CT		173	MR754	MR754		5
MBRB1550CT		MBRB1545CT	173	MR756	MR760		5
MBRB1635		MBRB1545CT	173	MR758	MR760		Ę
MBRB1645		MBRB1545CT	173	MR760	MR760		5
MBRB1650		MBRB1545CT	173	MR850	MR852		Ę
MBRB20100CT	MBRB20100CT		177	MR851	MR852		5
MBRB2035CT		MBRB2535CTL	184	MR852	MR852		Ę
MBRB2045CT		MBRB2545CT	187	MR854	MR856		5
MBRB2050CT		MBRB2545CT	187	MR856	MR856		5
MBRB2060CT	MBRB2060CT	MBRB204001	175	MUR10005CT	MURP20020CT		5
MBRB2080CT	WIDIND2000C1	MBRB20100CT	177	MUR100000CT	MURP20020CT		5
MBRB2090CT		MBRB20100CT	177	MUR10010CT	MURP20020CT		Ę
MBRB2515L	MBRB2515L	MD102010001	182	MUR10020CT	MURP20020CT		Ę
			184	MUR105			
MBRB2535CTL MBRB2545CT	MBRB2535CTL MBRB2545CT		187		MUR120		
		MDDD0000T		MUR110	MUR120		4
MBRB3035CT		MBRB3030CT	189	MUR1100E	MUR1100E		4
MBRB3045CT		MBRB2545CT	187	MUR115	MUR120		4
MBRD320	MBRD340		154	MUR120	MUR120		4
MBRD330	MBRD340		154	MUR130	MUR140		4
MBRD340	MBRD340		154	MUR140	MUR160		4
MBRD350	MBRD360		154	MUR150	MUR160		4
MBRD360	MBRD360		154	MUR1505	MUR1520		4
MBRD620CT	MBRD640CT		158	MUR1510	MUR1520		4
MBRD630CT	MBRD640CT		158	MUR1515	MUR1520		4
MBRD640CT	MBRD640CT		158	MUR1520	MUR1520		4
MBRD650CT	MBRD660CT		158	MUR1530	MUR1540		4
MBRD660CT	MBRD660CT		158	MUR1540	MUR1540		4
MBRF20100CT	MBRF20100CT		281	MUR1550	MUR1560		4
MBRF2035CT		MBRF2545CT	287	MUR1560	MUR1560		4
MBRF2045CT		MBRF2545CT	287	MUR160	MUR160		4
MBRF2050CT		MBRF2545CT	287	MUR1605CT	MUR1620CT		4
MBRF2060CT		MBRF20100CT	281	MUR1605CTR	MUR1620CTR		4
MBRF2090CT		MBRF20100CT	281	MUR1610CT	MUR1620CT		4
MBRF2535CT	MBRF2545CT		287	MUR1610CTR	MUR1620CTR		4
MBRF2545CT	MBRF2545CT		287	MUR1615CT	MUR1620CT		4
MBRF2550CT		MBRF2545CT	287	MUR1615CTR	MUR1620CTR		4

	ON	ON			ON	ON	
Industry	Semiconductor Nearest	Semiconductor Similar		Industry	Semiconductor Nearest	Semiconductor Similar	
Part Number	Replacement	Replacement	Page	Part Number	Replacement	Replacement	Ра
MUR1620CT	MUR1620CT		453	MURD315	MURD320		39
MUR1620CTR	MUR1620CTR		459	MURD320	MURD320		3
MUR1630CT	MUR1640CT		453	MURD605CT	MURD620CT		3
MUR1640CT	MUR1640CT		453	MURD610CT	MURD620CT		3
MUR1650CT	MUR1660CT		453	MURD615CT	MURD620CT		3
MUR1660CT	MUR1660CT		453	MURD620CT	MURD620CT		3
MUR170E	MUR1100E		413	MURH840CT	MURH840CT		4
MUR180E	MUR1100E		413	MURH860CT	MURH860CT		4
MUR190E	MUR1100E		413	MURHB840CT	MURHB840CT		3
MUR20005CT	MURP20020CT		501	MURS120T3	MURS120T3		3
MUR20010CT	MURP20020CT		501	MURS140	MURS140T3		3
MUR20015CT	MURP20020CT		501	MURS160	MURS160T3		3
MUR20020CT	MURP20020CT		501	MURS160T3	MURS160T3		3
MUR20030CT	MURP20040CT		501	MURS320T3	MURS320T3		3
MUR20040CT	MURP20040CT		501	MURS360T3	MURS360T3		3
MUR3005PT	MUR3020PT		495	P300A	1N5400RL		5
MUR3010PT	MUR3020PT		495	P300B	1N5401RL		5
MUR3015PT	MUR3020PT		495	P300D	1N5402RL		5
MUR3020PT	MUR3020PT		495	P300G	1N5404RL		5
MUR3020WT	MUR3020WT		490	P300J	1N5406RL		5
MUR3030PT	MUR3040PT		495	P300K	1N5407RL		5
MUR3040PT	MUR3040PT		495	P300M	1N5408RL		5
MUR3050PT	MUR3060PT		495	P600A		MR754	5
MUR3060PT	MUR3060PT		495	P600B		MR754	5
MUR3060WT	MUR3060WT		490	P600D		MR754	5
MUR405	MUR420		434	P600G		MR754	5
MUR410	MUR420		434	P600J		MR760	5
MUR4100E	MUR4100E		439	P600K		MR760	5
MUR415	MUR420		434	PR1001	1N4933RL		5
MUR420	MUR420		434	PR1002	1N4934RL		5
MUR440	MUR460		434	PR1003	1N4935RL		5
MUR450	MUR460		434	PR1004	1N4936RL		5
MUR460	MUR460		434	PR1005	1N4937RL		5
MUR470E	MUR4100E		439	PR1501		1N4933RL	5
MUR480E	MUR4100E		439	PR1501S	1N4933RL		5
MUR490E	MUR4100E		439	PR1502		1N4934RL	5
MUR605CT	MUR620CT		444	PR1502S	1N4934RL		5
MUR610CT	MUR620CT		444	PR1503		1N4935RL	5
MUR615CT	MUR620CT		444	PR1503S	1N4935RL		5
MUR620CT	MUR620CT		444	PR1504		1N4936RL	5
MUR805	MUR820		462	PR1504S	1N4936RL		5
MUR810	MUR820		462	PR1505		1N4937RL	5
MUR8100E	MUR8100E		477	PR1505S	1N4937RL		5
MUR815	MUR820		462	PR2001		MR852	5
MUR820	MUR820		462	PR2002	1	MR852	5
MUR830	MUR840		462	PR2003	1	MR852	5
MUR840	MUR840		462	PR2004		MR854	5
MUR850	MUR860		462	PR2005	1	MR856	5
MUR860	MUR860		462	PR3001	MR852		5
MUR870E	MUR8100E		477	PR3002	MR852		5
MUR880E	MUR8100E		477	PR3003	MR852		5
MUR890E	MUR8100E		477	PR3004	MR854		5
MURB1610CT		MURB1620CT	402	PR3005	MR856		5
MURB1620CT	MURB1620CT		402	R710XPT	1	MUR3020WT	4
MURD305	MURD320		394	R711X		MUR3020WT	4
MURD310	MURD320		394	R711XPT		MUR3020WT	4

Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page	Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page
R712X		MUR3020WT	490	RGP30B		MR852	519
R714XPT		MUR3020WT	490	RGP30D		MR852	519
RA2505	MR2504		526	RGP30G		MR856	519
RA251	MR2504		526	RGP30J		MR856	519
RA2510	MR2510		526	RGP80A	MUR820	Mil (000	462
RA252	MR2504		526	RGP80B	MUR820		462
RA253	MR2504		526	RGP80D	MUR820		462
RA254	MR2504		526	RGP80G	MUR840		462
RA255	MR2510		526	RGP80J	MUR860		462
RA256	MR2510		526	RL061	1N4001		512
RA258	MR2510		526	RL062	1N4002		512
RB2D	101122310	MR852	519	RL063	1N4002 1N4003		512
RB2G		MR856	519	RL064	1N4003		512
RG1A		1N4933	514	RL065	1N4004 1N4005		512
RG1B		1N4933 1N4934	514	RL065	1N4005 1N4006		512
RG1D		1N4934 1N4935	514	RL066	1N4006 1N4007		512
RG1G		1N4935 1N4936	514 514	RL067 RL251	1114007	1N5400	512
RG1J		1N4936 1N4937	514	RL251 RL252		1N5400 1N5401	516
		MR852	514			1N5401 1N5402	516
RG2A RG2B		MR852 MR852	519	RL253 RL254		1N5402 1N5404	516
RG2J		MR856	519	RL254 RL255		1N5404 1N5406	516
RG2J RG3A		MR852	519	RL255 RL256		1N5406 1N5406	516
RG3B		MR852	519	RL257	MD050	1N5406	516
RG3D		MR852	519	RP300A	MR852		519
RG3G		MR856	519	RP300B	MR852		519
RG3J		MR856	519	RP300D	MR852		519
RG4A		MR852	519	RP300G	MR856		519
RG4B		MR852	519	RP300J	MR856		519
RG4D		MR852	519	RS1A		MRA4003T3	509
RG4G		MR856	519	RS1AB		MURS120T3	374
RG4J		MR856	519	RS1B		MRA4003T3	509
RGM30A		MUR3020PT	495	RS1BB		MURS120T3	374
RGM30B		MUR3020PT	495	RS1D	MRA4003T3		509
RGM30D		MUR3020PT	495	RS1DB	MURS120T3		374
RGM30G		MUR3040PT	495	RS1G	MRA4004T3		509
RGP10A		1N4933	514	RS1GB		MURS160T3	374
RGP10B		1N4934	514	RS1J	MRA4005T3		509
RGP10D		1N4935	514	RS1JB	MURS160T3		374
RGP10G		1N4936	514	RS1K	MRA4006T3		509
RGP10J		1N4937	514	RS1M	MRA4007T3		509
RGP15A		MR852	519	RS2A		MURS120T3	374
RGP15B		MR852	519	RS2B		MURS120T3	374
RGP15D		MR852	519	RS2BA		MRA4003T3	509
RGP15G		MR856	519	RS2D		MURS120T3	374
RGP15J		MR856	519	RS2DA	MRA4003T3		509
RGP20A		MR852	519	RS2G		MURS160T3	374
RGP20B		MR852	519	RS2GA	MRA4004T3		509
RGP20D		MR852	519	RS2J		MURS160T3	374
RGP20G		MR856	519	RS2JA	MRA4005T3		509
RGP20J		MR856	519	RS2KA	MRA4006T3		509
RGP25A		MR852	519	RS2MA	MRA4007T3		509
RGP25B		MR852	519	RS3A		MURS320T3	387
RGP25D		MR852	519	RS3AB		MURS120T3	374
RGP25G		MR856	519	RS3B		MURS320T3	387
RGP25J		MR856	519	RS3BB		MURS120T3	374
RGP30A		MR852	519	RS3D	MURS320T3		387

	ON Semiconductor	ON Semiconductor			ON Semiconductor	ON Semiconductor	
Industry Part Number	Nearest Replacement	Similar Replacement	Page	Industry Part Number	Nearest Replacement	Similar Replacement	Page
RS3DB	MURS120T3		374	SB1020	MBR1045		265
RS3G		MURS360T3	387	SB1035	MBR1045		265
RS3GB		MURS160T3	374	SB1040	MBR1045		265
RS3J	MURS360T3		387	SB1045	MBR1045		265
RS3JB	MURS160T3		374	SB1100	MBR1100		213
RUD810	MUR1620CT		453	SB120		1N5817	203
RUD815	MUR1620CT		453	SB130		1N5818	203
RUD820	MUR1620CT		453	SB140		1N5819	203
RUR810	MUR820		462	SB150		MBR150	209
RUR815	MUR820		462	SB160		MBR160	209
RUR820	MUR820		462	SB1620		MBR1545CT	235
RURD1610		MUR3020PT	495	SB1630		MBR1545CT	235
RURD1615		MUR3020PT	495	SB1640		MBR1545CT	235
RURD1620		MUR3020PT	495	SB1645		MBR1545CT	235
S1A		MRA4003T3	509	SB170		MBR1100	213
S1AB		MRS1504T3	505	SB180		MBR1100	213
S1B		MRA4003T3	509	SB190		MBR1100	213
S1BB		MRS1504T3	505	SB3100		MBR3100	232
S1D	MRA4003T3		509	SB320		1N5820	220
S1DB		MRS1504T3	505	SB330		1N5821	220
S1G	MRA4004T3		509	SB340		1N5822	220
S1GB		MRS1504T3	505	SB350		MBR350RL	229
S1J	MRA4005T3		509	SB360		MBR360	229
S1JB	MURS160T3		374	SB370		MBR3100	232
S1K	MRA4006T3		509	SB380		MBR3100	232
S1M	MRA4007T3		509	SB390		MBR3100	232
S210		MBRS1100T3	122	SB5100		MBR3100	232
S2A		MRS1504T3	505	SBG1025L		MBRB1545CT	173
S2AA		MRA4003T3	509	SBG1030CT		MBRB1545CT	173
S2B		MRS1504T3	505	SBG1035CT		MBRB1545CT	173
S2BA		MRA4003T3	509	SBG1040CT		MBRB1545CT	173
S2D		MRS1504T3	505	SBG1045CT		MBRB1545CT	173
S2DA	MRA4003T3		509	SBG1630CT		MBRB1545CT	173
S2G	MRS1504T3		505	SBG1635CT		MBRB1545CT	173
S2GA	MRA4004T3		509	SBG1640CT		MBRB1545CT	173
S2J		MURS160T3	374	SBG1645CT		MBRB1545CT	173
S2JA	MRA4005T3		509	SBG3030CT		MBRB3030CT	189
S2KA	MRA4006T3		509	SBG3040CT		MBRB2545CT	187
S2MA	MRA4007T3		509	SBG3050CT		MBRB2545CT	187
S3A		MURS320T3	387	SBL1030		MBR1035	265
S3AB		MURS120T3	374	SBL1030CT		MBR1535CT	235
S3B		MURS320T3	387	SBL1035		MBR1035	265
S3BB		MURS120T3	374	SBL1035CT		MBR1535CT	235
S3D	MURS320T3		387	SBL1040		MBR1045	265
S3DB	MURS120T3		374	SBL1040CT		MBR1545CT	235
S3G		MURS360T3	387	SBL1045		MBR1045	265
S3GB		MURS160T3	374	SBL1045CT		MBR1545CT	235
S3J	MURS360T3		387	SBL1050		MBR1060	270
S3JB	MURS160T3		374	SBL1050CT		MBR1545CT	235
S3K	MRA4006T3		509	SBL1060		MBR1060	270
S3M	MRA4007T3		509	SBL1630		MBR1635	273
S5AC		MURS320T3	387	SBL1630CT		MBR1535CT	235
S5BC		MURS320T3	387	SBL1635		MBR1635	273
S5CC	MURS320T3		387	SBL1635CT		MBR1535CT	235
S5GC		MURS360T3	387	SBL1640		MBR1645	273
S5JC	MURS360T3		387	SBL1640CT		MBR1545CT	235

Industry	ON Semiconductor Nearest	ON Semiconductor Similar		Industry	ON Semiconductor	ON Semiconductor Similar	
Part Number	Replacement	Replacement	Page	Part Number	Nearest Replacement	Replacement	Page
SBL1645		MBR1645	273	SBP1645T	MBR1545CT		235
SBL1645CT		MBR1545CT	235	SBR1040	MBR1045		265
SBL1650		MBR1645	273	SBR1045	MBR1045		265
SBL1650CT		MBR1545CT	235	SBR1050	MBR1060		270
SBL1660CT		MBR2060CT	250	SBR1640	MBR1645		273
SBL2030CT		MBR2030CTL	241	SBR1645	MBR1645		273
SBL2035CT		MBR2045CT	245	SBS1020T	MBR1045		265
SBL2040CT		MBR2045CT	245	SBS1030T	MBR1045		265
SBL2045CT		MBR2045CT	245	SBS1035T	MBR1045		265
SBL2050CT		MBR2060CT	250	SBS1040T	MBR1045		265
SBL2060CT		MBR2060CT	250	SBS1045T	MBR1045		265
SBL25L20CT		MBR2535CTL	256	SBS1620T	MBR1645		203
SBL25L25CT		MBR2535CTL MBR2535CTL	256	SBS1630T	MBR1645		273
SBL25L30CT		MBR2535CTL	256	SBS1635T	MBR1645		273
SBL3030CT		MBR2535CTL MBR2535CTL	256	SBS1640T	MBR1645		273
SBL3030PT		MBR3045PT	290	SBS16401 SBS1645T	MBR1645		273
SBL3030PT		MBR3045PT	290 290	SBS16451 SBS520T	MBR745		273
			290 290		MBR745		262
SBL3040PT		MBR3045PT		SBS530T SBS535T			
SBL3045PT		MBR3045PT	290		MBR745		262
SBL3050PT		MBR3045PT	290	SBS540T	MBR745		262
SBL6030PT		MBR6045PT	295	SBS545T	MBR745		262
SBL6040PT		MBR6045PT	295	SBS820T		MBR745	262
SBL6050PT		MBR6045PT	295	SBS830T		MBR745	262
SBL8100		MBR10100	270	SBS835T		MBR745	262
SBL830		MBR1035	265	SBS840T		MBR745	262
SBL835		MBR1035	265	SBS845T		MBR745	262
SBL840		MBR1045	265	SBS850T		MBR1060	270
SBL845		MBR1045	265	SBS860T		MBR1060	270
SBL850		MBR1060	270	SBYV28-100		MUR420	434
SBL860		MBR1060	270	SBYV28-150		MUR420	434
SBL870		MBR1090	270	SBYV28-200		MUR420	434
SBL880		MBR1090	270	SBYV28-50		MUR420	434
SBL890		MBR1090	270	SD241P		MBR3045WT	297
SBLB1030CT		MBRB1545CT	173	SES5001		MUR120	408
SBLB1040CT		MBRB1545CT	173	SES5002		MUR120	408
SBLB1630CT		MBRB1545CT	173	SES5003		MUR120	408
SBLB1640CT		MBRB1545CT	173	SES5301		MUR420	434
SBLB2030CT		MBRB2535CTL	184	SES5302		MUR420	434
SBLB2040CT		MBRB2535CTL	184	SES5303	MUD000	MUR420	434
SBLB25L20CT		MBRB2535CTL	184	SES5401	MUR820		462
SBLB25L25CT		MBRB2535CTL	184	SES5401C	MUR1620CT		453
SBLB25L30CT		MBRB2535CTL	184	SES5402	MUR820		462
SBLF2030CT		MBRF2545CT	287	SES5402C	MUR1620CT		453
SBLF2040CT		MBRF2545CT	287	SES5403	MUR820		462
SBLF25L20CT		MBRF2545CT	287	SES5403C	MUR1620CT		453
SBLF25L25CT		MBRF2545CT	287	SES5404	MUR820		462
SBLF25L30CT	MDD45450T	MBRF2545CT	287	SES5404C	MUR1620CT		453
SBP1020T	MBR1545CT		235	SES5501	MUR1520		468
SBP1030T	MBR1545CT		235	SES5502	MUR1520		468
SBP1035T	MBR1545CT		235	SES5503	MUR1520		468
SBP1040T	MBR1545CT		235	SES5504	MUR1520	MUD400	468
SBP1045T	MBR1545CT		235	SF10AG		MUR120	408
SBP1620T	MBR1545CT		235	SF10BG		MUR120	408
SBP1630T	MBR1545CT		235	SF10CG		MUR120	408
SBP1635T	MBR1545CT		235	SF10DG		MUR120	408
SBP1640T	MBR1545CT		235	SF10FG		MUR160	408

Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page	Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page
SF10GG		MUR160	408	SS24		MBRS240LT3	129
SF10HG		MUR160	408	SS25		MBRS1100T3	122
SF10JG		MUR160	408	SS26		MBRS1100T3	122
SF30AG		MUR420	434	SS28		MBRS1100T3	122
SF30BG		MUR420	434	SS29		MBRS1100T3	122
SF30CG		MUR420	434	SS32	MBRS320T3		142
SF30DG		MUR420	434	SS33	MBRS330T3		142
SF30FG		MUR460	434	SS34	MBRS340T3		142
SF30GG		MUR460	434	SS35		MBRS360T3	142
SF30HG		MUR460	434	SS36	MBRS360T3		142
SF30JG		MUR460	434	STPR120A	MRA4003T3		509
SL12		MBRA130LT3	86	STPR120CT		MUR1620CT	453
SL13		MBRA130LT3	86	STPR1520D		MUR1520	468
SL42		MBRS320T3	142	STPR1620CG		MURB1620CT	402
SL43		MBRS330T3	142	STPR620CT		MUR620CT	444
SL44		MBRS340T3	142	STPR820D		MUR820	462
SMBYT01-400	MURS140T3		374	STPS0540Z	MBR0540T1.T3		34
SMBYT03-400	MURS340T3		387	STPS1045D	, .	MBR1045	265
SMBYW01-200	MURS120T3		374	STPS10L25D		MBR1035	265
SMBYW02-200	MURS120T3		374	STPS10L60D		MBR1060	270
SMBYW04-200		MURS320T3	387	STPS130A	MBRA130LT3		86
SR1002	MBR1045		265	STPS130U	MBRS130LT3		109
SR1003	MBR1045		265	STPS140A	MBRA140T3		89
SR1004	MBR1045		265	STPS140U	MBRS140T3		115
SR1005	MBR1060		270	STPS140Z	MDROTHOTO	MBR0540T1,T3	34
SR1006	MBR1060		270	STPS1545CG	MBRB1545CT	MB1004011,10	173
SR102	MBR160		209	STPS1545CT	MBR1545CT		235
SR103	MBR160		209	STPS1545D	MBRID	MBR1645	273
SR104	MBR160		209	STPS15L25D		MBR1635	273
SR105	MBR160		209	STPS160U		MBRS1100T3	122
SR106	MBR160		209	STPS16L40CT		MBR1545CT	235
SR1602		MBR1545CT	235	STPS1H100U	MBRS1100T3		122
SR1603		MBR1545CT	235	STPS1L30A	MBRA130LT3		86
SR1604		MBR1545CT	235	STPS1L30U	MBRS130LT3		109
SR302	MBR340	WEITIG-001	226	STPS1L40A	MBRA140T3		89
SR303	MBR340		226	STPS1L40U	MBRS140LT3		118
SR304	MBR340		226	STPS2045CF	MDROTHOLIO	MBRF2545CT	287
SR305	MBR360		229	STPS2045CG		MBRB2060CT	175
SR306	MBR360		229	STPS2045CT	MBR2045CT	MBRB200001	245
SR802		MBR745	262	STPS2060CT	MBR2060CT		250
SR803		MBR745	262	STPS20H100CF	MBRF20100CT		281
SR804		MBR745	262	STPS20H100CG	MBRB20100CT		177
SRP100A		1N4933	514	STPS20H100CT	MBR20100CT		250
SRP100B		1N4934	514	STPS20L25CT		MBR2030CTL	241
SRP100D		1N4935	514	STPS20L40CF		MBRF2545CT	287
SRP100G		1N4936	514	STPS20L40CT		MBR2045CT	245
SRP100J	1N4937		514	STPS20L60CT	MBR2060CT		250
SRP300A		MR852	519	STPS2H100U		MBRS1100T3	122
SRP300B		MR852	519	STPS2L30A		MBRA130LT3	86
SRP300D		MR852	519	STPS3045CG		MBRB2545CT	187
SRP300G		MR856	519	STPS3045CP	MBR3045PT		290
SRP300J	MR856		519	STPS3045CW	MBR3045WT		297
SS12		MBRA130LT3	86	STPS3045G		MBRB2545CT	187
SS13	MBRA130LT3		86	STPS30L30CG	MBRB3030CTL		193
SS14	MBRA140T3		89	STPS30L30CT		MBR2535CTL	256
SS210		MBRS1100T3	122	STPS30L40CG		MBRB2545CT	187

	ON	ON			ON	ON	
Industry Part Number	Semiconductor Nearest Replacement	Semiconductor Similar Replacement	Page	Industry Part Number	Semiconductor Nearest Replacement	Semiconductor Similar Replacement	Page
STPS30L40CW	-	MBR3045WT	297	UES2403	MUR1620CT		453
STPS30L40CW	MBRS340T3	WDR3043W1	142	UES2403	MUR1620CT		453
STPS340S STPS340U	MDR334013	MBRS240LT3	142	UES2601	WUR 102001	MUR3020PT	455 495
STPS360B	MBRD360T4	WIDR3240LT3	129	UES2602		MUR3020PT	495
STPS360B STPS3L25S	MDRD30014	MBRS330T3	142	UES2602		MUR3020PT	495 495
STPS3L25S STPS3L60S	MBRS360T3	WIDR 533013	142	UES2603 UES2604		MUR3020PT	
STPS3L60S STPS4045CP	MBR4045PT		293	UES2604 UES2605		MUR3040PT	495 495
STPS4045CP STPS4045CW	MBR4045PT MBR4045WT		293 304	UES2605 UES2606		MUR3040PT	
STPS4045CW STPS40L15CW			304 300	UE32606 UF1001		MUR120	495 408
	MBR4015LWT						
STPS40L40CW		MBR4045WT	304	UF1002		MUR120	408
STPS40L45CW	MBR4045WT	MEDDOGOTTA	304	UF1003	MUR120		408
STPS5L25B	MDDOOLEDT	MBRD630CTT4	158	UF1004		MUR160	408
STPS6045CP	MBR6045PT		295	UF1005	MUR160		408
STPS6045CW	MBR6045WT		306	UF1006	MUR180E		413
STPS60L30CW		MBR6045WT	306	UF1007	MUR1100E	MUD400	413
STPS60L40CW		MBR6045WT	306	UF1501S		MUR120	408
STPS60L45CW		MBR6045WT	306	UF1502S		MUR120	408
STPS640CB	MBRD640CTT4		158	UF1503S		MUR120	408
STPS660CB	MBRD660CTT4		158	UF1504S		MUR160	408
STPS745D	MBR745		262	UF1505S		MUR160	408
STPS8H100D		MBR10100	270	UF1506S		MUR180E	413
STPS8L30B		MBRD835L	162	UF1507S		MUR1100E	413
STTA106U	MURS160T3		374	UF3001		MUR420	434
STTA206S	MURS360T3		387	UF3002		MUR420	434
TG26	MUR460		434	UF3003		MUR420	434
TG284	MUR1640CT		453	UF3004		MUR460	434
TG286	MUR1660CT		453	UF3005		MUR460	434
TG288	MUR1660CT		453	UF3006		MUR480E	439
TG4	MUR140		408	UF3007		MUR4100E	439
TG6	MUR160		408	UF4001		MUR120	408
TG84	MUR840		462	UF4002		MUR120	408
TG86	MUR860		462	UF4003	MUR120		408
UES1001		MUR120	408	UF4004		MUR160	408
UES1002		MUR120	408	UF4005	MUR160		408
UES1003		MUR120	408	UF4006	MUR180E		413
UES1101		MUR120	408	UF4007	MUR1100E		413
UES1102		MUR120	408	UF5400		MUR420	434
UES1103		MUR120	408	UF5401		MUR420	434
UES1104		MUR120	408	UF5402		MUR420	434
UES1105		MUR140	408	UF5403		MUR460	434
UES1106		MUR140	408	UF5404		MUR460	434
UES1301		MUR420	434	UF5405		MUR460	434
UES1302		MUR420	434	UF5406		MUR460	434
UES1303		MUR420	434	UF5407		MUR480E	439
UES1304		MUR420	434	UF5408		MUR4100E	439
UES1401	MUR820		462	UG1001		MUR120	408
UES1402	MUR820		462	UG1002		MUR120	408
UES1403	MUR820		462	UG1003	MUR120		408
UES1404	MUR820		462	UG1004		MUR160	408
UES1420	MUR860		462	UG1005	MUR160		408
UES1501	MUR1520		468	UG18ACT		MUR1620CT	453
UES1502	MUR1520		468	UG18BCT		MUR1620CT	453
UES1503	MUR1520		468	UG18CCT		MUR1620CT	453
UES1504	MUR1520		468	UG18DCT		MUR1620CT	453
UES2401	MUR1620CT		453	UG1A		MUR120	408
UES2402	MUR1620CT		453	UG1B		MUR120	408

Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page	Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page
UG1C		MUR120	408	USD940	MBR1645		273
UG1D	MUR120		408	USD945	MBR1645		273
UG3001	111011120	MUR420	434	UT234		1N4003	512
UG3002		MUR420	434	UT235		1N4004	512
UG3003		MUR420	434	UT236		1N4002	512
UG3004		MUR460	434	UT237		1N4005	512
UG3005		MUR460	434	UT238		1N4005	512
UG30APT		MUR3020WT	490	UT242		1N4003	512
UG30BPT		MUR3020WT	490	UT244		1N4004	512
UG30CPT		MUR3020WT	490	UT245		1N4005	512
UG30DPT	MUR3020WT	1010020111	490	UT247		1N4005	512
UG4A		MUR420	434	UT249		1N4002	512
UG4B		MUR420	434	UT251		1N4002	512
UG4C		MUR420	434	UT252		1N4003	512
UG4D	MUR420		434	UT254		1N4004	512
UG8AT		MUR820	462	UT255		1N4004 1N4005	512
UG8BT		MUR820	462	UT257		1N4005	512
UG8CT		MUR820	462	UT258		1N4006	512
UG8DT	MUR820		462	UT347	1	1N4007	512
UPS120	WOR020	MBRM120LT3	65	UT361		1N4006	512
UPS120E		MBRM120ET3	60	UT362		1N4006	512
UPS140		MBRM140T3	75	UT363		1N4007	512
UPS5817		MBRM120LT3	65	UT364		1N4007	512
UPS5819		MBRM140T3	75	UTR01		1N4933	514
US1A		MRA4003T3	509	UTR02		1N4933	514
US1B		MRA4003T3	509	UTR10		1N4934	514
US1D	MRA4003T3	1011010010	509	UTR11		1N4934	514
US1G	MRA4004T3		509	UTR12		1N4934	514
US1J	MRA4005T3		509	UTR20		1N4935	514
US1K	MRA4006T3		509	UTR21		1N4935	514
US1M	MRA4007T3		509	UTR22		1N4935	514
USD1120	MBR160		209	UTR2305		MR852	519
USD1130	MBR160		209	UTR2310		MR852	519
USD1140	MBR160		209	UTR2320		MR852	519
USD620	MBR745		262	UTR2340		MR856	519
USD620C	MBR1545CT		235	UTR2350		MR856	519
USD635	MBR745		262	UTR2360		MR856	519
USD635C	MBR1545CT		235	UTR30		1N4936	514
USD640	MBR745		262	UTR31		1N4936	514
USD640C	MBR1545CT		235	UTR32		1N4936	514
USD645	MBR745		262	UTR3305		MR852	519
USD645C	MBR1545CT		235	UTR3310		MR852	519
USD720	MBR1045		265	UTR3320	1	MR852	519
USD720C	MBR1545CT		235	UTR3340		MR856	519
USD735	MBR1045		265	UTR3350		MR856	519
USD735C	MBR1545CT		235	UTR3360		MR856	519
USD740	MBR1045		265	UTR40	1	1N4936	514
USD740C	MBR1545CT		235	UTR41	1	1N4936	514
USD745	MBR1045		265	UTR42		1N4936	514
USD745C	MBR1545CT		235	UTR4305	1	MR852	519
USD820	MBR1645		273	UTR4310		MR852	519
USD835	MBR1645		273	UTR4320	1	MR852	519
USD840	MBR1645		273	UTR4340	1	MR852	519
USD845	MBR1645		273	UTR4350	1	MR856	519
USD920	MBR1645		273	UTR4360	1	MR856	519
USD935	MBR1645		273	UTR50		1N4937	514

Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page	Industry Part Number	ON Semiconductor Nearest Replacement	ON Semiconductor Similar Replacement	Page
UTR51		1N4937	514	VHE1401		MUR820	462
UTR52		1N4937	514	VHE1402		MUR820	462
UTR60		1N4937	514	VHE1403		MUR820	462
UTR61		1N4937	514	VHE1404		MUR820	462
UTR62		1N4937	514	VHE205	MUR120		408
UTX105		1N4933	514	VHE210	MUR120		408
UTX110		1N4934	514	VHE215	MUR120		408
UTX120		1N4935	514	VHE220	MUR120		408
UTX125		1N4935	514	VHE2401		MUR1620CT	453
UTX205		1N4933	514	VHE2402		MUR1620CT	453
UTX210		1N4934	514	VHE2403		MUR1620CT	453
UTX215		1N4935	514	VHE2404		MUR1620CT	453
UTX220		1N4935	514	VHE605	MUR420		434
UTX225		1N4935	514	VHE610	MUR420		434
UTX3105		MR852	519	VHE615	MUR420		434
UTX3110		MR852	519	VHE620	MUR420		434
UTX3115		MR852	519	VSK1020	MBR1045		265
UTX3120		MR852	519	VSK1035	MBR1045		265
UTX4105		MR852	519	VSK1045	MBR1045		265
UTX4110		MR852	519	VSK12	MBR1545CT		235
UTX4115		MR852	519	VSK120		1N5817	203
UTX4120		MR852	519	VSK13	MBR1545CT		235
V322	1N5402		516	VSK130		1N5818	203
V324	1N5404		516	VSK14	MBR1545CT		235
V326	1N5406		516	VSK140		1N5819	203
V330X	MR852		519	VSK2004	MBRP20060CT		326
V331X	MR852		519	VSK2020	MBR2045CT		245
V332X	MR852		519	VSK2035	MBR2045CT		245
V334X	MR856		519	VSK2045	MBR2045CT		245
V336X	MR856		519	VSK320	MBR340		226
V342	1N5402		516	VSK330	MBR340		226
V344	1N5404		516	VSK340	MBR340		226
V346	1N5406		516	VSK62	MBR745		262
V350X	MR852		519	VSK63	MBR745		262
V351X	MR852		519	VSK64	MBR745		262
V352X	MR852		519	VSK920		MBR1545CT	235
V354X	MR856		519	VSK935		MBR1545CT	235
V356X	MR856		519	VSK945		MBR1545CT	235

CHAPTER 11 Alphanumeric Index

Alphanumeric Index

Device Number	Page	Device Number	Page	Device Number	Page
1N4001	25, 512	MBR1100	18, 213	MBRA140T3	16, 89
1N4002	25, 512	MBR120ESFT1	16, 38	MBRA160T3	16, 92
1N4003	25, 512	MBR120ESFT3	16	MBRA210ET3	16, 98
1N4004	25, 512	MBR120LSFT1	15, 16, 42	MBRA210LT3	15, 16, 102
1N4005	25, 512	MBR120LSFT3	15, 16	MBRB1045	170
1N4006	25, 512	MBR140SFT1	16, 46	MBRB1545CT	17, 173
1N4007	25, 512	MBR140SFT3	16	MBRB20100CT	17, 177
1N4933	25, 514	MBR150	18, 209	MBRB20200CT	17, 179
1N4934	25, 514	MBR1535CT	19, 235	MBRB2060CT	17, 175
1N4935	25, 514	MBR1545CT	19, 235	MBRB2515L	15, 17, 182
1N4936	25, 514	MBR160	18, 209	MBRB2535CTL	15, 17, 184
1N4937	25, 514	MBR16100CT	19, 238	MBRB2545CT	17, 187
1N5400	25, 516	MBR1635	19, 273	MBRB3030CT	17, 189
1N5400RL	516	MBR1645	19, 273	MBRB3030CTL	15, 17, 193
1N5401	25, 516	MBR20100CT	19, 250	MBRB4030	17, 199
1N5401RL	516	MBR20200CT	19, 253	MBRD1035CTL	15, 17, 165
1N5402	25, 516	MBR2030CTL	15, 19, 241	MBRD320	154
1N5402RL	516	MBR2045CT	19, 245	MBRD320T4	17
1N5404	25, 516	MBR2060CT	19, 250	MBRD330	154
1N5404RL	516	MBR2080CT	19, 250	MBRD330T4	17
1N5406	25, 516	MBR2090CT	19, 250	MBRD340	154
1N5406RL	516	MBR2515L	15, 19, 276	MBRD340T4	17
1N5407	25, 516	MBR2535CTL	15, 19, 256	MBRD350	154
1N5407RL	516	MBR2545CT	19	MBRD350T4	17
1N5408	25, 516	MBR2545CTP	259	MBRD360	154
1N5408RL	516	MBR3045PT	19, 290	MBRD360T4	17
1N5817	18, 203	MBR3045WT	19, 297	MBRD620CT	158
1N5818	18, 203	MBR3060	18, 216	MBRD620CTT4	17
1N5819	18, 203	MBR3100	18, 232	MBRD630CT	158
1N5820	18, 220	MBR340	18, 226	MBRD630CTT4	17
1N5821	18, 220	MBR350	229	MBRD640CT	158
1N5822	18, 220	MBR350RL	18	MBRD640CTT4	17
AR598	570	MBR360	229	MBRD650CT	158
MBR0520LT1	15, 16, 28	MBR360RL	18	MBRD660CT	158
MBR0520LT3	15, 16, 28	MBR4015LWT	19, 300	MBRD660CTT4	17
MBR0530T1	16, 31	MBR4015WT	15	MBRD835L	15, 17, 162
MBR0530T3	16, 31	MBR4045PT	19, 293	MBRF20100CT	19, 281
MBR0540T1	16, 34	MBR4045WT	19, 304	MBRF20200CT	19, 284
MBR0540T3	16, 34	MBR6045PT	19, 295	MBRF2060CT	278
MBR10100	19, 270	MBR6045WT	19, 306	MBRF2545CT	19, 287
MBR1035	19, 265	MBR735	19, 262	MBRM110E	50
MBR1045	19, 265	MBR745	19, 262	MBRM110ET1	16
MBR1060	19, 270	MBRA120ET3	16, 80	MBRM110ET3	16
MBR1080	270	MBRA120LT3	16, 83	MBRM110L	55
MBR1090	19, 270	MBRA130LT3	16, 86	MBRM110LT1	15, 16

Alphanumeric Index

Device Number	Page	Device Number	Page
MBRM110LT3	15, 16	MR750 Series	521
MBRM120E	60	MR751	25, 521
MBRM120ET3	16	MR752	25, 521
MBRM120L	65	MR754	25, 521
MBRM120LT3	16	MR756	25, 521
MBRM130L	70	MR760	25, 521
MBRM130LT3	16	MR850	519
MBRM140	75	MR851	519
MBRM140T3	16	MR852	25, 519
MBRP20030CTL	15, 20, 308	MR854	25, 519
MBRP20045CT	20, 318	MR856	25, 519
MBRP20060CT	20, 326	MRA4003T3	25
MBRP30045CT	20, 321	MRA4003T3 Series	509
MBRP30060CT	20, 331	MRA4004T3	25
MBRP400100CTL	15, 20, 334	MRA4005T3	25
MBRP40030CTL	311	MRA4006T3	25
MBRP40045CTL	15, 20, 324	MRA4007T3	25
MBRP60035CTL	15, 20, 315	MRS1504T3	25, 505
MBRS1100T3	16, 122	MSR1560	15, 344
MBRS120T3	16, 106	MSR860	15, 20, 340
MBRS130LT3	15, 16, 109	MSRD620CT	15, 20, 336
MBRS130T3	16, 112	MUR105	408
MBRS140LT3	16, 118	MUR105RL	409
MBRS140T3	16, 115	MUR110	408
MBRS1540T3	16, 125	MUR1100E	15, 22, 413
MBRS190T3	16, 122	MUR110RL	409
MBRS2040LT3	16, 132	MUR115	408
MBRS240LT3	16, 129	MUR115RL	409
MBRS260T3	16, 136	MUR120	408
MBRS3100T3	17, 145	MUR120	22
MBRS320T3	17, 142	MUR120 Series	408
MBRS330T3	17, 142	MUR120RL	409
MBRS340T3	17, 142	MUR130	408
MBRS360T3	17, 142	MUR130RL	409
MBRS410ET3	17, 148	MUR140	408
MBRS410LT3	15, 17, 151	MUR140RL	409
MR2502	25, 526	MUR1510	468
MR2504	25, 526	MUR1515	468
MR2510	25, 526	MUR1520	23, 468
MR2520L	26, 547	MUR1540	23, 468
MR2535L	15, 26, 552	MUR1560	23, 468
MR2835S	564	MUR160	20, 400
MR2835SK	564	MUR160RL	409
MR3025	540	MUR1610CT	409
	0+0		+55

Device Number	Page
MUR1620CT	23, 453
MUR1620CTR	23, 459
MUR1640CT	23, 453
MUR1660CT	23, 453
MUR180E	15, 22, 413
MUR2020R	474
MUR2100E	430
MUR220	418
MUR240	422
MUR260	426
MUR3020PT	24, 495
MUR3020WT	24, 490
MUR3040PT	24, 495
MUR3060PT	24, 495
MUR3060WT	24, 490
MUR405	434
MUR410	434
MUR4100E	15, 22, 439
MUR415	434
MUR420	22, 434
MUR440	434
MUR460	22, 434
MUR480E	15, 22, 439
MUR620CT	23, 444
MUR805	462
MUR810	462
MUR8100E	15, 23, 477
MUR815	462
MUR820	23, 462
MUR840	23, 462
MUR860	23, 462
MUR880E	15, 23, 477
MURA105T3	350
MURA110T3	350
MURA115T3	353
MURA120T3	353
MURA130T3	356
MURA140T3	356
MURA160T3	359
MURA205T3	362
MURA210T3	362
MURA215T3	365
MURA220T3	365
MURA230T3	368
MURA240T3	368

Alphanumeric Index

Device Number	Page	Device Number	Page	Device Number	Page
MURA260T3	371	MURHF860CT	15, 23, 488	MURS230T3	381
MURB1620CT	21, 402	MURP20020CT	24, 501	MURS240T3	381
MURB1660CT	405	MURP20040CT	24, 501	MURS260T3	384
MURD320	21, 394	MURS105T3	21, 374	MURS320T3	21, 387
MURD620CT	21, 391	MURS110T3	21, 374	MURS340T3	21, 387
MURF1620CT	23, 482	MURS115T3	21, 374	MURS360T3	21, 387
MURF1660CT	485	MURS120T3	21, 374	SS16	16, 95
MURH840CT	15, 23, 447	MURS120T3 Series	374	SS26	16, 139
MURH860CT	15, 23, 450	MURS140T3	21, 374	TRA2525	25, 540
MURHB840CT	15, 21, 397	MURS160T3	21, 374	TRA2532	26, 557
MURHB860CT	15, 21, 400	MURS220T3	378	TRA3225	25, 533

ON SEMICONDUCTOR MAJOR WORLDWIDE SALES OFFICES AND REPRESENTATIVES

UNITED STATES

ALABAMA

ALABAMA	
Huntsville	
Huntsville (Sales Rep)	256-705-5205
ARIZONA	
Phoenix (Sales Rep)	480-769-0968
CALIFORNIA	
Los Angeles (Sales Rep)	
Sacramento (Sales Rep)	
Santa Clara (Sales Rep)	
San Diego (Sales Rep)	858-635-5960
COLORADO	
Denver (Sales Rep)	303-741-0900
CONNECTICUT	
Southbury	203-267-5451
FLORIDA	
Boca Raton	
Tampa	813-286-6181
GEORGIA	
Atlanta	
Norcross (Sales Rep)	770-209-9242
IDAHO	
Boise (Sales Rep)	208-424-1002
ILLINOIS	
Chicago	
Itasca (Sales Rep)	
Itasca (Sales Rep)	630-250-9586
Itasca (Sales Rep) INDIANA Carmel (Sales Rep)	630-250-9586 317-848-9958
Itasca (Sales Rep)	630-250-9586 317-848-9958 765-865-2085
Itasca (Sales Rep)	630-250-9586 317-848-9958 765-865-2085
Itasca (Sales Rep)	630-250-9586 317-848-9958 765-865-2085 765-455-0777
Itasca (Sales Rep)	630-250-9586 317-848-9958 765-865-2085 765-455-0777
Itasca (Sales Rep) INDIANA Carmel (Sales Rep) Kokomo Kokomo (Sales Rep) MARYLAND Baltimore (Sales Rep) MASSACHUSETTS	630-250-9586 317-848-9958 765-865-2085 765-455-0777 703-481-9895
Itasca (Sales Rep)	630-250-9586 317-848-9958 765-865-2085 765-455-0777 703-481-9895 781-376-8059
Itasca (Sales Rep)	630-250-9586 317-848-9958 765-865-2085 765-455-0777 703-481-9895 781-376-8059
Itasca (Sales Rep)	630-250-9586 317-848-9958 765-865-2085 765-455-0777 703-481-9895 781-376-8059 781-238-8888
Itasca (Sales Rep)	630-250-9586 317-848-9958 765-865-2085 765-455-0777 703-481-9895 781-376-8059 781-238-8888
Itasca (Sales Rep)	630-250-9586 317-848-9958 765-865-2085 765-455-0777 703-481-9895 781-376-8059 781-238-8888 734-953-6704
Itasca (Sales Rep)	630-250-9586 317-848-9958 765-865-2085 765-455-0777 703-481-9895 781-376-8059 781-238-8888 734-953-6704
Itasca (Sales Rep)	630-250-9586 317-848-9958 765-865-2085 765-455-0777 703-481-9895 781-376-8059 781-238-8888 734-953-6704 763-249-2360
Itasca (Sales Rep)	630-250-9586 317-848-9958 765-865-2085 765-455-0777 703-481-9895 781-376-8059 781-238-8888 734-953-6704 763-249-2360
Itasca (Sales Rep)	630-250-9586 317-848-9958 765-865-2085 765-455-0777 703-481-9895 781-376-8059 781-238-8888 734-953-6704 763-249-2360 618-288-0619
Itasca (Sales Rep)	630-250-9586 317-848-9958 765-865-2085 765-455-0777 703-481-9895 781-376-8059 781-238-8888 734-953-6704 763-249-2360 618-288-0619 516-466-2300
Itasca (Sales Rep)	630-250-9586 317-848-9958 765-865-2085 765-455-0777 703-481-9895 781-376-8059 781-238-8888 734-953-6704 763-249-2360 618-288-0619 516-466-2300 607-722-3580

UNITED STATES (continued)

NORTH CAROLINA
Raleigh (Sales Rep) 919-845-9900
OREGON
Portland 503-590-5852
PENNSYLVANIA
Philadelphia/Horsham 215-997-4340
Hatboro (Sales Rep) 215-957-0600
TEXAS
Austin (Sales Rep) 512-343-1 199
Dallas (Sales Rep) 972-680-2800
Houston (Sales Rep)
UTAH
Draper (Sales Rep) 801-572-4010
VIRGINIA
Herndon (Sales Rep) 804-897-6007
WISCONSIN
Brookfield (Sales Rep) 262-797-7977

CANADA

ALBERTA	
Calgary (Sales Rep)	403-730-6225
BRITISH COLUMBIA	
Vancouver (Sales Rep)	604-532-3881
ONTARIO	
Nepean (Sales Rep)	613-596-9294
Toronto	905-812-0092
Mississauga (Sales Rep)	905-607-1444
QUEBEC	
Mascouche (Sales Rep)	450-966-9530
Montreal	514-695-4599

INTERNATIONAL

BRAZIL
Sao Paulo 55-11-5505-801 1
CHINA
Beijing
Chengdu 86-28-678-4078
Shenzhen
Shanghai 86-21-6875-6677
CZECH REPUBLIC
Roznov
FINLAND
Vantaa

INTERNATIONAL (continued)

NIERNATIONAL (Continueu)	
FRANCE	
Paris	
Toulouse	
GERMANY	
Munich	
HONG KONG	
Hong Kong 852-2689-0088	
INDIA	
Bangalore	
ISRAEL	
Herzelia	
ITALY	
Milan	
JAPAN	
Tokyo	
KOREA	
Seoul	
MALAYSIA	
Penang 60-4-226-9368	
MEXICO	
Chihuahua 52-614-483-5683	
Ciudad Juarez 915-845-3402	
Guadalajara 52-333-836-6326	
Monterrey 52-818-31 1-6204	
Tijuana 52-664-684-2333	
PHILIPPINES	
Muntinlupa City 63-2-809-2350	
PUERTO RICO	
San Juan	
SINGAPORE	
Singapore 65-298-1768	
SWEDEN	
Solna	
TAIWAN	
Taipei	
THAILAND Bangkok 66-2-653-5031	
Dangkok	
UNITED KINGDOM	
Aylesbury 44 (0) 1296-610400	

N. AMERICAN TECHNICAL SUPPORT 1-800-282-9855 Toll Free

ON SEMICONDUCTOR STANDARD DOCUMENT TYPE DEFINITIONS

DATA SHEET CLASSIFICATIONS

A Data Sheet is the fundamental publication for each individual product/device, or series of products/devices, containing detailed parametric information and any other key information needed in using, designing-in or purchasing of the product(s)/device(s) it describes. Below are the three classifications of Data Sheet: Product Preview; Advance Information; and Fully Released Technical Data

PRODUCT PREVIEW

A Product Preview is a summary document for a product/device under consideration or in the early stages of development. The Product Preview exists only until an "Advance Information" document is published that replaces it. The Product Preview is often used as the first section or chapter in a corresponding reference manual. The Product Preview displays the following disclaimer at the bottom of the first page: "This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice."

ADVANCE INFORMATION

The Advance Information document is for a device that is NOT fully qualified, but is in the final stages of the release process, and for which production is eminent. While the commitment has been made to produce the device, final characterization and qualification may not be complete. The Advance Information document is replaced with the "Fully Released Technical Data" document once the device/part becomes fully qualified. The Advance Information document displays the following disclaimer at the bottom of the first page: "This document contains information on a new product. Specifications and information herein are subject to change without notice."

FULLY RELEASED TECHNICAL DATA

The Fully Released Technical Data document is for a product/device that is in full production (i.e., fully released). It replaces the Advance Information document and represents a part that is fully qualified. The Fully Released Technical Data document is virtually the same document as the Product Preview and the Advance Information document with the exception that it provides information that is unavailable for a product in the early phases of development, such as complete parametric characterization data. The Fully Released Technical Data document is also a more comprehensive document than either of its earlier incarnations. This document displays no disclaimer, and while it may be informally referred to as a "data sheet," it is not labeled as such.

DATA BOOK

A Data Book is a publication that contains primarily a collection of Data Sheets, general family and/or parametric information, Application Notes and any other information needed as reference or support material for the Data Sheets. It may also contain cross reference or selector guide information, detailed quality and reliability information, packaging and case outline information, etc.

APPLICATION NOTE

An Application Note is a document that contains real-world application information about how a specific ON Semiconductor device/product is used, or information that is pertinent to its use. It is designed to address a particular technical issue. Parts and/or software must already exist and be available.

SELECTOR GUIDE

A Selector Guide is a document published, generally at set intervals, that contains key line-item, device-specific information for particular products or families. The Selector Guide is designed to be a quick reference tool that will assist a customer in determining the availability of a particular device, along with its key parameters and available packaging options. In essence, it allows a customer to quickly "select" a device. For detailed design and parametric information, the customer would then refer to the device's Data Sheet. The *Master Components Selector Guide* (SG388/D) is a listing of **ALL** currently available ON Semiconductor devices.

REFERENCE MANUAL

A Reference Manual is a publication that contains a comprehensive system or device-specific descriptions of the structure and function (operation) of a particular part/system; used overwhelmingly to describe the functionality or application of a device, series of devices or device category. Procedural information in a Reference Manual is limited to less than 40 percent (usually much less).

HANDBOOK

A Handbook is a publication that contains a collection of information on almost any give subject which does not fall into the Reference Manual definition. The subject matter can consist of information ranging from a device specific design information, to system design, to quality and reliability information.

ADDENDUM

A documentation Addendum is a supplemental publication that contains missing information or replaces preliminary information in the primary publication it supports. Individual addendum items are published cumulatively. The Addendum is destroyed upon the next revision of the primary document.

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC products convey any license under its patent rights for others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized usplication, buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.

PUBLICATION ORDERING INFORMATION

GLOBAL Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative